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Introduction

Short history of general relativistic MHD
focusing on stationary and axisymmetric spacetimes

Lichnerowicz (1967): formulation of GRMHD

Bekenstein & Oron (1978), Carter (1979) : development of GRMHD for
stationary and axisymmetric spacetimes

Mobarry & Lovelace (1986) : Grad-Shafranov equation for Schwarzschild
spacetime

Nitta, Takahashi & Tomimatsu (1991), Beskin & Par’ev (1993) :
Grad-Shafranov equation for Kerr spacetime

Ioka & Sasaki (2003) : Grad-Shafranov equation in the most general (i.e.
noncircular) stationary and axisymmetric spacetimes

NB: not speaking about numerical GRMHD here
(see e.g. Shibata & Sekiguchi (2005))
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Introduction

Why a geometrical approach ?

Previous studies made use of component expressions, the covariance of which
is not obvious
For instance, two of main quantities introduced by Bekenstein & Oron (1978)
and employed by subsequent authors are

ω := −F01

F31
and C :=

F31√
−gnu2

GRMHD calculations can be cumbersome by means of standard tensor
calculus

On the other side

As well known, the electromagnetic field tensor F is fundamentally a 2-form
and Maxwell equations are most naturally expressible in terms of the exterior
derivative operator

The equations of perfect hydrodynamics can also be recast in terms of
exterior calculus, by introducing the fluid vorticity 2-form (Synge 1937,
Lichnerowicz 1941)

Cartan’s exterior calculus makes calculations easier !
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Introduction

Exterior calculus in one slide

cf. Valeri Frolov’s talk

A p-form (p = 0, 1, 2, . . .) is a multilinear form (i.e. a tensor 0-times
contravariant and p-times covariant: ωα1...αp) that is fully antisymmetric

Index-free notation: given a vector ~v and a p-form ω, ~v · ω and ω · ~v are
the (p− 1)-forms defined by

~v · ω := ω(~v, ., . . . , .) [ (~v · ω)α1···αp−1 = vµωµα1···αp−1 ]
ω · ~v := ω(., . . . , ., ~v) [(ω · ~v)α1···αp−1 = ωα1···αp−1µv

µ ]

Exterior derivative : p-form ω 7−→ (p+ 1)-form dω such that

0-form : (dω)α = ∂αω

1-form : (dω)αβ = ∂αωβ − ∂βωα
2-form : (dω)αβγ = ∂αωβγ + ∂βωγα + ∂γωαβ

The exterior derivative is nilpotent: ddω = 0
A very powerful tool : Cartan’s identity expressing the Lie derivative of a

p-form along a vector field: L~v ω = ~v · dω + d(~v · ω)
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Relativistic MHD with exterior calculus

General framework and notations

Spacetime:

M : four-dimensional orientable real manifold

g : Lorentzian metric on M , sign g = (−,+,+,+)
ε : Levi-Civita tensor (volume element 4-form) associated with g:
for any orthonormal basis (~eα),

ε(~e0, ~e1, ~e2, ~e3) = ±1

ε gives rise to Hodge duality : p-form 7−→ (4− p)-form

Notations:

~v vector =⇒ v 1-form associated to ~v by the metric tensor:

v := g(~v, .) [v = v[] [uα = gαµu
µ]

ω 1-form =⇒ ~ω vector associated to ω by the metric tensor:

ω =: g(~ω, .) [~ω = ω]] [ωα = gαµωµ]
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Eric Gourgoulhon, Charalampos Markakis & Kōji Uryū () Geometrical approach to GRMHD Kyoto, 22 September 2010 9 / 52



Relativistic MHD with exterior calculus

Maxwell equations

Electromagnetic field in M : 2-form F which obeys to Maxwell equations:

dF = 0

d ?F = µ0 ?j

dF : exterior derivative of F : (dF )αβγ = ∂αFβγ + ∂βFγα + ∂γFαβ

?F : Hodge dual of F : ?Fαβ :=
1
2
εαβµνF

µν

?j : 3-form Hodge-dual of the 1-form j associated to the electric 4-current
~j : ?j := ε(~j, ., ., .)
µ0 : magnetic permeability of vacuum
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Relativistic MHD with exterior calculus

Electric and magnetic fields in the fluid frame

Fluid : congruence of worldlines in M =⇒ 4-velocity ~u

Electric field in the fluid frame: 1-form e = F · ~u

Magnetic field in the fluid frame: vector ~b such that b = ~u · ?F

e and ~b are orthogonal to ~u : e · ~u = 0 and b · ~u = 0

F = u ∧ e+ ε(~u,~b, ., .)

?F = −u ∧ b+ ε(~u, ~e, ., .)
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Relativistic MHD with exterior calculus

Perfect conductor

Fluid is a perfect conductor ⇐⇒ ~e = 0 ⇐⇒ F · ~u = 0
From now on, we assume that the fluid is a perfect conductor (ideal MHD)

The electromagnetic field is then entirely expressible in terms of vectors ~u and ~b:

F = ε(~u,~b, ., .)

?F = b ∧ u
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Relativistic MHD with exterior calculus

Alfvén’s theorem

Cartan’s identity applied to the 2-form F :

L~u F = ~u · dF + d(~u · F )

Now dF = 0 (Maxwell eq.) and ~u · F = 0 (perfect conductor)
Hence the electromagnetic field is preserved by the flow:

L~u F = 0

Application:
d

dτ

∮
C(τ)

A = 0

τ : fluid proper time

C(τ) = closed contour dragged along by the fluid

A : electromagnetic 4-potential : F = dA

Proof:
d

dτ

∮
C(τ)

A =
d

dτ

∫
S(τ)

dA︸︷︷︸
F

=
d

dτ

∫
S(τ)

F =
∫
S(τ)

L~u F︸ ︷︷ ︸
0

= 0

Non-relativistic limit:

∫
S
~b · d~S = const ← Alfvén’s theorem (mag. flux freezing)
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Relativistic MHD with exterior calculus

Perfect fluid

From now on, we assume that the fluid is a perfect one: its energy-momentum
tensor is

T fluid = (ε+ p)u⊗ u+ pg

Simple fluid model: all thermodynamical quantities depend on

s: entropy density in the fluid frame,

n: baryon number density in the fluid frame

Equation of state : ε = ε(s, n) =⇒


T :=

∂ε

∂s
temperature

µ :=
∂ε

∂n
baryon chemical potential

First law of thermodynamics =⇒ p = −ε+ Ts+ µn

=⇒ enthalpy per baryon : h =
ε+ p

n
= µ+ TS , with S :=

s

n
(entropy per

baryon)
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Relativistic MHD with exterior calculus

Conservation of energy-momentum

Conservation law for the total energy-momentum:

∇· (T fluid + T em) = 0 (1)

From Maxwell equations, ∇· T em = −F · ~j
Using baryon number conservation, ∇· T fluid can be decomposed in two
parts:

along ~u: ~u ·∇· T fluid = −nT ~u · dS

orthogonal to ~u : ⊥u∇· T fluid = n(~u · d(hu)− TdS)
[Synge 1937] [Lichnerowicz 1941] [Taub 1959] [Carter 1979]

Ω := d(hu) vorticity 2-form

Since ~u · F · ~j = 0, Eq. (1) is equivalent to the system

~u · dS = 0 (2)

~u · d(hu)− TdS =
1
n
F · ~j (3)

Eq. (3) is the MHD-Euler equation in canonical form
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Relativistic MHD with exterior calculus

Example of application : Kelvin’s theorem

C(τ) : closed contour dragged along by the fluid (proper time τ)

Fluid circulation around C(τ): C(τ) :=
∮
C(τ)

hu

Variation of the circulation as the contour is dragged by the fluid:

dC

dτ
=

d

dτ

∮
C(τ)

hu =
∮
C(τ)

L~u (hu) =
∮
C(τ)

~u · d(hu) +
∮
C(τ)

d(hu · ~u︸ ︷︷ ︸
−1

)

where the last equality follows from Cartan’s identity

Now, since C(τ) is closed,

∮
C(τ)

dh = 0

Using the MHD-Euler equation (3), we thus get

dC

dτ
=
∮
C(τ)

(
TdS +

1
n
F · ~j

)
If F · ~j = 0 (force-free MHD) and T = const or S = const on C(τ), then C is
conserved (Kelvin’s theorem)
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Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

Assume that (M , g) is endowed with two symmetries:
1 stationarity : ∃ a group action of (R,+) on M such that

the orbits are timelike curves
g is invariant under the (R, +) action :

if ~ξ is a generator of the group action,

L~ξ g = 0 (4)

2 axisymmetry : ∃ a group action of SO(2) on M such that
the set of fixed points is a 2-dimensional submanifold ∆ ⊂M (called the
rotation axis)
g is invariant under the SO(2) action :
if ~χ is a generator of the group action,

L~χ g = 0 (5)

(4) and (5) are equivalent to Killing equations:

∇αξβ +∇βξα = 0 and ∇αχβ +∇βχα = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

No generality is lost by considering that the stationary and axisymmetric actions
commute [Carter 1970] :
(M , g) is invariant under the action of the Abelian group (R,+)× SO(2), and
not only under the actions of (R,+) and SO(2) separately. It is equivalent to say
that the Killing vectors commute:

[~ξ, ~χ] = 0

=⇒ ∃ coordinates (xα) = (t, x1, x2, ϕ) on M such that ~ξ =
∂

∂t
and ~χ =

∂

∂ϕ
Within them, gαβ = gαβ(x1, x2)

Adapted coordinates are not unique:


t′ = t+ F0(x1, x2)
x′

1 = F1(x1, x2)
x′

2 = F2(x1, x2)
ϕ′ = ϕ+ F3(x1, x2)
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Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric electromagnetic field

Assume that the electromagnetic field is both stationary and axisymmetric:

L~ξ F = 0 and L~χ F = 0 (6)

Cartan’s identity and Maxwell eq. =⇒ L~ξ F = ~ξ · dF︸︷︷︸
0

+d(~ξ · F ) = d(~ξ · F )

Hence (6) is equivalent to

d(~ξ · F ) = 0 and d(~χ · F ) = 0

Poincaré lemma =⇒ ∃ locally two scalar fields Φ and Ψ such that

~ξ · F = −dΦ and ~χ · F = −dΨ

Link with the 4-potential A: one may use the gauge freedom on A to set

Φ = A · ~ξ = At and Ψ = A · ~χ = Aϕ
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Stationary and axisymmetric electromagnetic fields in general relativity

Symmetries of the scalar potentials

From the definitions of Φ and Ψ:

L~ξ Φ = ~ξ · dΦ = −F (~ξ, ~ξ) = 0

L~χΨ = ~χ · dΨ = −F (~χ, ~χ) = 0

L~χ Φ = ~χ · dΦ = −F (~ξ, ~χ)

L~ξ Ψ = ~ξ · dΨ = −F (~χ, ~ξ) = F (~ξ, ~χ)

We have d[F (~ξ, ~χ)] = d[~ξ · dΨ] = L~ξ dΨ− ~ξ · ddΨ︸︷︷︸
0

= L~ξ (F · ~χ) = 0

Hence F (~ξ, ~χ) = const

Assuming that F vanishes somewhere in M (for instance at spatial infinity), we
conclude that

F (~ξ, ~χ) = 0

Then L~ξ Φ = L~χΦ = 0 and L~ξ Ψ = L~χΨ = 0

i.e. the scalar potentials Φ and Ψ obey to the two spacetime symmetries
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Stationary and axisymmetric electromagnetic fields in general relativity

Most general stationary-axisymmetric electromagnetic field

F = dΦ ∧ ξ∗ + dΨ ∧ χ∗ +
I

σ
ε(~ξ, ~χ, ., .) (7)

?F = ε( ~∇Φ, ~ξ∗, ., .) + ε( ~∇Ψ, ~χ∗, ., .)− I

σ
ξ ∧ χ (8)

with

ξ∗ :=
1
σ

(
−X ξ +Wχ

)
, χ∗ :=

1
σ

(
W ξ + V χ

)
V := −ξ · ~ξ , W := ξ · ~χ , X := χ · ~χ , σ := V X +W 2

[Carter (1973) notations]

I := ?F (~ξ, ~χ) ← the only non-trivial scalar, apart from F (~ξ, ~χ), one can

form from F , ~ξ and ~χ

(ξ∗,χ∗) is the dual basis of (~ξ, ~χ) in the 2-plane Π := Vect(~ξ, ~χ) :

ξ∗ · ~ξ = 1, ξ∗ · ~χ = 0, χ∗ · ~ξ = 0, χ∗ · ~χ = 1
∀~v ∈ Π⊥, ξ∗ · ~v = 0 and χ∗ · ~v = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Most general stationary-axisymmetric electromagnetic field
The proof

Consider the 2-form H := F − dΦ ∧ ξ∗ − dΨ ∧ χ∗
It satisfies

H(~ξ, .) = F (~ξ, .)︸ ︷︷ ︸
−dΦ

−(~ξ · dΦ︸ ︷︷ ︸
0

)ξ∗ + (ξ∗ · ~ξ︸ ︷︷ ︸
1

)dΦ− (~ξ · dΨ︸ ︷︷ ︸
0

)χ∗ + (χ∗ · ~ξ︸ ︷︷ ︸
0

)dΨ = 0

Similarly H(~χ, .) = 0. Hence H|Π = 0

On Π⊥, H|Π⊥ is a 2-form. Another 2-form on Π⊥ is ε(~ξ, ~χ, ., .)
∣∣∣
Π⊥

Since dim Π⊥ = 2 and ε(~ξ, ~χ, ., .)
∣∣∣
Π⊥
6= 0, ∃ a scalar field I such that

H|Π⊥ =
I

σ
ε(~ξ, ~χ, ., .)

∣∣∣
Π⊥

. Because both H and ε(~ξ, ~χ, ., .) vanish on Π, we

can extend the equality to all space:

H =
I

σ
ε(~ξ, ~χ, ., .)

Thus F has the form (7). Taking the Hodge dual gives the form (8) for ?F , on

which we readily check that I = ?F (~ξ, ~χ), thereby completing the proof.
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Stationary and axisymmetric electromagnetic fields in general relativity

Example: Kerr-Newman electromagnetic field

Using Boyer-Lindquist coordinates (t, r, θ, ϕ), the electromagnetic field of the
Kerr-Newman solution (charged rotating black hole) is

F =
µ0Q

4π(r2 + a2 cos2 θ)2

{ [
(r2 − a2 cos2 θ) dr − a2r sin 2θ dθ

]
∧ dt

+
[
a(a2 cos2 θ − r2) sin2 θ dr + ar(r2 + a2) sin 2θ dθ

]
∧ dϕ

}
Q: total electric charge, a := J/M : reduced angular momentum

For Kerr-Newman, ξ∗ = dt and χ∗ = dϕ; comparison with (7) leads to

Φ = −µ0Q

4π
r

r2 + a2 cos2 θ
, Ψ =

µ0Q

4π
ar sin2 θ

r2 + a2 cos2 θ
, I = 0

Non-rotating limit (a = 0): Reissner-Nordström solution: Φ = −µ0

4π
Q

r
, Ψ = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Maxwell equations

First Maxwell equation: dF = 0

It is automatically satisfied by the form (7) of F

Second Maxwell equation: d ?F = µ0 ?j

It gives the electric 4-current:

µ0
~j = a ~ξ + b ~χ− 1

σ
~ε(~ξ, ~χ, ~∇I, .) (9)

with

a := ∇µ
(
X

σ
∇µΦ− W

σ
∇µΨ

)
+

I

σ2
[−XCξ +WCχ]

b := −∇µ
(
W

σ
∇µΦ +

V

σ
∇µΨ

)
+

I

σ2
[WCξ + V Cχ]

Cξ := ?(ξ ∧ χ ∧ dξ) = εµνρσξµχν∇ρξσ (circularity factor)

Cχ := ?(ξ ∧ χ ∧ dχ) = εµνρσξµχν∇ρχσ (circularity factor)

Remark: ~j has no meridional component (i.e. ~j ∈ Π) ⇐⇒ dI = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Simplification for circular spacetimes

Spacetime (M , g) is circular ⇐⇒ the planes Π⊥ are integrable in 2-surfaces
⇐⇒ Cξ = Cχ = 0

Generalized Papapetrou theorem [Papapetrou 1966] [Kundt & Trümper 1966] [Carter 1969] :
a stationary and axisymmetric spacetime ruled by the Einstein equation is circular
iff the total energy-momentum tensor T obeys to

ξµT [α
µ ξβχγ] = 0

χµT [α
µ ξβχγ] = 0

Examples:

circular spacetimes: Kerr-Newman, rotating star, magnetized rotating star
with either purely poloidal magnetic field or purely toroidal magnetic field

non-circular spacetimes: rotating star with meridional flow, magnetized
rotating star with mixed magnetic field

In what follows, we do not assume that (M , g) is circular
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Stationary and axisymmetric MHD

Perfect conductor hypothesis (1/2)

F · ~u = 0
with the fluid 4-velocity decomposed as

~u = λ(~ξ + Ω~χ) + ~w, ~w ∈ Π⊥ (10)

Ω is the rotational angular velocity and ~w is the meridional velocity

u · ~u = −1 ⇐⇒ λ =

√
1 +w · ~w

V − 2ΩW − Ω2X

We have
L~u Φ = 0 and L~uΨ = 0 , (11)

i.e. the scalar potentials Φ and Ψ are constant along the fluid lines.

Proof: L~uΦ = ~u · dΦ = −F (~ξ, ~u) = 0 by the perfect conductor property.

Corollary: since we had already L~ξ Φ = L~χΦ = 0 and L~ξ Ψ = L~χΨ = 0, it

follows from (11) that

~w · dΦ = 0 and ~w · dΨ = 0
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Stationary and axisymmetric MHD

Perfect conductor hypothesis (2/2)

Expressing the condition F · ~u = 0 with the general form (7) of a
stationary-axisymmetric electromagnetic field yields

(ξ∗ · ~u︸ ︷︷ ︸
λ

)dΦ− (dΦ · ~u︸ ︷︷ ︸
0

)ξ∗ + (χ∗ · ~u︸ ︷︷ ︸
λΩ

)dΨ− (dΨ · ~u︸ ︷︷ ︸
0

)χ∗ +
I

σ
ε(~ξ, ~χ, ., ~u)︸ ︷︷ ︸
−ε(~ξ,~χ, ~w,.)

= 0

Hence

dΦ = −Ω dΨ +
I

σλ
ε(~ξ, ~χ, ~w, .) (12)
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Stationary and axisymmetric MHD

Conservation of baryon number and stream function

Baryon number conservation : ∇ · (n~u) = 0 ⇐⇒ d(n ?w) = 0

→Poincaré Lemma: ∃ a 2-form H such that n ?w = dH

Considering the scalar field f := H(~ξ, ~χ), we get

df = n ε(~ξ, ~χ, ~w, .) ⇐⇒ ~w = − 1
σn

~ε(~ξ, ~χ, ~∇f, .) (13)

f is called the (Stokes) stream function

It follows from (13) that

~ξ · df = 0 and ~χ · df = 0 =⇒ f obeys to the spacetime symmetries

~u · df = 0 =⇒ f is constant along any fluid line

The perfect conductivity relation (12) is writable as

dΦ = −Ω dΨ +
I

σnλ
df (14)
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Stationary and axisymmetric MHD

Conserved quantities along the fluid lines

If the fluid motion has no meridional component ( ~w = 0), then

~u = λ(~ξ + Ω~χ) and any scalar quantity that obeys to the spacetime
symmetries is conserved along the fluid lines

To be non-trivial, we therefore assume in the following ~w 6= 0 or equivalently

df 6= 0

Thanks to (13) the condition ~w · dΨ = 0 is equivalent to ε(~ξ, ~χ, ~∇f, ~∇Ψ) = 0.
Since df 6= 0, this implies the existence of a scalar field C such that

dΨ = C df

=⇒ ddΨ = 0 = dC ∧ df =⇒ C = C(f)

Similarly, ∃ scalar field D = D(f) such that dΦ = D df

C = C(f) and D = D(f) =⇒ C and D are constant along any fluid line

Relation (14) yields to CΩ +D =
I

σnλ
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Stationary and axisymmetric MHD

Conserved quantities of Bernoulli type

Applying the 1-form MHD-Euler equation (3) to the vector ~ξ leads to

~u · d(hu) · ~ξ = F (~ξ,~j)/n

Now
Cartan id. =⇒ d(hu) · ~ξ = −~ξ · d(hu) = −L~ξ (hu)︸ ︷︷ ︸

0

+d(hu · ~ξ) = d(hu · ~ξ)

Φ definition =⇒ F (~ξ,~j) = −~j · dΦ = (µ0σ)−1ε(~ξ, ~χ, ~∇I, ~∇Φ) by (9)

~∇Φ = D~∇f =⇒ F (~ξ,~j) =
D

µ0σ
ε(~ξ, ~χ, ~∇I, ~∇f)

Eq. (13) =⇒ F (~ξ,~j) = (Dn/µ0) ~w · dI = (Dn/µ0) ~u · dI = (Dn/µ0)L~u I

Hence

~u · d(hu · ~ξ)︸ ︷︷ ︸
L~u (hu·~ξ)

=
D

µ0
L~u I

Since L~uD = 0, we get L~uE = 0 ← E is constant along any fluid line

E := −hu · ~ξ +
DI

µ0
= λh(V −WΩ) +

DI

µ0
(15)
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Eric Gourgoulhon, Charalampos Markakis & Kōji Uryū () Geometrical approach to GRMHD Kyoto, 22 September 2010 32 / 52



Stationary and axisymmetric MHD

Conserved quantities of Bernoulli type

Similarly, applying the 1-form MHD-Euler equation (3) to the vector ~χ, instead of
~ξ, leads to

L~u L = 0

with

L := hu · ~χ− CI

µ0
= λh(W +XΩ)− CI

µ0
(16)
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Stationary and axisymmetric MHD

Non-relativistic limits

At the Newtonian limit and in standard isotropic spherical coordinates (t, r, θ, ϕ),
V = 1 + 2Φgrav, W = 0
X = (1− 2Φgrav)r2 sin2 θ
σ = r2 sin2 θ,

where Φgrav is the Newtonian gravitational potential (|Φgrav| � 1)

Moreover, introducing the mass density ρ := mb n (mb mean baryon mass)

and specific enthalpy H :=
εint + p

ρ
, we get h = mb(1 +H) with H � 1

Then

E

mb
− 1 = H + Φgrav +

v2

2
+

DI

µ0mb
(when I = 0, classical Bernoulli theorem)

L

mb
= Ω r2 sin2 θ − CI

µ0mb
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Stationary and axisymmetric MHD

Conserved quantities: summary

For purely rotational fluid motion (df = 0): any scalar quantity which
obeys to the spacetime symmetries is conserved along the fluid lines

For a fluid motion with meridional components (df 6= 0): there exist five
scalar quantities which are constant along any given fluid line:

C, D, E, L, S

(S being the entropy per baryon, cf. Eq. (2))

If there is no electromagnetic field, C = 0, D = 0, E = −hu · ~ξ and the
constancy of E along the fluid lines is the relativistic Bernoulli theorem [Synge 1937],
[Lichnerowicz 1940]
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Stationary and axisymmetric MHD

Comparison with previous work
Bekenstein & Oron (1978)

The constancy of C, ω := −D/C, E and L along the fluid lines has been shown
first by Bekenstein & Oron (1978)

Bekenstein & Oron have provided coordinate-dependent definitions of ω and C,
namely

ω := −F01

F31
and C :=

F31√
−gnu2

Besides, they have obtained expressions for E and L slightly more complicated
than (15) and (16), namely

E = −
(
h+

|b|2

µ0n

)
u · ~ξ − C

µ0
[u · (~ξ + ω~χ)] (b · ~ξ)

L =
(
h+

|b|2

µ0n

)
u · ~χ+

C

µ0
[u · (~ξ + ω~χ)] (b · ~χ)

It can be shown that these expressions are equivalent to (15) and (16)
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Grad-Shafranov and transfield equations
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Grad-Shafranov and transfield equations

Integrating the MHD-Euler equation

With the writing (10) of ~u, (7) of F and (9) of ~j, the MHD-Euler equation

~u · d(hu)− TdS =
1
n
F · ~j

can be recast as[
~w · d(hu · ~ξ)− 1

µ0σn
ε(~ξ, ~χ, ~∇I, ~∇Φ)

]
ξ∗

+
[
~w · d(hu · ~χ)− 1

µ0σn
ε(~ξ, ~χ, ~∇I, ~∇Ψ)

]
χ∗

−λd(hu · ~ξ)− λΩ d(hu · ~χ) +
I

µ0σn
dI +

1
n

[
q +

λh

σ
(Cξ + ΩCχ)

]
df

−ξ
∗ · ~j
n

dΦ− χ
∗ · ~j
n

dΨ− T dS = 0

with q := −∇µ
(
h

σ n
∇µf

)
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Grad-Shafranov and transfield equations

Integrating the MHD-Euler equation

The MHD-Euler equation is equivalent to the system

~w · d(hu · ~ξ)− 1
µ0σn

ε(~ξ, ~χ, ~∇I, ~∇Φ) = 0 (17)

~w · d(hu · ~χ)− 1
µ0σn

ε(~ξ, ~χ, ~∇I, ~∇Ψ) = 0 (18)

λd(hu · ~ξ) + λΩ d(hu · ~χ)− 1
n

[
q +

λh

σ
(Cξ + ΩCχ)

]
df − I

µ0σn
dI

+
ξ∗ · ~j
n

dΦ +
χ∗ · ~j
n

dΨ + T dS = 0. (19)

To go further, one shall distinguish two case depending whether the fluid motion
has some meridional component (df 6= 0), or not, (df = 0)
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Grad-Shafranov and transfield equations

Pure rotational flow

Assumption: ~w = 0, i.e. df = 0
Then the perfect conductor relation (14) reduces to dΦ = −Ω dΨ and
Eqs. (17)-(18) are equivalent to

ε(~ξ, ~χ, ~∇I, ~∇Ψ) = 0 (20)

Two cases must be considered:

generic case : dΨ 6= 0
toroidal magnetic field: dΨ = 0
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Grad-Shafranov and transfield equations

Pure rotational flow: generic case (1/2)

If dΨ 6= 0, the relation dΦ = −Ω dΨ implies

Ω = Ω(Ψ) (relativistic generalization of Ferraro’s law of isorotation)

Moreover Eq. (20) implies dI ∝ dΨ, resulting in

I = I(Ψ)

Assuming S = S(Ψ), Eq. (19) admit the first integral

lnh+
1
2

ln
(
V − 2WΩ−XΩ2

)
+
∫ Ψ

0

G(ψ) dψ = const

where G = G(Ψ) obeys to...
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Grad-Shafranov and transfield equations

Pure rotational flow: generic case (2/2)

(V − 2WΩ−XΩ2)∆∗Ψ + d(V − 2WΩ−XΩ2) · ~∇Ψ

+(W +XΩ)Ω′ dΨ · ~∇Ψ + I
[
I ′ − W+XΩ

σ Cξ − V−WΩ
σ Cχ

]
+µ0σ

{
(ε+ p)

[
(XΩ+W )Ω′

V−2WΩ−XΩ2 −G
]
− nTS′

}
= 0

(21)

with ∆∗Ψ := σ∇µ
(

1
σ
∇µΨ

)
Eq. (21) is the relativistic generalization of the Grad-Shafranov equation, for the
most general (i.e. noncircular) stationary and axisymmetric spacetimes

Newtonian limit:

∆∗Ψ + II ′ + µ0r
2 sin2 θ

[
ρ
(
ΩΩ′r2 sin2 θ −G

)
− nTS′

]
= 0

Ω = 0 : Grad and Rubin (1958), Shafranov (1958)

Ω 6= 0 : Chandrasekhar (1956)
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Grad-Shafranov and transfield equations

Pure rotational flow: toroidal magnetic field (1/2)

Assumption: dΨ = 0

=⇒ dΦ = 0 [since dΦ = −Ω dΨ ]

The electromagnetic field depends then only on I: F =
I

σ
ε(~ξ, ~χ, ., .)

and ~b ∈ Π (toroidal magnetic field)

The first two equations of the MHD-Euler system (18)-(19) are automatically
satisfied, while the third one reduces to

d ln
(
h
√
V − 2WΩ−XΩ2

)
+

XΩ +W

V − 2WΩ−XΩ2
dΩ+

I

µ0σ(ε+ p)
dI−T

h
dS = 0

Sufficient conditions for the integrability are then Ω = Ω(I) and S = S(I)
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σ
ε(~ξ, ~χ, ., .)

and ~b ∈ Π (toroidal magnetic field)

The first two equations of the MHD-Euler system (18)-(19) are automatically
satisfied, while the third one reduces to

d ln
(
h
√
V − 2WΩ−XΩ2

)
+

XΩ +W

V − 2WΩ−XΩ2
dΩ+

I

µ0σ(ε+ p)
dI−T

h
dS = 0

Sufficient conditions for the integrability are then Ω = Ω(I) and S = S(I)
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Pure rotational flow: toroidal magnetic field (2/2)

Assuming Ω = Ω(I) and S = S(I), the first integral is then

lnh+
1
2

ln
(
V − 2WΩ−XΩ2

)
+
∫ I

0

Q(i) di = const

where Q = Q(I) such that

I

µ0σ(ε+ p)
−Q(I) +

(XΩ +W )Ω′

V − 2WΩ−XΩ2
− TS′

h
= 0

In the special case Ω = const and S = const, we recover results by Kiuchi &
Yoshida (2008)
Newtonian limit: Miketinac (1973)
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Flow with meridional component

Assumption: ~w 6= 0, i.e. df 6= 0
As shown above, we may then write dΦ = D(f) df and dΨ = C(f) df

Moreover Eq. (2) implies S = S(f)

The MHD-Euler system (17)-(19) is then equivalent to

~w · dE = 0 (22)

~w · dL = 0 (23){
nλ

[
ΩL′ − E′ + I

µ0
(D′ + ΩC ′)

]
+Dξ∗ · ~j + Cχ∗ · ~j − q

−λh
σ

(Cξ + Ω Cχ) + nTS′
}

df = 0 (24)

We recognize in (22)-(23) the Bernoulli-type conservation laws established earlier
[cf. Eqs. (15)-(16)]

Eq. (24) is equivalent to the vanishing of the factor in front of df
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Transfield equation

Substituting expression (9) for ~j in Eq. (24) we obtain the transfield equation:

(
1− A

M2

)
∆∗f + n

h

[
d
(
h
n

)
− 1

µ0

(
C2 dV + 2CD dW −D2 dX

)]
· ~∇f

− n
µ0h

[(V C +WD)C ′ + (WC −XD)D′] df · ~∇f

+σn2

h

{
λ
[
ΩL′ − E′ + I

µ0
(D′ + ΩC ′)

]
+ TS′

}
− λn (Cξ + Ω Cχ)

+ In
µ0σh

[(WC −XD)Cξ + (V C +WD)Cχ] = 0

(25)

with

A := V + 2W
D

C
−XD2

C2
, ∆∗f := σ∇µ

(
1
σ
∇µf

)
M2 :=

µ0h

C2n
(poloidal Alfvén Mach-number)

Eq. (25) is called transfield for it expresses the component along df of the

MHD-Euler equation and df is transverse to the magnetic field ~b in the fluid
frame, in the sense that ~b · df = 0
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Poloidal wind equation

The transfield equation has to be supplemented by the poloidal wind equation,
arising from the 4-velocity normalization u · ~u = −1, with λ and Ω expressed in
terms of C, D, E, L and h :

(A−M2)2

(
h2

n2
df · ~∇f + σh2

)
−M4(XE2 + 2WEL− V L2)

− σ

C2
(A− 2M2)(CE +DL)2 = 0

(26)

Notice that I, λ and Ω in Eq. (25) can be expressed in terms of C, D, E, L, n
and h
Then

Given

the metric (represented by V , X, W , σ and ∇),

the EOS h = h(n, S),

the five functions C(f), D(f), E(f), L(f) and S(f),

Eqs. (25)-(26) constitute a system of 2 PDEs for the 2 unknowns (f, n)

Solving it provides a complete solution of the MHD-Euler equation
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Comparison with previous works

Newtonian limit:

The transfield equation (25) reduces to the equation obtained by Solov’ev
(1967)

Pure hydrodynamical limit (vanishing electromagnetic field) :

∆∗f − 1
n
dn · ~∇f + r2 sin2 θ

n2

mb
(ΩL′ − E′ + TS′) = 0

Special case n = const, Ω = 0, T = 0 : Stokes (1880).

Relativistic studies:
All previous GRMHD studies derived the transfield equation for the flux function
Ψ, instead of the stream function f (df = C−1dΨ)
=⇒ the transfield equation can be then seen as a generalization to meridional
flows of the Grad-Shafranov equation (21)
Drawback: no straightforward hydrodynamical limit

Schwarzschild spacetime : Mobarry & Lovelace (1986)

Kerr spacetime (circular spacetimes): Nitta, Takahashi & Tomimatsu (1991),
Beskin & Par’ev (1993)

noncircular spacetimes: Ioka & Sasaki (2003)
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Comparison with Ioka & Sasaki (2003)

To deal with noncircular stationary axisymmetric spacetimes, Ioka & Sasaki used a
(2+1)+1 formalism developed by Gourgoulhon & Bonazzola (1993), similar to the
(2+1)+1 formalism introduced by K. Maeda1, M. Sasaki, T. Nakamura1 & S.
Miyama (1980)

This (2+1)+1 formalism is based on a foliation by 2-surfaces (“meridional
surfaces”) transverse to the 2-surfaces of transitivity of the group action
R× SO(2)

In noncircular spacetimes, there is no unique choice for the meridional surfaces

To be general, the work of Ioka & Sasaki is covariant with respect to that choice
(described by means of “spatial lapse” and “meridional shift” functions)

In the geometrical approach adopted here, neither meridional surfaces have been
introduced, nor any extra-structure apart from that induced by the two spacetime
symmetries

Another difference: case of pure rotational flow and toroidal magnetic field not
included in Ioka & Sasaki’s treatment

1Happy birthday !
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Conclusions

Ideal GRMHD is well amenable to a treatment based on exterior calculus.

This simplifies calculations with respect to the traditional tensor calculus,
notably via the massive use of Cartan’s identity.

For stationary and axisymmetric GRMHD, we have developed a systematic
treatment based on such an approach. This provides some insight on
previously introduced quantities and leads to the formulation of very general
laws, recovering previous ones as subcases and obtaining new ones in some
specific limits.
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A related work

GRMHD for neutron star-neutron star and neutron star-black hole binary systems
on close circular orbits (helical symmetry)

See poster no. 77 by Koji Uryu !
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