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Kōji Uryū, Eric Gourgoulhon & Charalampos Markakis () Magnetized binaries GR19, Mexico, 8 July 2010 1 / 18



Plan

1 Bekenstein-Oron formulation of relativistic ideal MHD

2 Quasistationary evolution of a magnetized binary system

3 Computing equilibrium configurations
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Bekenstein-Oron formulation of relativistic ideal MHD

Variational principle

Bekenstein & Oron (2000)’s action for a magnetized perfect fluid with infinite
conductivity:

S(gαβ , Nα, s, γ, Aα) = Sgrav + Sfluid + SMHD

Nα = nuα baryon number 4-current

s : entropy per baryon

γ : Lin vorticity function (if absent, the theory describes only potential flows)

Aα : electromagnetic 4-potential: Fαβ = ∂αAβ − ∂βAα

Sgrav =
1

16π

∫
R
√
−g d4x : Hilbert-Einstein action

Sfluid =
∫

[−ε(s, n) + φ∇αNα + χ∇α(sNα) + λ∇α(γNα)]
√
−g d4x :

perfect fluid action [Schutz 1970]

SMHD =
∫ (
− 1

16π
FαβF

αβ − qαFαβNβ

)√
−g d4x : ideal MHD action

[Bekenstein & Oron 2000]

Lagrange multipliers: φ, χ, λ, qα
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Bekenstein-Oron formulation of relativistic ideal MHD

Equations of motion (1/2)

Variation w.r.t. φ =⇒ baryon number conservation :

∇αNα = 0 (1)

Variation w.r.t. χ =⇒ ∇α(sNα) = 0 =⇒ uα∇αs = 0 (adiabatic flow)

Variation w.r.t Nα =⇒ huα = ∇αφ+ s∇αχ+ γ∇αλ− Fαβqβ

where h is the enthalpy per baryon: h :=
ε+ p

n

Variation w.r.t. qα =⇒ FαβN
β = 0 =⇒ Fαβu

β = 0 (infinite conductivity)

Variation w.r.t. Aα =⇒ Maxwell equation ∇βFαβ = 4πjα with

jα := ∇β(Nαqβ −Nβqα) (2)

(1) and (2) =⇒ ∇αjα = 0 (conservation of electric charge)
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Bekenstein-Oron formulation of relativistic ideal MHD

Equations of motion (2/2)

Combining various equations resulting from the variational principle we get the
MHD Euler equation:

(ε+ p)uβ∇βuα = −(δβα + uαu
β)∇βp+ Fαβj

β

which can be put in the equivalent form

~u ·Ω = Tds (3)

where T is the fluid temperature and Ω is the generalized vorticity 2-form, i.e.
the exterior derivative of the generalized momentum 1-form w :

w := hu+ F · ~q and Ω := dw

Components: wα = huα + Fαβq
β and Ωαβ = ∂αwβ − ∂βwα

(3) is the ideal MHD generalization of the pure-hydrodynamics equation of motion
in canonical form [Synge 1937], [Lichnerowicz 1941], [Taub 1959], [Carter 1979]
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Bekenstein-Oron formulation of relativistic ideal MHD

MHD Kelvin’s theorem

C(τ) : closed contour dragged along by the fluid (proper time τ)

Magnetized fluid circulation around C(τ): C(τ) :=
∮
C(τ)

w

Variation of the circulation as the contour is dragged by the fluid:

dC

dτ
=

d

dτ

∮
C(τ)

w =
∮
C(τ)

L~uw

By virtue of Cartan’s identity, L~uw = ~u · dw + d(~u ·w) = ~u ·Ω− dh
Thanks to the e.o.m. (3) we get L~uw = Tds− dh

Since C(τ) is closed,

∮
C(τ)

dh = 0

Hence
dC

dτ
=
∮
C(τ)

Tds

If T = const or s = const on C(τ), then C is conserved
Bekenstein & Oron’s generalisation of Kelvin’s theorem

Kōji Uryū, Eric Gourgoulhon & Charalampos Markakis () Magnetized binaries GR19, Mexico, 8 July 2010 7 / 18



Quasistationary evolution of a magnetized binary system

Outline

1 Bekenstein-Oron formulation of relativistic ideal MHD

2 Quasistationary evolution of a magnetized binary system

3 Computing equilibrium configurations
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Quasistationary evolution of a magnetized binary system

Equilibrium configuration

Hypothesis:

Magnetized binary system in equilibrium on a
circular orbit

Geometrical translation:

Einstein-Maxwell spacetime (M , g,F ) with

helical symmetry : ∃ a vector field ~k of helical
type such that

L~k g = 0 (1)

⇐⇒ ∇αkβ +∇βkα = 0 (~k = Killing vector)

L~k F = 0 (2)

(1) and (2) are approximations of actual binary spacetimes:

(1) does not take into account outgoing gravitational radiation

(2) does not allow for outgoing electromagnetic radiation
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Quasistationary evolution of a magnetized binary system

Modeling the slow evolution of the system (inspiral)

Sequence
Q(λ) = (M , g(λ), ~u(λ), n(λ), s(λ),A(λ))

of equilibrium magnetized perfect fluid spacetimes such that Q(λ) and
Q(λ+ dλ) are related by an evolution obeying Einstein-Maxwell equations, baryon
number conservation and infinite conductivity

Eulerian change of a quantity f : δf :=
df

dλ

Lagrangian displacement ~ξ: vector joining a fluid element at some point P in
configuration Q(λ) to the same fluid element in Q(λ+ dλ)

Lagrangian change of a quantity f : ∆f = (δ + L~ξ )f
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Quasistationary evolution of a magnetized binary system

Noether charge

Family of Noether charges:

Q(λ) = − 1
8π

∮
S

(
∇αkβ + V αkβ − V βkα

)
dSαβ

with V α(λ) vector field satisfying
1√
−g

d

dλ

(√
−gV α

)
= 8πΘα

Θα :=
1

16π
(
gαµgβν − gαβgµν

)
∇β

dgµν
dλ

+ (ε+ p)(gαβ + uαuβ)ξβ

− 1
4π
Fαβ

dAβ
dλ

+Aβ(jαξβ − jβξα)

V α can be chosen to make Q(λ) finite

~k Killing vector =⇒ Q(λ) is independent of the choice of the 2-surface S
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Quasistationary evolution of a magnetized binary system

Variation of the Noether charge

If evolution Q(λ)→ Q(λ+ dλ) perserves the baryon number, the entropy, the
magnetized fluid circulation and the magnetic flux, then, from the equations of
motion listed in Part 1,

δQ =
∑
a

(κa
8π
δAa + Φaδqa

)
(4)

where∑
a

is the sum over the black holes (if any)

κa is the surface gravity of BH no. a : ∇~k
~k = κa~k

Aa is the area of BH no. a

qa is the total electric charge of BH no. a

Φa is the (constant) electric potential of BH no. a:
Φa = − Aαk

α|Ba
= const

Equation (4) generalizes to the single symmetry case a relation obtained
previously by [Carter 1979] in the stationary and axisymmetric case
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Quasistationary evolution of a magnetized binary system

Generalized first law of thermodynamics

Assume the metric is asymptotically flat (Isenber-Wilson-Mathews
approximation, 2-PN approximation, waveless approximation,...)

Then ~k is related to two asymptotically Killing vectors ~t (timelike) and ~ϕ
(spacelike) by

~k = ~t+ Ω~ϕ, Ω = const

and one can define

the ADM mass M

the total angular momentum J

Then one can show
δQ = δM − Ω δJ (5)

Combining (4) and (5), we get

First law of thermodynamics for a magnetized binary system

δM = Ω δJ +
∑
a

(κa
8π
δAa + Φaδqa

)
(6)

Generalizes the law obtained by [Friedman, Uryu & Shibata 2002] to the MHD case
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Computing equilibrium configurations

Irrotational magnetized binaries

Zero-temperature limit of the MHD Euler equation (3) :

~u ·Ω = 0 (7)

with Ω := dw and w := hu+ F · ~q

Let us define a irrotational magnetized flow as a flow for which Ω = 0
Then there exists (locally) a scalar field Φ such that w = dΦ

Motivations for computing irrotational magnetized NS binaries:

the MHD Euler equation (7) is automatically satisfied

if the NS have initial low spin, the nuclear matter viscosity is by far too low to
synchronize the spins with the orbital frequency =⇒ assuming irrotationality
all along the evolutionary sequence is a very good approximation
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Computing equilibrium configurations

Equations for irrotational magnetized binaries

The fluid 4-velocity is

uα =
1
h

(
∇αΦ− Fαβqβ

)
The normalization relation uαu

α = −1 then leads to

h2 = −
(
∇αΦ− Fαβqβ

) (
∇αΦ− Fαβqβ

)
and the baryon number conservation ∇α(nuα) = 0 is equivalent to

∇α
[n
h

(
∇αΦ− Fαβqβ

)]
= 0
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Computing equilibrium configurations

Scheme to compute irrotational magnetized binaries

Choose some EOS ε = ε(h), p = p(h), n = n(h) and some vector field ~q

Then iteratively

1 solve
∇α
[n
h

(
∇αΦ− Fαβqβ

)]
= 0

to get Φ
2 compute the enthalpy via h2 = −

(
∇αΦ− Fαβqβ

) (
∇αΦ− Fαβqβ

)
3 compute ε, p and n via the EOS

4 solve the Maxwell equation (in Lorenz gauge)

∇β∇βAα −RαβAβ = 4π∇β(n qαuβ − n qβuα)

to get Aα and Fαβ = ∂αAβ − ∂βAα
5 solve the Einstein equations

The magnetic field configuration is specified by ~q
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Computing equilibrium configurations

Conclusion and perspectives

We are studying self-consistent models of magnetized NS-NS and NS-BH
systems within the hypothesis of helical symmetry

We are using the Bekenstein-Oron formulation of relativistic ideal MHD

We have derived a relation of the type ‘first law of thermodynamics’
governing the slow inspiral phase

For irrotational binaries, we have derived some integration scheme

There remains to perform the numerical implementation
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