Magnetized binary compact objects

Kōji Uryū¹, Eric Gourgoulhon² & Charalampos Markakis³

¹University of the Ryukyus, Okinawa, Japan

²Observatoire de Paris, Meudon, France

³University of Wisconsin, Milwaukee, USA

19th International Conference on General Relativity and Gravitation Mexico City, Mexico (5-9 July 2010)

Bekenstein-Oron formulation of relativistic ideal MHD

2 Quasistationary evolution of a magnetized binary system

3 Computing equilibrium configurations

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Bekenstein-Oron formulation of relativistic ideal MHD

2 Quasistationary evolution of a magnetized binary system

Computing equilibrium configurations

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Variational principle

Bekenstein & Oron (2000)'s action for a magnetized perfect fluid with infinite conductivity:

$$S(g_{\alpha\beta}, N^{\alpha}, s, \gamma, A_{\alpha}) = S_{\text{grav}} + S_{\text{fluid}} + S_{\text{MHD}}$$

- $N^{\alpha} = n u^{\alpha}$ baryon number 4-current
- s : entropy per baryon
- γ : Lin vorticity function (if absent, the theory describes only potential flows)
- A_{α} : electromagnetic 4-potential: $F_{\alpha\beta} = \partial_{\alpha}A_{\beta} \partial_{\beta}A_{\alpha}$
- $S_{\text{grav}} = \frac{1}{16\pi} \int R \sqrt{-g} \, d^4x$: Hilbert-Einstein action
- $S_{\text{fluid}} = \int \left[-\varepsilon(s,n) + \phi \nabla_{\alpha} N^{\alpha} + \chi \nabla_{\alpha}(sN^{\alpha}) + \lambda \nabla_{\alpha}(\gamma N^{\alpha})\right] \sqrt{-g} d^4x$: perfect fluid action [Schutz 1970]

•
$$S_{\text{MHD}} = \int \left(-\frac{1}{16\pi} F_{\alpha\beta} F^{\alpha\beta} - q^{\alpha} F_{\alpha\beta} N^{\beta} \right) \sqrt{-g} \, d^4x$$
: ideal MHD action [Bekenstein & Oron 2000]

Lagrange multipliers: ϕ , χ , λ , q^{α}

Bekenstein-Oron formulation of relativistic ideal MHD

Equations of motion (1/2)

• Variation w.r.t. $\phi \Longrightarrow$ baryon number conservation :

$$\nabla_{\alpha} N^{\alpha} = 0 \tag{1}$$

- Variation w.r.t. $\chi \Longrightarrow \nabla_{\alpha}(sN^{\alpha}) = 0 \Longrightarrow u^{\alpha}\nabla_{\alpha}s = 0$ (adiabatic flow)
- Variation w.r.t $N^{\alpha} \Longrightarrow hu_{\alpha} = \nabla_{\alpha}\phi + s\nabla_{\alpha}\chi + \gamma\nabla_{\alpha}\lambda F_{\alpha\beta}q^{\beta}$ where h is the enthalpy per baryon: $h := \frac{\varepsilon + p}{\varepsilon}$
- Variation w.r.t. $q^{\alpha} \Longrightarrow F_{\alpha\beta}N^{\beta} = 0 \Longrightarrow F_{\alpha\beta}u^{\beta} = 0$ (infinite conductivity)
- Variation w.r.t. $A_{\alpha} \Longrightarrow$ Maxwell equation $\nabla_{\beta} F^{\alpha\beta} = 4\pi j^{\alpha}$ with

$$j^{\alpha} := \nabla_{\beta} (N^{\alpha} q^{\beta} - N^{\beta} q^{\alpha})$$
(2)

(1) and (2) $\Longrightarrow \nabla_{\alpha} j^{\alpha} = 0$ (conservation of electric charge)

Equations of motion (2/2)

Combining various equations resulting from the variational principle we get the MHD Euler equation:

$$(\varepsilon + p)u^{\beta}\nabla_{\beta}u_{\alpha} = -(\delta^{\beta}{}_{\alpha} + u_{\alpha}u^{\beta})\nabla_{\beta}p + F_{\alpha\beta}j^{\beta}$$

which can be put in the equivalent form

$$\vec{\boldsymbol{u}} \cdot \boldsymbol{\Omega} = T \mathbf{d} \boldsymbol{s} \tag{3}$$

Image: A math a math

where T is the fluid temperature and Ω is the generalized vorticity 2-form, i.e. the exterior derivative of the generalized momentum 1-form w:

$$oldsymbol{w} := h\, oldsymbol{u} + oldsymbol{F} \cdot oldsymbol{ec{q}}$$
 and $oldsymbol{\Omega} := \mathbf{d}oldsymbol{w}$

Components: $w_{\alpha} = hu_{\alpha} + F_{\alpha\beta}q^{\beta}$ and $\Omega_{\alpha\beta} = \partial_{\alpha}w_{\beta} - \partial_{\beta}w_{\alpha}$

(3) is the ideal MHD generalization of the pure-hydrodynamics equation of motion in *canonical form* [Synge 1937], [Lichnerowicz 1941], [Taub 1959], [Carter 1979]

MHD Kelvin's theorem

 $C(\tau)$: closed contour dragged along by the fluid (proper time τ) **Magnetized fluid circulation around** $C(\tau)$: $C(\tau) := \oint_{C(\tau)} w$ Variation of the circulation as the contour is dragged by the fluid:

$$rac{dC}{d au} = rac{d}{d au} \oint_{\mathcal{C}(au)} oldsymbol{w} = \oint_{\mathcal{C}(au)} \mathcal{L}_{oldsymbol{i}} oldsymbol{w}$$

By virtue of Cartan's identity, $\mathcal{L}_{\vec{u}} w = \vec{u} \cdot dw + d(\vec{u} \cdot w) = \vec{u} \cdot \Omega - dh$ Thanks to the e.o.m. (3) we get $\mathcal{L}_{\vec{u}} w = Tds - dh$ Since $\mathcal{C}(\tau)$ is closed, $\oint_{\mathcal{C}(\tau)} dh = 0$

Hence

$$\frac{dC}{d\tau} = \oint_{\mathcal{C}(\tau)} T \mathbf{d}s$$

If T = const or s = const on $C(\tau)$, then C is conserved Bekenstein & Oron's generalisation of Kelvin's theorem

Outline

Bekenstein-Oron formulation of relativistic ideal MHD

2 Quasistationary evolution of a magnetized binary system

3 Computing equilibrium configurations

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Quasistationary evolution of a magnetized binary system

Equilibrium configuration

Hypothesis:

Magnetized binary system in equilibrium on a circular orbit

Geometrical translation:

Einstein-Maxwell spacetime (\mathcal{M}, g, F) with **helical symmetry** : \exists a vector field \vec{k} of helical type such that

•
$$\mathcal{L}_{\vec{k}} g = 0$$
 (1)
 $\iff \nabla_{\alpha} k_{\beta} + \nabla_{\beta} k_{\alpha} = 0 \quad (\vec{k} = \text{Killing vector})$
• $\mathcal{L}_{\vec{k}} F = 0$ (2)

< □ > < ^[] >

Quasistationary evolution of a magnetized binary system

Equilibrium configuration

Hypothesis:

Magnetized binary system in equilibrium on a circular orbit

Geometrical translation:

Einstein-Maxwell spacetime (\mathcal{M}, g, F) with **helical symmetry** : \exists a vector field \vec{k} of helical type such that

• $\mathcal{L}_{\vec{k}} g = 0$ (1) $\iff \nabla_{\alpha} k_{\beta} + \nabla_{\beta} k_{\alpha} = 0 \quad (\vec{k} = \text{Killing vector})$ • $\mathcal{L}_{\vec{k}} F = 0$ (2)

Image: A math a math

(1) and (2) are approximations of actual binary spacetimes:

- (1) does not take into account outgoing gravitational radiation
- (2) does not allow for outgoing *electromagnetic radiation*

Modeling the slow evolution of the system (inspiral)

Sequence

$\mathcal{Q}(\lambda) = (\mathscr{M}, \boldsymbol{g}(\lambda), \boldsymbol{\vec{u}}(\lambda), n(\lambda), s(\lambda), \boldsymbol{A}(\lambda))$

of equilibrium magnetized perfect fluid spacetimes such that $\mathcal{Q}(\lambda)$ and $\mathcal{Q}(\lambda + d\lambda)$ are related by an evolution obeying Einstein-Maxwell equations, baryon number conservation and infinite conductivity

Image: A matrix

Modeling the slow evolution of the system (inspiral)

Sequence

$\mathcal{Q}(\lambda) = (\mathscr{M}, \boldsymbol{g}(\lambda), \boldsymbol{\vec{u}}(\lambda), n(\lambda), s(\lambda), \boldsymbol{A}(\lambda))$

of equilibrium magnetized perfect fluid spacetimes such that $\mathcal{Q}(\lambda)$ and $\mathcal{Q}(\lambda + d\lambda)$ are related by an evolution obeying Einstein-Maxwell equations, baryon number conservation and infinite conductivity

Eulerian change of a quantity $f: \delta f := \frac{df}{d\lambda}$

Lagrangian displacement $\vec{\xi}$: vector joining a fluid element at some point P in configuration $Q(\lambda)$ to the same fluid element in $Q(\lambda + d\lambda)$

Lagrangian change of a quantity f : $\Delta f = (\delta + \mathcal{L}_{\vec{\mathcal{E}}})f$

A D F A A F F

Noether charge

$$\Theta^{\alpha} := \frac{1}{16\pi} \left(g^{\alpha\mu} g^{\beta\nu} - g^{\alpha\beta} g^{\mu\nu} \right) \nabla_{\beta} \frac{dg_{\mu\nu}}{d\lambda} + (\varepsilon + p) (g^{\alpha\beta} + u^{\alpha} u^{\beta}) \xi_{\beta} - \frac{1}{4\pi} F^{\alpha\beta} \frac{dA_{\beta}}{d\lambda} + A_{\beta} (j^{\alpha} \xi^{\beta} - j^{\beta} \xi^{\alpha})$$

 V^{lpha} can be chosen to make $Q(\lambda)$ finite

 $ec{m k}$ Killing vector $\Longrightarrow Q(\lambda)$ is independent of the choice of the 2-surface S

• • • • • • • • • • • •

Variation of the Noether charge

If evolution $Q(\lambda) \rightarrow Q(\lambda + d\lambda)$ perserves the baryon number, the entropy, the magnetized fluid circulation and the magnetic flux, then, from the equations of motion listed in Part 1,

$$\delta Q = \sum_{a} \left(\frac{\kappa_a}{8\pi} \delta \mathcal{A}_a + \Phi_a \delta q_a \right)$$

where

•
$$\sum_{a}$$
 is the sum over the black holes (if any)

• κ_a is the surface gravity of BH no. $a: \nabla_{\vec{k}} \vec{k} = \kappa_a \vec{k}$

•
$$\mathcal{A}_a$$
 is the area of BH no. a

- q_a is the total electric charge of BH no. a
- Φ_a is the (constant) electric potential of BH no. *a*: $\Phi_a = -A_{\alpha}k^{\alpha}|_{B_{\alpha}} = \text{const}$

Equation (4) generalizes to the single symmetry case a relation obtained previously by [Carter 1979] in the stationary and axisymmetric case

(4)

Quasistationary evolution of a magnetized binary system

Generalized first law of thermodynamics

Assume the metric is **asymptotically flat** (Isenber-Wilson-Mathews approximation, 2-PN approximation, waveless approximation,...) Then \vec{k} is related to two **asymptotically Killing vectors** \vec{t} (timelike) and $\vec{\varphi}$ (spacelike) by

 $\vec{k} = \vec{t} + \Omega \vec{\varphi}, \qquad \Omega = \text{const}$

and one can define

- ${\scriptstyle \bullet}\,$ the ADM mass M
- the total angular momentum J

Then one can show

 $\delta Q = \delta M - \Omega \,\delta J \tag{5}$

Image: A mathematic states and a mathematic states

Quasistationary evolution of a magnetized binary system

Generalized first law of thermodynamics

Assume the metric is **asymptotically flat** (Isenber-Wilson-Mathews approximation, 2-PN approximation, waveless approximation,...) Then \vec{k} is related to two **asymptotically Killing vectors** \vec{t} (timelike) and $\vec{\varphi}$ (spacelike) by

 $\vec{k} = \vec{t} + \Omega \vec{\varphi}, \qquad \Omega = \text{const}$

and one can define

- the ADM mass M
- the total angular momentum J

Then one can show

$$\delta Q = \delta M - \Omega \,\delta J \tag{5}$$

Combining (4) and (5), we get

First law of thermodynamics for a magnetized binary system

$$\delta M = \Omega \,\delta J + \sum_{a} \left(\frac{\kappa_a}{8\pi} \delta \mathcal{A}_a + \Phi_a \delta q_a \right) \tag{6}$$

Generalizes the law obtained by [Friedman, Uryu & Shibata 2002] to the MHD case

Outline

2 Quasistationary evolution of a magnetized binary system

3 Computing equilibrium configurations

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Irrotational magnetized binaries

Zero-temperature limit of the MHD Euler equation (3) :

$$\cdot \mathbf{\Omega} = 0$$

with $oldsymbol{\Omega} := \mathbf{d}oldsymbol{w}$ and $oldsymbol{w} := h\, oldsymbol{\underline{u}} + oldsymbol{F} \cdot oldsymbol{ec{q}}$

Let us define a **irrotational magnetized flow** as a flow for which $\Omega = 0$ Then there exists (locally) a scalar field Φ such that $w = d\Phi$

 \vec{u}

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(7)

Irrotational magnetized binaries

Zero-temperature limit of the MHD Euler equation (3) :

$$\vec{\boldsymbol{u}}\cdot\boldsymbol{\Omega}=0$$

with $\mathbf{\Omega} := \mathbf{d} \boldsymbol{w}$ and $\boldsymbol{w} := h \, \underline{\boldsymbol{u}} + \boldsymbol{F} \cdot \boldsymbol{\vec{q}}$

Let us define a **irrotational magnetized flow** as a flow for which $\Omega = 0$ Then there exists (locally) a scalar field Φ such that $w = d\Phi$

Motivations for computing irrotational magnetized NS binaries:

- the MHD Euler equation (7) is automatically satisfied
- if the NS have initial low spin, the nuclear matter viscosity is by far too low to synchronize the spins with the orbital frequency \implies assuming irrotationality all along the evolutionary sequence is a very good approximation

Image: A math a math

Equations for irrotational magnetized binaries

The fluid 4-velocity is

$$u^{\alpha} = \frac{1}{h} \left(\nabla^{\alpha} \Phi - F^{\alpha\beta} q_{\beta} \right)$$

The normalization relation $u_{lpha}u^{lpha}=-1$ then leads to

$$h^{2} = -\left(\nabla_{\alpha}\Phi - F_{\alpha\beta}q^{\beta}\right)\left(\nabla^{\alpha}\Phi - F^{\alpha\beta}q_{\beta}\right)$$

and the baryon number conservation $abla_{lpha}(nu^{lpha})=0$ is equivalent to

$$\nabla_{\alpha} \left[\frac{n}{h} \left(\nabla^{\alpha} \Phi - F^{\alpha \beta} q_{\beta} \right) \right] = 0$$

< □ > < ^[] >

Scheme to compute irrotational magnetized binaries

Choose some EOS $\varepsilon = \varepsilon(h)$, p = p(h), n = n(h) and some vector field \vec{q} Then *iteratively*

solve

$$\nabla_{\alpha} \left[\frac{n}{h} \left(\nabla^{\alpha} \Phi - F^{\alpha \beta} q_{\beta} \right) \right] = 0$$

to get Φ

- **2** compute the enthalpy via $h^2 = -\left(\nabla_{\alpha}\Phi F_{\alpha\beta}q^{\beta}\right)\left(\nabla^{\alpha}\Phi F^{\alpha\beta}q_{\beta}\right)$
- (a) compute ε , p and n via the EOS
- solve the Maxwell equation (in Lorenz gauge)

 $\nabla_{\beta}\nabla^{\beta}A^{\alpha} - R^{\alpha}{}_{\beta}A^{\beta} = 4\pi\nabla_{\beta}(n\,q^{\alpha}u^{\beta} - n\,q^{\beta}u^{\alpha})$

to get A_{α} and $F_{\alpha\beta} = \partial_{\alpha}A_{\beta} - \partial_{\beta}A_{\alpha}$

solve the Einstein equations

The magnetic field configuration is specified by \vec{q}

Image: A math a math

Conclusion and perspectives

- We are studying *self-consistent models* of magnetized NS-NS and NS-BH systems within the hypothesis of helical symmetry
- We are using the Bekenstein-Oron formulation of relativistic ideal MHD
- We have derived a relation of the type 'first law of thermodynamics' governing the slow inspiral phase
- For irrotational binaries, we have derived some integration scheme
- There remains to perform the numerical implementation

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A