Causality and singularities in relativistic spacetime

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot Paris Sciences et Lettres Research University 92190 Meudon, France

http://luth.obspm.fr/~luthier/gourgoulhon/

Séminaire inter-universitaire d'Histoire et Philosophie des Sciences Université de Montpellier

14 November 2017

Introduction

Relativity (both *special* and *general*) has changed dramatically our views on each of the three concepts in the theme

Causes, Foundations, Origins

of the HiPhiS seminar.

Causes, Foundations, Origins

of the HiPhiS seminar.

• Causes : the **causality structure** of relativistic spacetime is radically different from that pervading in Newtonian physics.

```
Causes, Foundations, Origins
```

of the HiPhiS seminar.

- Causes : the **causality structure** of relativistic spacetime is radically different from that pervading in Newtonian physics.
- Foundations : special relativity is the framework of **quantum field theory** (electromagnetism, electro-weak theory, quantum chromodynamics, etc.); modern **cosmology** is based on general relativity.

Causes, Foundations, Origins

of the HiPhiS seminar.

- Causes : the **causality structure** of relativistic spacetime is radically different from that pervading in Newtonian physics.
- Foundations : special relativity is the framework of **quantum field theory** (electromagnetism, electro-weak theory, quantum chromodynamics, etc.); modern **cosmology** is based on general relativity.
- Origins : from the observed expansion of the Universe, general relativity predicts the **big-bang**. More generally, general relativity predicts **singularities** in spacetime.

Image: Image:

Causes, Foundations, Origins

of the HiPhiS seminar.

- Causes : the **causality structure** of relativistic spacetime is radically different from that pervading in Newtonian physics.
- Foundations : special relativity is the framework of **quantum field theory** (electromagnetism, electro-weak theory, quantum chromodynamics, etc.); modern **cosmology** is based on general relativity.
- Origins : from the observed expansion of the Universe, general relativity predicts the **big-bang**. More generally, general relativity predicts **singularities** in spacetime.

Image: Image:

Causes, Foundations, Origins

of the HiPhiS seminar.

- Causes : the **causality structure** of relativistic spacetime is radically different from that pervading in Newtonian physics.
- Foundations : special relativity is the framework of **quantum field theory** (electromagnetism, electro-weak theory, quantum chromodynamics, etc.); modern **cosmology** is based on general relativity.
- Origins : from the observed expansion of the Universe, general relativity predicts the **big-bang**. More generally, general relativity predicts **singularities** in spacetime.

In this talk : focus on causality structure

- 2 Causality in Minkowski spacetime
- 3 An illustration with tachyons
- Causality in curved spacetime : the Schwarzschild black hole
- 5 More causality features in spacetime : the Kerr black hole

6 Conclusions

Outline

The relativistic spacetime

- 2 Causality in Minkowski spacetime
- 3 An illustration with tachyons
- 4 Causality in curved spacetime : the Schwarzschild black hole
- 5 More causality features in spacetime : the Kerr black hole

6 Conclusions

Newtonian and relativistic spacetimes

Newtonian spacetime :

math. description : affine space \mathbb{R}^4 *absolute structure :* universal time

All observers measure the same time

Newtonian and relativistic spacetimes

Newtonian spacetime : math. description : affine space \mathbb{R}^4 absolute structure : universal time

All observers measure the same time

Special relativity spacetime : math. description : affine space \mathbb{R}^4 no universal time

Newtonian and relativistic spacetimes

Newtonian spacetime : math. description : affine space \mathbb{R}^4

absolute structure : universal time

All observers measure the same time

Special relativity spacetime : math. description : affine space \mathbb{R}^4 no universal time

 \implies simultaneity is relative \implies time dilation phenomenon

5 / 61

Newtonian and relativistic spacetimes

Newtonian spacetime : math. description : affine space \mathbb{R}^4 absolute structure : universal time

All observers measure the same time

Special relativity spacetime : math. description : affine space \mathbb{R}^4 no universal time absolute structure : light cones \implies simultaneity is relative \implies time dilation phenomenon

5 / 61

Relativistic spacetime

Special relativity spacetime : math. description : affine space \mathbb{R}^4

- OK for electromagnetism
- not satisfactory for gravitation

Relativistic spacetime

Special relativity spacetime : math. description : affine space \mathbb{R}^4

- OK for electromagnetism
- not satisfactory for gravitation

General relativity spacetime : math. description : 4-dimensional curved space (manifold)

- OK for electromagnetism
- OK for gravitation

The light cone

Einstein has based special relativity on two postulates :

Einstein's first postulate

The laws of physics are the same in all inertial frames.

The light cone

Einstein has based special relativity on two postulates :

Einstein's first postulate

The laws of physics are the same in all inertial frames.

Einstein's second postulate

A D > <
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +

The speed of light in free space has the same value c in all inertial frames.

The light cone

Einstein has based special relativity on two postulates :

Einstein's first postulate

The laws of physics are the same in all inertial frames.

Einstein's second postulate

The speed of light in free space has the same value c in all inertial frames.

Geometrical translation :

Light rays converging to or emitted from an event form an absolute structure in spacetime, i.e. independent of any inertial frame : the **light cone**

< □ > < 同 >

The metric tensor

Algebraic translation of the absolute structure provided by the light cones :

Metric tensor g

At each point of spacetime : $g : (vector_1, vector_2) \mapsto a$ number Mathematically : g = symmetric bilinear form of signature (-, +, +, +)

• $g(\mathrm{d}ec{x},\mathrm{d}ec{x}) < 0$ along a timelike displacement

- $g(\mathrm{d} \vec{x}',\mathrm{d} \vec{x}') = 0$ along the light cone
- $\boldsymbol{g}(\mathrm{d}\boldsymbol{ec{x}}'',\mathrm{d}\boldsymbol{ec{x}}'')>0$ along a spacelike displacement

Worldlines and the metric tensor

Physical interpretation of the metric tensor :

Length given by the metric tensor = **proper time** elapsed along a (massive) particle worldline

$$\mathrm{d}\tau = \frac{1}{c}\sqrt{-\boldsymbol{g}(\mathrm{d}\boldsymbol{\vec{x}},\mathrm{d}\boldsymbol{\vec{x}})}$$

Worldlines and the metric tensor

Physical interpretation of the metric tensor :

Length given by the metric tensor = **proper time** elapsed along a (massive) particle worldline

$$\mathrm{d}\tau = \frac{1}{c}\sqrt{-\boldsymbol{g}(\mathrm{d}\boldsymbol{\vec{x}},\mathrm{d}\boldsymbol{\vec{x}})}$$

The privileged instrument of the relativist is the **clock**, not the rod !

Worldlines and the metric tensor

Physical interpretation of the metric tensor :

Length given by the metric tensor = **proper time** elapsed along a (massive) particle worldline

$$\mathrm{d}\tau = \frac{1}{c}\sqrt{-\boldsymbol{g}(\mathrm{d}\boldsymbol{\vec{x}},\mathrm{d}\boldsymbol{\vec{x}})}$$

The privileged instrument of the relativist is the clock, not the rod !

4-velocity $\vec{u} =$ unit timelike future-directed tangent to the worldline : $\vec{u} := \frac{1}{c} \frac{\mathrm{d}\vec{x}}{\mathrm{d}\tau}$, $g(\vec{u}, \vec{u}) = -1$

Worldlines and the metric tensor

Physical interpretation of the metric tensor :

Length given by the metric tensor = **proper time** elapsed along a (massive) particle worldline

$$\mathrm{d}\tau = \frac{1}{c}\sqrt{-\boldsymbol{g}(\mathrm{d}\boldsymbol{\vec{x}},\mathrm{d}\boldsymbol{\vec{x}})}$$

The privileged instrument of the relativist is the clock, not the rod !

4-velocity $\vec{u} =$ unit timelike future-directed tangent to the worldline : $\vec{u} := \frac{1}{c} \frac{\mathrm{d}\vec{x}}{\mathrm{d}\tau}$, $g(\vec{u}, \vec{u}) = -1$

Physical interpretation of the metric tensor (con't) :

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The worldlines of photons are null geodesics of $oldsymbol{g}$

Diagrammes d'espace-temps Minkowski (1909)

Intérêt des diag. d'espace-temps :

- description d'une particule dans sa globalité spatio-temporelle : ligne d'univers
- mise en exergue de la structure fondamentale de la relativité : les cônes de lumière

En un point A, le cône de lumière est formé par les lignes d'univers des photons arrivant ou issus de A. Les cônes de lumière sont des structures *absolues*, indépendantes de tout observateur (traduction géométrique de l'invariance de c). Ils correspondent aux directions isotropes de la métrique d'espace-temps g.

Éric Gourgoulhon (LUTH)

Montpellier, 14 Nov. 2017

10 / 61

Diagrammes d'espace-temps Minkowski (1909)

Observateur inertiel

La ligne d'univers de tout observateur inertiel est une droite située à *l'intérieur* de tout cône de lumière ayant son sommet sur elle.

L'espace de repos de \mathcal{O} à $t = t_A$ est l'ensemble des événements simultanés à A du point de vue de \mathcal{O}

Simultanéité et espace de repos

Datation d'un événement distant B par l'observateur $\mathcal{O}\,?$

Éric Gourgoulhon (LUTH)

Causality and singularities

Montpellier, 14 Nov. 2017 12 / 61

Simultanéité et espace de repos

Datation d'un événement distant B par l'observateur \mathcal{O} ?

Simultanéité d'Einstein-Poincaré

Aller-retour d'un signal lumineux de O vers B : mesure de t_1 (départ) et de t_2 (retour)

$$\Rightarrow t_B := \frac{1}{2} \left(t_1 + t_2 \right)$$

Simultanéité et espace de repos

Datation d'un événement distant B par l'observateur \mathcal{O} ?

Simultanéité d'Einstein-Poincaré

Aller-retour d'un signal lumineux de O vers B : mesure de t_1 (départ) et de t_2 (retour)

$$\Rightarrow t_B := \frac{1}{2} \left(t_1 + t_2 \right)$$

Orthogonalité vis-à-vis du tenseur métrique

L'ensemble des événements simultanés à B pour \mathcal{O} est un espace de dimension 3 **orthogonal** (au sens du tenseur métrique g) à la ligne d'univers de \mathcal{O} \implies **espace de repos** de \mathcal{O}

Simultanéité et espace de repos

Datation de B par un deuxième observateur \mathcal{O}^\prime

Éric Gourgoulhon (LUTH)

Simultanéité et espace de repos

Datation de B par un deuxième observateur \mathcal{O}^\prime

Critère d'Einstein-Poincaré

$$\Rightarrow t'_B = \frac{1}{2} \left(t'_1 + t'_2 \right)$$

Éric Gourgoulhon (LUTH)

Simultanéité et espace de repos

Datation de B par un deuxième observateur \mathcal{O}^\prime

Critère d'Einstein-Poincaré $\implies t'_B = \frac{1}{2} (t'_1 + t'_2)$

L'ensemble des événements simultanés à B pour \mathcal{O}' (espace de repos de \mathcal{O}') est un espace **orthogonal** (au sens de la métrique g) à la ligne d'univers de \mathcal{O}'

Simultanéité et espace de repos

Datation de B par un deuxième observateur \mathcal{O}^\prime

Critère d'Einstein-Poincaré $\implies t'_B = \frac{1}{2} (t'_1 + t'_2)$

L'ensemble des événements simultanés à B pour \mathcal{O}' (espace de repos de \mathcal{O}') est un espace **orthogonal** (au sens de la métrique g) à la ligne d'univers de \mathcal{O}'

Graphiquement il s'obtient par symétrie de la ligne d'univers de \mathcal{O}' par rapport à la bissectrice du quadrant (t > 0, x > 0)

Simultanéité et espace de repos

Les espaces de repos de \mathcal{O} et \mathcal{O}' ne coïncident pas : relativité de la notion de simultanéité

Outline

The relativistic spacetime

- 2 Causality in Minkowski spacetime
 - 3 An illustration with tachyons
- 4 Causality in curved spacetime : the Schwarzschild black hole
- 5 More causality features in spacetime : the Kerr black hole

6 Conclusions

Causality in Minkowski spacetime

Causality for spacelike-separated events

- for \mathcal{O} : $t_A = t_B$
- for \mathcal{O}' : $t'_A > t'_B$
- for $\mathcal{O}'' : t''_A < t''_B$

Causality in Minkowski spacetime

Causality for spacelike-separated events

- for \mathcal{O} : $t_A = t_B$
- for \mathcal{O}' : $t'_A > t'_B$
- $\bullet \ \text{for} \ \mathcal{O}'' : t''_A < t''_B$

 \Longrightarrow the order of occurence of two spacelike-separated events depends upon the observer

No causal relation possible between spacelike-separated events
Causality in Minkowski spacetime

Causality for timelike-separated events

- for \mathcal{O} : $t_A < t_B$
- for \mathcal{O}' : $t'_A < t'_B$
- for $\mathcal{O}'' : t''_A < t''_B$

Causality in Minkowski spacetime

Causality for timelike-separated events

- for \mathcal{O} : $t_A < t_B$
- for \mathcal{O}' : $t'_A < t'_B$
- for $\mathcal{O}'' : t''_A < t''_B$

 \implies all observers agree about the order of occurence of two timelike-separated events

Causality well defined between timelike-separated events

Outline

The relativistic spacetime

2 Causality in Minkowski spacetime

3 An illustration with tachyons

- 4 Causality in curved spacetime : the Schwarzschild black hole
- 5 More causality features in spacetime : the Kerr black hole

6 Conclusions

Définition des tachyons

Définition des tachyons

Classification des particules

- bradyon ≡ ligne d'univers du genre *temps*
- luxon ≡ ligne d'univers du genre *lumière*

 $\leftarrow \text{ ci-contre, } V \text{ désigne la vitesse par rapport à l'observateur } \mathcal{O}$

Définition des tachyons

Classification des particules

- bradyon ≡ ligne d'univers du genre *temps*
- luxon ≡ ligne d'univers du genre *lumière*
- tachyon ≡ ligne d'univers du genre espace

 $\leftarrow \text{ ci-contre, } V \text{ désigne la vitesse par rapport à l'observateur } \mathcal{O}$

Définition des tachyons

Classification des particules

- bradyon ≡ ligne d'univers du genre *temps*
- luxon ≡ ligne d'univers du genre *lumière*
- tachyon ≡ ligne d'univers du genre espace
- bradyon = particule massive ordinaire (proton, neutron, électron, quark, etc.)
- luxon = particule de masse nulle (photon, graviton)

 $\leftarrow \text{ ci-contre}, V \text{ désigne la vitesse par rapport à l'observateur } \mathcal{O}$

Définition des tachyons

Classification des particules

- bradyon ≡ ligne d'univers du genre *temps*
- luxon ≡ ligne d'univers du genre *lumière*
- tachyon ≡ ligne d'univers du genre espace

Remarques :

- Cette classification est indépendante de tout observateur
- La ligne d'univers d'un tachyon est *partout* du genre espace

 $\leftarrow \text{ ci-contre, } V \text{ désigne la vitesse par rapport à l'observateur } \mathcal{O}$

Dynamique d'un tachyon

4-impulsion

Comme pour toute particule, la dynamique d'un tachyon T peut être décrite par un vecteur ^a \vec{p} , appelé **4-impulsion**, défini en tout point de sa ligne d'univers et tangent à elle.

a. vecteur d'espace-temps (quadrivecteur)

Dynamique d'un tachyon

Énergie et quantité de mouvement par rapport à un observateur

L'énergie E et la quantité de mouvement \vec{P} mesurées par \mathcal{O} sont données par la décomposition orthogonale de la 4-impulsion :

$$\vec{p} = \frac{E}{c} \vec{u} + \vec{P}$$
est la 4-vitesse de \mathcal{O} .

Rappel : 4-vitesse : vecteur unitaire tangent à la ligne d'univers et dirigé vers le futur

Remarque : écriture équivalente :

$$p^{\alpha} = (E/c, P^x, P^y, P^z)$$

Éric Gourgoulhon (LUTH)

Masse d'un tachyon

Masse

La masse m d'une particule est donnée par la norme de la 4-impulsion vis-à-vis du tenseur métrique ^a :

$$m^2 c^2 = -\vec{\boldsymbol{p}} \cdot \vec{\boldsymbol{p}}$$

Masse d'un tachyon

Masse

La masse m d'une particule est donnée par la norme de la 4-impulsion vis-à-vis du tenseur métrique ^a :

 $m^2 c^2 = -\vec{\boldsymbol{p}} \cdot \vec{\boldsymbol{p}}$

- bradyon $\iff \vec{p}$ genre temps $\iff m > 0$
- luxon $\iff \vec{p}$ genre lumière $\iff m = 0$
- tachyon $\iff \vec{p}$ genre espace $\iff m^2 < 0$ $\iff m$ imaginaire

a. on utilise la signature (-, +, +, +)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Éric Gourgoulhon (LUTH)

Vitesse du tachyon par rapport à un observateur

Vecteur vitesse

Comme pour toute particule, la vitesse \vec{V} du tachyon par rapport à l'observateur \mathcal{O} vérifie

$$\vec{\boldsymbol{P}} = \frac{E}{c^2} \, \vec{\boldsymbol{V}}$$

Vitesse du tachyon par rapport à un observateur

Éric Gourgoulhon (LUTH)

Montpellier, 14 Nov. 2017

Relation énergie-vitesse

Énergie d'un tachyon

La relation précédente se met sous la forme

$$E = \frac{|m|c^2}{\sqrt{V^2/c^2 - 1}}$$

Remarque : On peut réécrire cette formule sous la forme usuelle :

 $E = \Gamma mc^2$

avec $\Gamma:=1/\sqrt{1-V^2/c^2}$ et m tous deux imaginaires.

Relation énergie-vitesse

Énergie d'un tachyon

La relation précédente se met sous la forme

$$E = \frac{|m|c^2}{\sqrt{V^2/c^2 - 1}}$$

Remarque : On peut réécrire cette formule sous la forme usuelle :

 $E = \Gamma mc^2$

avec $\Gamma:=1/\sqrt{1-V^2/c^2}$ et m tous deux imaginaires.

L'énergie des tachyons est une fonction décroissante de la vitesse, avec $E \rightarrow 0$ lorsque $V \rightarrow +\infty$.

Émission et absorption d'un tachyon

- ${\scriptstyle \bullet}\,$ émission en A
- \bullet absorption en B

La ligne d'univers du tachyon est à l'extérieur du cône de lumière.

Dans le cas présent, la vitesse du tachyon par rapport à \mathcal{O} est V = 4c.

Tachyons et chronologie

Instant de l'absorption mesuré par \mathcal{O}

 $t_B = \frac{1}{2} (t_1 + t_2)$ (simultanéité d'Einstein-Poincaré)

 $t_B > t_A$: l'absorption se produit après l'émission

Deuxième observateur \mathcal{O}'

 \mathcal{O}' est en mouvement (subluminique) par rapport à \mathcal{O} .

Dans le cas présent, la vitesse de \mathcal{O}' par rapport à \mathcal{O} est U = c/2 et \mathcal{O}' rencontre \mathcal{O} au moment de l'émission du tachyon.

Deuxième observateur \mathcal{O}'

 \mathcal{O}' est en mouvement (subluminique) par rapport à \mathcal{O} .

Dans le cas présent, la vitesse de \mathcal{O}' par rapport à \mathcal{O} est U = c/2 et \mathcal{O}' rencontre \mathcal{O} au moment de l'émission du tachyon.

Tachyons et chronologie

Le paradoxe (Einstein, 1907)

Pour \mathcal{O}' , la date t'_B de l'événement *B* est obtenue en considérant l'espace de repos de \mathcal{O}' passant par *B*.

Numériquement, on l'obtient à partir de l'aller-retour d'un signal lumineux (critère d'Einstein-Poincaré) :

$$t'_B = \frac{1}{2}(t'_1 + t'_2)$$

On constate que $t'_B < t'_A$

Pour l'observateur \mathcal{O}' , l'absorption du tachyon se produit avant son émission !

Résolution du paradoxe (1/4)

Introduisons la 4-impulsion \vec{p} du tachyon.

L'énergie E et la quantité de mouvement \vec{P} mesurées par \mathcal{O} sont données par la décomposition orthogonale de \vec{p} :

$$\vec{p} = \frac{E}{c}\vec{u} + \vec{P},$$

où \vec{u} est la 4-vitesse de \mathcal{O} . On constate que E > 0.

Résolution du paradoxe (2/4)

Point de vue de l'observateur \mathcal{O}' : l'énergie E' et la quantité de mouvement \vec{P}' du tachyon mesurées par \mathcal{O}' sont données par la décomposition orthogonale de \vec{p} vis-à-vis de \mathcal{O}' :

$$\vec{p} = \frac{E'}{c}\vec{u}' + \vec{P}',$$

où \vec{u}' est la 4-vitesse de \mathcal{O}' . On constate que $\underline{E'} < 0$.

Éric Gourgoulhon (LUTH)

Résolution du paradoxe (3/4)

Point de vue de l'observateur O': Le tachyon apparaît comme une particule d'énergie *négative* qui remonte le temps (puisque $t'_B < t'_A$)

Interprétation de Stueckelberg-Feynman : une telle particule est équivalente à une particule d'énergie *positive* qui va de *B* vers *A* (antiparticule). [Bilaniuk, Deshpande, & Sudarshan, Amer. J. Phys. **30**, 718 (1962)]

Tachyons et chronologie

Résolution du paradoxe (4/4)				
	0	\mathcal{O}'		
A	émission	absorption		
	\downarrow	\uparrow		
B	absorption	émission		
Pour chaque observateur, l'émission précède l'absorption : la causalité est préservée !				

Montpellier, 14 Nov. 2017

Tachyons et chronologie

Résolution du paradoxe (4/4)				
	O	\mathcal{O}'		
A	émission	absorption		
	\downarrow	\uparrow		
В	absorption	émission		
Pour chaque observateur, l'émission précède l'absorption : la causalité est préservée !				

Les concepts d'émission et d'absorption d'un tachyon sont donc relatifs à l'observateur. Il n'y a que les **lois physiques** qui doivent être invariantes par changement d'observateur inertiel,

Éric Gourgoulhon (LUTH)

Causality and singularities

Montpellier, 14 Nov. 2017

Version proposée par Feinberg (1967) :

Principe

L'observateur inertiel \mathcal{O} émet un tachyon (d'énergie positive) en A_1 qui atteint l'observateur \mathcal{O}' en B.

Version proposée par Feinberg (1967) :

Principe

L'observateur inertiel \mathcal{O} émet un tachyon (d'énergie positive) en A_1 qui atteint l'observateur \mathcal{O}' en B.

Dès réception, ce dernier renvoie un tachyon (d'énergie positive) vers \mathcal{O} , qui le reçoit en A_2 .

Version proposée par Feinberg (1967) :

Principe

L'observateur inertiel \mathcal{O} émet un tachyon (d'énergie positive) en A_1 qui atteint l'observateur \mathcal{O}' en B.

Dès réception, ce dernier renvoie un tachyon (d'énergie positive) vers \mathcal{O} , qui le reçoit en A_2 .

Le paradoxe

 $t_{A_2} < t_{A_1}$: la réponse de \mathcal{O}' arrive avant l'appel de \mathcal{O} !

Résolution du paradoxe

Pour \mathcal{O} le tachyon qui arrive en A_2 a une énergie négative et remonte le temps

Résolution du paradoxe

Pour \mathcal{O} le tachyon qui arrive en A_2 a une énergie négative et remonte le temps $\Rightarrow \mathcal{O}$ considère donc plutôt qu'il émet un tachyon en A_2 \equiv émission spontanée, indiscernable d'un tachyon E < 0 envoyé par \mathcal{O}'

Résolution du paradoxe

Pour \mathcal{O} le tachyon qui arrive en A_2 a une énergie négative et remonte le temps $\Rightarrow \mathcal{O}$ considère donc plutôt qu'il émet un tachyon en A_2 \equiv émission spontanée, indiscernable d'un tachyon E < 0 envoyé par \mathcal{O}'

De même, pour \mathcal{O}' , le tachyon qui arrive en B depuis A_1 a une énergie négative et remonte le temps

Résolution du paradoxe

Pour \mathcal{O} le tachyon qui arrive en A_2 a une énergie négative et remonte le temps $\Rightarrow \mathcal{O}$ considère donc plutôt qu'il émet un tachyon en A_2 \equiv émission spontanée, indiscernable d'un tachyon E < 0 envoyé par \mathcal{O}'

De même, pour \mathcal{O}' , le tachyon qui arrive en B depuis A_1 a une énergie négative et remonte le temps $\Rightarrow \mathcal{O}'$ considère donc plutôt qu'il émet un tachyon en B

Résolution du paradoxe

Pour \mathcal{O} le tachyon qui arrive en A_2 a une énergie négative et remonte le temps $\Rightarrow \mathcal{O}$ considère donc plutôt qu'il émet un tachyon en A_2 \equiv émission spontanée, indiscernable d'un tachyon E < 0 envoyé par \mathcal{O}'

De même, pour \mathcal{O}' , le tachyon qui arrive en B depuis A_1 a une énergie négative et remonte le temps $\Rightarrow \mathcal{O}'$ considère donc plutôt qu'il émet un tachyon en B

Chaque observateur ne fait qu'émettre des tachyons \Rightarrow pas d'échange d'information

Outline

1 The relativistic spacetime

- 2 Causality in Minkowski spacetime
- 3 An illustration with tachyons

4 Causality in curved spacetime : the Schwarzschild black hole

More causality features in spacetime : the Kerr black hole

6 Conclusions

Spacetime dynamics

- Special relativity : metric tensor g = fixed bilinear form on the vector space $\sim \mathbb{R}^4$ associated with the spacetime affine space
- General relativity : metric tensor g = field of bilinear forms : g = g(p)
Spacetime dynamics

- Special relativity : metric tensor g = fixed bilinear form on the vector space $\sim \mathbb{R}^4$ associated with the spacetime affine space
- General relativity : metric tensor g = field of bilinear forms : g = g(p)

Einstein equation :
$$\boldsymbol{R} - \frac{1}{2}R\boldsymbol{g} = \frac{8\pi G}{c^4}\boldsymbol{T}$$

- \mathbf{R} = Ricci tensor = symmetric bilinear form = trace of *curvature tensor* (Riemann tensor) : " $\mathbf{R} \sim g \partial^2 g + g \partial g \partial g$ "
- $R = \text{Trace}(\mathbf{R})$
- *T* = *energy-momentum tensor* of matter = symmetric bilinear form such that

Spacetime dynamics

- Special relativity : metric tensor g = fixed bilinear form on the vector space $\sim \mathbb{R}^4$ associated with the spacetime affine space
- General relativity : metric tensor g = field of bilinear forms : g = g(p)

Einstein equation :
$$\boldsymbol{R} - \frac{1}{2}R\boldsymbol{g} = \frac{8\pi G}{c^4}\boldsymbol{T}$$

- \mathbf{R} = Ricci tensor = symmetric bilinear form = trace of *curvature tensor* (Riemann tensor) : " $\mathbf{R} \sim g \partial^2 g + g \partial g \partial g$ "
- $R = \text{Trace}(\mathbf{R})$
- *T* = *energy-momentum tensor* of matter = symmetric bilinear form such that
 - $E = T(\vec{u}, \vec{u})$ is the energy density of matter as measured by an observer \mathcal{O} of 4-velocity \vec{u}
 - $p_i = -T(\vec{u}, \vec{e}_i)$ component i of the matter momentum density as measured by O in the direction \vec{e}_i
 - $S_{ij} = T(\vec{e}_i, \vec{e}_j)$ component *i* of the force exerted by matter on the unit surface normal to \vec{e}_j

イロト イポト イラト イラト

Birth of general relativity : Nov. 1915

844 Sitzung der physikalisch-mathematischen Klasse vom 25. November 1915

Die Feldgleichungen der Gravitation. Von A. Einstein.

In zwei vor kurzem erschienenen Mitteilungen¹ habe ich gezeigt, wie man zu Feldgleichungen der Gravitation gelangen kann, die dem Postulat allgemeiner Relativität entsprechen, d. h. die in ihrer allgemeinen Fassung beliebigen Substitutionen der Raumzeitvariabeln gegenüber kovariant sind.

$$\boldsymbol{R} - \frac{1}{2}R\boldsymbol{g} = \frac{8\pi G}{c^4}\boldsymbol{T}$$

[A. Einstein, Sitz. Preuss. Akad. Wissenschaften Berlin, 844 (1915)]

Éric Gourgoulhon (LUTH)

The Schwarzschild solution (1915)

Karl Schwarzschild (letter to Einstein 22 Dec. 1915; publ. submitted 13 Jan 1916) Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitz. Preuss. Akad. Wiss., Phys. Math. Kl. 1916, 189 (1916)

 \implies First exact non-trivial solution of Einstein equation :

$$ds^{2} = -\left(1 - \frac{2m}{r}\right)c^{2}dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right)$$
(1)

with

- coordinates $(t, \bar{r}, \theta, \varphi)$
- "auxiliary quantity" : $r:=(\bar{r}^3+8m^3)^{1/3}$
- parameter $m = GM/c^2$, with M gravitational mass of the "mass point"

1. Schwarzschild's notations : $r = \bar{r}$, R = r, $\alpha = 2m$

The Schwarzschild solution (1915)

Karl Schwarzschild (letter to Einstein 22 Dec. 1915; publ. submitted 13 Jan 1916) Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitz. Preuss. Akad. Wiss., Phys. Math. Kl. 1916, 189 (1916)

 \implies First exact non-trivial solution of Einstein equation :

$$ds^{2} = -\left(1 - \frac{2m}{r}\right)c^{2}dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right)$$
(1)

with

- coordinates $(t, \bar{r}, \theta, \varphi)$
- "auxiliary quantity" : $r:=(\bar{r}^3+8m^3)^{1/3}$
- parameter $m = GM/c^2$, with M gravitational mass of the "mass point"

The "center"

Origin of coordinates : $\bar{r} = 0 \iff r = 2m$

1. Schwarzschild's notations : $r = \bar{r}$, R = r, $\alpha = 2m$

Éric Gourgoulhon (LUTH)

Causality and singularities

Johannes Droste (communication 27 May 1916)

The Field of a Single Centre in Einstein's Theory of Gravitation, and the Motion of a Particle in that Field, Kon. Neder. Akad. Weten. Proc. **19**, 197 (1917)

 \implies derives the Schwarzschild solution (independently of Schwarzschild) via some coordinates (t, r', θ, φ) such that $g_{r'r'} = 1$; presents the result in the standard form (1) via a change of coordinates leading to the areal radius r \implies makes a detailed study of timelike geodesics in the obtained geometry

Johannes Droste (communication 27 May 1916)

The Field of a Single Centre in Einstein's Theory of Gravitation, and the Motion of a Particle in that Field, Kon. Neder. Akad. Weten. Proc. **19**, 197 (1917)

 \implies derives the Schwarzschild solution (independently of Schwarzschild) via some coordinates (t, r', θ, φ) such that $g_{r'r'} = 1$; presents the result in the standard form (1) via a change of coordinates leading to the areal radius r \implies makes a detailed study of timelike geodesics in the obtained geometry

Apparent barrier at r = 2m

A particle falling from infinity never reaches r = 2m within a finite amount of "time" t.

The Schwarzschild radius : $R_{\rm S} := 2m = \frac{2GM}{c^2}$

(日) (同) (三) (三)

The "barrier" at $r = R_{\rm S}$

The "barrier" at $r = R_{\rm S}$

Radial null geodesics of Schwarzschild spacetime in term of Schwarzschild-Droste coordinates (t, r). Solid (resp. dashed) lines correspond to outgoing (resp. ingoing) geodesics. The interiors of some future light cones are depicted in yellow.

The Schwarzschild solution : early discussions

• 1920 : Alexander Anderson : light cannot emerge from the region $r < R_{\rm S} := 2m = \frac{2GM}{c^2}$ (region "shrouded in darkness")

The Schwarzschild solution : early discussions

- 1920 : Alexander Anderson : light cannot emerge from the region $r < R_{\rm S} := 2m = \frac{2GM}{c^2}$ (region "shrouded in darkness")
- 1921 : Max von Laue : \exists circular orbit for photons at $r = 3m = \frac{3GM}{c^2}$

The Schwarzschild solution : early discussions

- 1920 : Alexander Anderson : light cannot emerge from the region $r < R_{\rm S} := 2m = \frac{2GM}{c^2}$ (region "shrouded in darkness")
- 1921 : Max von Laue : \exists circular orbit for photons at $r = 3m = \frac{3GM}{c^2}$
- 1923 : George Birkhoff : outside any *spherical* body, the metric is Schwarzschild metric

The Schwarzschild solution : early discussions

- 1920 : Alexander Anderson : light cannot emerge from the region $r < R_{\rm S} := 2m = \frac{2GM}{c^2}$ (region "shrouded in darkness")
- 1921 : Max von Laue : \exists circular orbit for photons at $r = 3m = \frac{3GM}{c^2}$
- 1923 : George Birkhoff : outside any *spherical* body, the metric is Schwarzschild metric
- 1924 : Arthur Eddington introduced the coord. $t' := t \frac{2m}{c} \ln \left(\frac{r}{2m} 1 \right)$, leading to

$$ds^{2} = -c^{2}dt'^{2} + dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right) + \frac{2m}{r}\left(cdt' - dr\right)^{2}$$
(2)

but did not noticed that the metric components w.r.t. coordinates (t', r, θ, φ) are regular at r = 2m! Actually, Eddington's aim was elsewhere : comparing Whitehead theory (1922) to general relativity

イロト イポト イラト イラ

The Schwarzschild solution : Lemaître breakthrough

Georges Lemaître (1932)

L'univers en expansion, Publ. Lab. Astron. Géodésie Univ. Louvain **9**, 171 (1932); reprinted in Ann. Soc. Scient. Bruxelles A **53**, 51 (1933)

et la nouvelle forme du champ s'écrit sans singularité

(11.12)
$$ds^{2} = -2m \frac{d\chi^{2}}{r} - r^{2}(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}) + dt^{2},$$
où

(11.13)
$$r = \left[\frac{3}{2}\sqrt{2m}(t-\chi)\right]^{3}$$
.

La singularité du champ de Schwarzschild est donc une singularité fictive, analogue à celle qui se présentait à l'horizon du centre dans la forme originale de l'univers de de Sitter.

The singularity at $r = R_S$ is a mere **coordinate singularity** : the metric components are regular in Lemaître coordinates $(\tau, \chi, \theta, \varphi)$:

$$ds^{2} = -c^{2}d\tau^{2} + \frac{R_{S}}{r}d\chi^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right)$$
(3)
$$r = r(\tau, \chi) := \left[\frac{3}{2}\sqrt{R_{S}}\left(c\tau - \chi\right)\right]^{2/3}$$
(4)

2

43 / 61

Coordinate and curvature singularities

Coordinate singularity

- pathology (divergence) of the metric components $g_{\alpha\beta}$ in some coordinate system (x^{α}) , which can be removed by a change of coordinates
- no physical meaning
- not a singularity of spacetime
- example : singularity at $r = R_{\rm S}$ of the Schwarzschild-Droste coordinates

Coordinate and curvature singularities

Coordinate singularity

- pathology (divergence) of the metric components $g_{\alpha\beta}$ in some coordinate system (x^{α}) , which can be removed by a change of coordinates
- no physical meaning
- not a singularity of spacetime
- example : singularity at $r = R_{\rm S}$ of the Schwarzschild-Droste coordinates

Curvature singularity

- divergence of the Riemann curvature tensor
- can be monitored by the unbounded growth of scalar quantities, like the Kretschmann scalar $\mathcal{K} := R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$, which are independent of any coordinate system
- represents a true singularity of *classical* spacetime (should be removed by a *quantum* theory of gravity)

• example : singularity at r = 0 in Schwarzschild spacetime : $\mathcal{K} = \frac{48m^2}{r^6}$

No longer any barrier at $r = R_{\rm S}$

Radial null geodesics of Schwarzschild spacetime in term of ingoing Eddington-Finkelstein coordinates (\tilde{t}, r)

$$\tilde{t} = t + \frac{2m}{c} \ln \left| \frac{r}{2m} - 1 \right|$$

The ingoing null geodesics (dashed lines) do enter the region $r < R_{\rm S}$.

45 / 61

Pathology of Schwarzschild-Droste coordinates

Hypersurfaces of constant Schwarzschild-Droste coordinate t in term of the ingoing Eddington-Finkelstein coordinates (\tilde{t}, r)

Gravitational collapse : Lemaître-Tolman solutions

 ■ 1932 : Georges Lemaître : general solution of Einstein equation for a spherically symmetric pressureless fluid ⇒ gravitational collapse

Gravitational collapse : Lemaître-Tolman solutions

- 1932 : Georges Lemaître : general solution of Einstein equation for a spherically symmetric pressureless fluid ⇒ gravitational collapse
- 1939 : Robert Oppenheimer & Hartland Snyder : gravitational collapse of a homogeneous dust ball of radius R (special case of Lemaître's general solution)
 - \implies for an external observer, $R
 ightarrow R_{
 m S}$ as $t
 ightarrow +\infty$
 - \implies "frozen star"

The Schwarzschild solution : the complete picture

John L. Synge (1950), Martin Kruskal (1960), George Szekeres (1960) : complete mathematical description of Schwarzschild spacetime ($\mathbb{R}^2 \times \mathbb{S}^2$ manifold)

Éric Gourgoulhon (LUTH)

Carter-Penrose diagram of Schwarzschild spacetime

conformal diagram : light rays as $\pm 45^{\circ}$ lines \implies makes causal structure clear compactified diagram : all spacetime is depicted

Figure drawn with SageMath : http://sagemanifolds.obspm.fr

solid curves : t = const; dashed curves : r = const \mathscr{M}_{I} : asymptotically flat region; $\mathscr{M}_{\mathrm{II}}$: **black hole** region

Éric Gourgoulhon (LUTH)

Causality and singularities

Same conformal diagram for Minkowski spacetime

Minkowski spacetime : flat spacetime of special relativity

- grey curves : t = const
- red curves : r = const
- \mathscr{I}^+ : future null infinity
- $\bullet \ {\mathscr I}^-$: past null infinity
- i^+ : future timelike infinity
- *i*⁻ : past timelike infinity
- *i*⁰ : spacelike infinity

50 / 61

General definition of a black hole

The textbook definition

[Hawking & Ellis (1973)]

black hole : $\mathcal{B} := \mathscr{M} - J^{-}(\mathscr{I}^{+})$

where

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold
- $\mathscr{I}^+ = future null infinity$
- $J^-(\mathscr{I}^+) = \text{causal past of } \mathscr{I}^+$

i.e. black hole = region of spacetime from which light rays cannot escape to infinity

event horizon : $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$)

 $\mathcal{H} \text{ smooth} \Longrightarrow \mathcal{H} \text{ null hypersurface}$

General definition of a black hole

The textbook definition

[Hawking & Ellis (1973)]

black hole : $\mathcal{B} := \mathcal{M} - J^{-}(\mathcal{I}^{+})$

where

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold
- $\mathscr{I}^+ = future null infinity$
- $J^-(\mathscr{I}^+) = \text{causal past of } \mathscr{I}^+$

i.e. black hole = region of spacetime from which light rays cannot escape to infinity

event horizon : $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$)

 $\mathcal{H} \text{ smooth} \Longrightarrow \mathcal{H} \text{ null hypersurface}$

Outline

The relativistic spacetime

- 2 Causality in Minkowski spacetime
- 3 An illustration with tachyons
- 4 Causality in curved spacetime : the Schwarzschild black hole

5 More causality features in spacetime : the Kerr black hole

6 Conclusions

Rotation enters the game : the Kerr solution

Almost 50 years after Schwarzschild : Roy Kerr (1963)

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dv^{2} + 2dv dr - \frac{4amr\sin^{2}\theta}{\rho^{2}} dv d\tilde{\varphi}$$
$$-2a\sin^{2}\theta dr d\tilde{\varphi} + \rho^{2}d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right)\sin^{2}\theta d\tilde{\varphi}^{2}.$$

Boyer & Lindquist (1967) coordinate change $(v, r, \theta, \tilde{\varphi}) \rightarrow (t, r, \theta, \varphi)$:

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dt^{2} - \frac{4amr\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2}$$
$$+\rho^{2}d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right)\sin^{2}\theta d\varphi^{2},$$

where $\rho^2 := r^2 + a^2 \cos^2 \theta$, $\Delta := r^2 - 2mr + a^2$ and $r \in (-\infty, \infty)$

 $\begin{array}{l} \rightarrow \text{ spacetime manifold } \mathscr{M} = \mathbb{R}^2 \times \mathbb{S}^2 \setminus \{r = 0 \ \& \ \theta = \pi/2\} \\ \rightarrow 2 \text{ parameters } : m = \frac{GM}{c^2} \text{ and } a = \frac{J}{cM} \text{ ; black hole } \iff 0 \leq a \leq m \end{array}$

Schwarzschild metric for
$$a = 0$$

53 / 61

Physical meaning of the parameters M and J

 mass M : not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
 → measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law)

Physical meaning of the parameters M and J

- mass M : not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
 → measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law)
- angular momentum J = aMc characterizes the *gravito-magnetic* part of the gravitational field

 \rightarrow measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*)

Physical meaning of the parameters M and J

- mass M : not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
 → measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law)
- angular momentum J = aMc characterizes the *gravito-magnetic* part of the gravitational field

 \rightarrow measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*)

Physical meaning of the parameters M and J

 mass M : not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
 → measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law)

• angular momentum J = aMc characterizes the gravito-magnetic part of the gravitational field

 \rightarrow measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*)

Remark : the radius of a black hole is not a well defined concept : it *does not* correspond to some distance between any black hole "centre" and the event horizon. A well defined quantity is the area of the event horizon, *A*. The "radius" can be defined from it : for a Schwarzschild black hole :

$$R := \sqrt{\frac{A}{4\pi}} = \frac{2GM}{c^2} \simeq 3\left(\frac{M}{M_{\odot}}\right) \, \mathrm{km}$$

< 口 > < 同 > < 三 > < 三

Kerr spacetime

Kerr spacetime : Carter time machine

Éric Gourgoulhon (LUTH)

Causality and singularities

Montpellier, 14 Nov. 2017 56 / 61

Carter-Penrose diagram of the maximal analytic extension

Cauchy horizon in Kerr spacetime

Éric Gourgoulhon (LUTH)

Cauchy horizon in Kerr spacetime

Cauchy problem

Compute evolution of a physical system from initial data

The Cauchy horizon \mathscr{H}_{C} is a **predictability boundary** : physical phenomena taking place in regions \mathscr{M}_{III} and \mathscr{M}'_{III} cannot be predicted from only initial data on the spacelike hypersurface Σ (Cauchy surface for regions \mathscr{M}_{I} , \mathscr{M}'_{I} and \mathscr{M}_{II} only)

Éric Gourgoulhon (LUTH)

58 / 61
Outline

The relativistic spacetime

- 2 Causality in Minkowski spacetime
- 3 An illustration with tachyons
- 4 Causality in curved spacetime : the Schwarzschild black hole
- More causality features in spacetime : the Kerr black hole

6 Conclusions

Conclusions

The **causal structure** of relativistic spacetime is fully governed by the basic object of relativity : the **metric tensor**.

Causality relations are well defined (i.e. observer-independent) along

- timelike worldlines (massive particles)
- null worldlines (massless particles)

Conclusions

The **causal structure** of relativistic spacetime is fully governed by the basic object of relativity : the **metric tensor**.

Causality relations are well defined (i.e. observer-independent) along

- timelike worldlines (massive particles)
- null worldlines (massless particles)

Along hypothetical spacelike worldlines (tachyons), causality is a priori observer-dependent; via the Stueckelberg-Feynman interpretation, this does not imply some violation of physical laws; in particular it is not possible to use tachyons to exchange information at superluminal rate.

Conclusions

The **causal structure** of relativistic spacetime is fully governed by the basic object of relativity : the **metric tensor**.

Causality relations are well defined (i.e. observer-independent) along

- timelike worldlines (massive particles)
- null worldlines (massless particles)

Along hypothetical spacelike worldlines (tachyons), causality is a priori observer-dependent; via the Stueckelberg-Feynman interpretation, this does not imply some violation of physical laws; in particular it is not possible to use tachyons to exchange information at superluminal rate.

Causal boundaries are null hypersurfaces (3-dimensional subspaces ruled by null geodesics), which are 1-way *immaterial* membranes :

- light cone (gives the domain of causal influence of an event)
- event horizon (black hole interior cannot interact with the exterior)
- Cauchy horizon (predictability boundary)

(日) (同) (三) (三)

Conclusions

The **causal structure** of relativistic spacetime is fully governed by the basic object of relativity : the **metric tensor**.

Causality relations are well defined (i.e. observer-independent) along

- timelike worldlines (massive particles)
- null worldlines (massless particles)

Along hypothetical spacelike worldlines (tachyons), causality is a priori observer-dependent; via the Stueckelberg-Feynman interpretation, this does not imply some violation of physical laws; in particular it is not possible to use tachyons to exchange information at superluminal rate.

Causal boundaries are null hypersurfaces (3-dimensional subspaces ruled by null geodesics), which are 1-way *immaterial* membranes :

- light cone (gives the domain of causal influence of an event)
- event horizon (black hole interior cannot interact with the exterior)
- Cauchy horizon (predictability boundary)

As shown by the example of the *Carter time machine* in Kerr spacetime, general relativity by itself does not forbid the existence of **closed timelike curves**.

Bibliography

- O. M. P. Bilaniuk, V. K. Deshpande, & E. C. G. Sudarshan : "Meta" Relativity [Amer. J. Phys. 30, 718] (1962)
- J. Eisenstaedt : *Histoire et Singularités de la Solution de Schwarzschild* (1915-1923), Archive for History of Exact Sciences **27**, 157 (1982)
- J. Eisenstaedt : Lemaître and the Schwarzschild Solution., in Proc. Third. Internat. Conf. on History and Philosophy of General Relativity, Einstein Studies, Vol. 5, J. Earman, M. Janssen & J.D. Norton eds., Birkhäuser (1993)
- G. Feinberg : *Possibility of Faster-Than-Light Particles* [Phys. Rev. 159, 1089] (1967)
- E. Gourgoulhon : *Special Relativity in General Frames*, Springer (2013)
- J.-P. Lasota : La science des trous noirs, Odile Jacob (2010)
- S.A. Teukolsky : The Kerr metric [Class. Quantum Grav. 32 124006] (2015)
- K.S. Thorne : Black Holes and Time Warps, Norton (1994)

(日) (同) (三) (三)