A geometrical approach to relativistic magnetohydrodynamics

Eric Gourgoulhon
Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris Diderot
92190 Meudon, France
eric.gourgoulhon@obspm.fr
http://luth.obspm.fr/~luthier/gourgoulhon/
based on a collaboration with
Charalampos Markakis (U. Wisconsin, USA) \& Kōji Uryū (U. Ryukyus, Japan)

Aspects géométriques de la relativité générale Institut Elie Cartan, Nancy

8-9 June 2010
(1) Relativistic MHD with exterior calculus
(2) Stationary and axisymmetric electromagnetic fields in general relativity
(3) Stationary and axisymmetric MHD

Outline

(1) Relativistic MHD with exterior calculus
(2) Stationary and axisymmetric electromagnetic fields in general relativity

General framework and notations

Spacetime:

- \mathscr{M} : four-dimensional orientable real manifold
- g : Lorentzian metric on $\mathscr{M}, \operatorname{sign}(\boldsymbol{g})=(-,+,+,+)$
- ϵ : Levi-Civita tensor (volume element 4-form) associated with \boldsymbol{g} : for any orthonormal basis $\left(\vec{e}_{\alpha}\right)$,

$$
\epsilon\left(\vec{e}_{0}, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)= \pm 1
$$

Notations:

- \vec{v} vector $\Longrightarrow \underline{v}$ linear form associated to \vec{v} by the metric tensor:

$$
\underline{\boldsymbol{v}}:=\boldsymbol{g}(\overrightarrow{\boldsymbol{v}}, .) \quad\left[\underline{\boldsymbol{v}}=\boldsymbol{v}^{b}\right] \quad\left[u_{\alpha}=g_{\alpha \mu} u^{\mu}\right]
$$

- \vec{v} vector, T multilinear form (valence $n) \Longrightarrow \vec{v} \cdot T$ and $T \cdot \vec{v}$ multilinear forms (valence $n-1$) defined by

$$
\begin{array}{rlrl}
\overrightarrow{\boldsymbol{v}} \cdot \boldsymbol{T}:=\boldsymbol{T}(\overrightarrow{\boldsymbol{v}}, ., \ldots, .) & & {\left[(\overrightarrow{\boldsymbol{v}} \cdot \boldsymbol{T})_{\alpha_{1} \cdots \alpha_{n-1}}\right.} & \left.=v^{\mu} T_{\mu \alpha_{1} \cdots \alpha_{n-1}}\right] \\
\boldsymbol{T} \cdot \overrightarrow{\boldsymbol{v}}:=\boldsymbol{T}(., \ldots, ., \overrightarrow{\boldsymbol{v}}) & {\left[(\boldsymbol{T} \cdot \overrightarrow{\boldsymbol{v}})_{\alpha_{1} \cdots \alpha_{n-1}}=T_{\alpha_{1} \cdots \alpha_{n-1} \mu} v^{\mu}\right]}
\end{array}
$$

Maxwell equations

Electromagnetic field in $\mathscr{M}:$ 2-form \boldsymbol{F} which obeys to Maxwell equations:

$$
\begin{aligned}
& \hline \mathrm{d} \boldsymbol{F}=0 \\
& \mathrm{~d} \star \boldsymbol{F}=\mu_{0} \star \underline{\boldsymbol{j}} \\
& \hline
\end{aligned}
$$

- $\mathrm{d} \boldsymbol{F}$: exterior derivative of $\boldsymbol{F}:(\mathrm{d} \boldsymbol{F})_{\alpha \beta \gamma}=\partial_{\alpha} F_{\beta \gamma}+\partial_{\beta} F_{\gamma \alpha}+\partial_{\gamma} F_{\alpha \beta}$
- $\star \boldsymbol{F}$: Hodge dual of $\boldsymbol{F}: \star F_{\alpha \beta}:=\frac{1}{2} \epsilon_{\alpha \beta \mu \nu} F^{\mu \nu}$
- $\star \underline{j}$ 3-form Hodge-dual of the 1 -form \underline{j} associated to the electric 4-current \vec{j} : $\not \underset{\boldsymbol{j}}{\boldsymbol{j}}:=\epsilon(\overrightarrow{\boldsymbol{j}}, ., .,$.
- μ_{0} : magnetic permeability of vacuum

Electric and magnetic fields in the fluid frame

Fluid : congruence of worldlines \Longrightarrow 4-velocity \vec{u}

- Electric field in the fluid frame: 1-form $e=\boldsymbol{F} \cdot \overrightarrow{\boldsymbol{u}}$
- Magnetic field in the fluid frame: vector \vec{b} such that $\underline{b}=\vec{u} \cdot \star F$ e and \vec{b} are orthogonal to $\vec{u}: e \cdot \vec{u}=0$ and $\underline{b} \cdot \vec{u}=0$

$$
\begin{aligned}
F & =\underline{u} \wedge e+\epsilon(\vec{u}, \vec{b}, \ldots,) \\
\star \boldsymbol{F} & =-\underline{u} \wedge \underline{b}+\epsilon(\vec{u}, \vec{e}, \ldots .)
\end{aligned}
$$

Perfect conductor

Fluid is a perfect conductor $\Longleftrightarrow \vec{e}=0 \Longleftrightarrow \boldsymbol{F} \cdot \overrightarrow{\boldsymbol{u}}=0$
From now on, we assume that the fluid is a perfect conductor (ideal MHD)
The electromagnetic field is then entirely expressible in terms of vectors \vec{u} and \vec{b} :

$$
\boldsymbol{F}=\boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{b}}, ., .)
$$

$$
\star \boldsymbol{F}=\underline{\boldsymbol{b}} \wedge \underline{\boldsymbol{u}}
$$

Alfvén's theorem

Cartan's identity applied to the 2 -form \boldsymbol{F} :

$$
\mathcal{L}_{\vec{u}} \boldsymbol{F}=\overrightarrow{\boldsymbol{u}} \cdot \mathrm{d} \boldsymbol{F}+\mathrm{d}(\overrightarrow{\boldsymbol{u}} \cdot \boldsymbol{F})
$$

Now $\mathrm{d} \boldsymbol{F}=0$ (Maxwell eq.) and $\vec{u} \cdot \boldsymbol{F}=0$ (perfect conductor) Hence the electromagnetic field is preserved by the flow:

$$
\mathcal{L}_{\overrightarrow{\boldsymbol{u}}} \boldsymbol{F}=0
$$

Application: $\frac{d}{d \tau} \oint_{\mathcal{C}(\tau)} \boldsymbol{A}=0$

- τ : fluid proper time
- $\mathcal{C}(\tau)=$ closed contour dragged along by the fluid
- \boldsymbol{A} : electromagnetic 4-potential : $\boldsymbol{F}=\mathrm{d} \boldsymbol{A}$

Proof: $\frac{d}{d \tau} \oint_{\mathcal{C}(\tau)} \boldsymbol{A}=\frac{d}{d \tau} \int_{\mathcal{S}(\tau)} \underbrace{\mathrm{d} \boldsymbol{A}}_{\boldsymbol{F}}=\frac{d}{d \tau} \int_{\mathcal{S}(\tau)} \boldsymbol{F}=\int_{\mathcal{S}(\tau)} \underbrace{\mathcal{L}_{\vec{u}} \boldsymbol{F}}_{0}=0$
Non-relativistic limit: magnetic flux freezing: $\int_{\mathcal{S}} \overrightarrow{\boldsymbol{b}} \cdot d \overrightarrow{\boldsymbol{S}}=$ const (Alfvén's theorem)

Magnetic induction equation (1/2)

We have obsviously $\boldsymbol{F} \cdot \overrightarrow{\boldsymbol{b}}=\epsilon(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{b}}, ., \overrightarrow{\boldsymbol{b}})=0$
In addition, $\mathcal{L}_{\vec{b}} \boldsymbol{F}=\overrightarrow{\boldsymbol{b}} \cdot \underbrace{\mathrm{d} \boldsymbol{F}}_{0}+\mathrm{d}(\underbrace{\overrightarrow{\boldsymbol{b}} \cdot \boldsymbol{F}}_{0})=0$
Hence

$$
\boldsymbol{F} \cdot \overrightarrow{\boldsymbol{b}}=0 \text { and } \mathcal{L}_{\vec{b}} \boldsymbol{F}=0
$$

similarly to

$$
\boldsymbol{F} \cdot \overrightarrow{\boldsymbol{u}}=0 \text { and } \mathcal{L}_{\vec{u}} \boldsymbol{F}=0
$$

Magnetic induction equation (2/2)

From $\mathcal{L}_{\vec{u}} \boldsymbol{F}=0$ and $\boldsymbol{F}=\epsilon(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{b}}, \ldots$.$) , we get$

$$
\left(\mathcal{L}_{\vec{u}} \epsilon\right)(\vec{u}, \vec{b}, ., .)+\epsilon(\underbrace{\mathcal{L}_{\vec{u}} \vec{u}}_{0}, \vec{b}, ., .)+\epsilon\left(\vec{u}, \mathcal{L}_{\vec{u}} \vec{b}, . . .\right)=0
$$

Now $\mathcal{L}_{\vec{u}} \epsilon=(\nabla \cdot \vec{u}) \epsilon$, hence $\epsilon\left(\vec{u},(\nabla \cdot \vec{u}) \vec{b}+\mathcal{L}_{\vec{u}} \vec{b}, .,.\right)=0$
This implies

$$
\begin{equation*}
\mathcal{L}_{\vec{u}} \overrightarrow{\boldsymbol{b}}=\alpha \overrightarrow{\boldsymbol{u}}-(\nabla \cdot \overrightarrow{\boldsymbol{u}}) \overrightarrow{\boldsymbol{b}} \tag{1}
\end{equation*}
$$

Magnetic induction equation (2/2)

From $\mathcal{L}_{\vec{u}} \boldsymbol{F}=0$ and $\boldsymbol{F}=\boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{b}}, .,$.$) , we get$

$$
\left(\mathcal{L}_{\vec{u}} \boldsymbol{\epsilon}\right)(\overrightarrow{\boldsymbol{u}}, \vec{b}, \ldots)+\epsilon(\underbrace{\mathcal{L}_{\vec{u}} \vec{u}}_{0}, \vec{b}, ., .)+\epsilon\left(\overrightarrow{\boldsymbol{u}}, \mathcal{L}_{\vec{u}} \overrightarrow{\boldsymbol{b}}, ., .\right)=0
$$

Now $\mathcal{L}_{\vec{u}} \epsilon=(\nabla \cdot \vec{u}) \epsilon$, hence $\epsilon\left(\vec{u},(\nabla \cdot \vec{u}) \vec{b}+\mathcal{L}_{\vec{u}} \vec{b}, .,.\right)=0$
This implies

$$
\begin{equation*}
\mathcal{L}_{\vec{u}} \overrightarrow{\boldsymbol{b}}=\alpha \overrightarrow{\boldsymbol{u}}-(\boldsymbol{\nabla} \cdot \overrightarrow{\boldsymbol{u}}) \overrightarrow{\boldsymbol{b}} \tag{1}
\end{equation*}
$$

Similarly, the property $\mathcal{L}_{\vec{b}} \boldsymbol{F}=0$ leads to $\epsilon\left((\nabla \cdot \vec{b}) \vec{u}+\mathcal{L}_{\vec{b}} \vec{u}, \vec{b}, .,.\right)=0$ which implies

$$
\begin{equation*}
\mathcal{L}_{\vec{b}} \vec{u}=-\mathcal{L}_{\vec{u}} \vec{b}=-(\nabla \cdot \vec{b}) \vec{u}+\beta \vec{b} \tag{2}
\end{equation*}
$$

Comparison of (1) and (2) leads to

$$
\begin{equation*}
\mathcal{L}_{\vec{u}} \vec{b}=(\nabla \cdot \vec{b}) \vec{u}-(\nabla \cdot \vec{u}) \vec{b} \tag{3}
\end{equation*}
$$

Non-relativistic limit: $\frac{\partial \overrightarrow{\boldsymbol{b}}}{\partial t}=\operatorname{curl}(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{b}})$ (induction equation)

Some simple consequences

We have $\underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{b}}=0 \Longrightarrow \mathcal{L}_{\vec{u}} \underline{\boldsymbol{u}} \cdot \overrightarrow{\vec{b}}+\underline{\boldsymbol{u}} \cdot \mathcal{L}_{\vec{u}} \overrightarrow{\boldsymbol{b}}=0$
Now $\mathcal{L}_{\vec{u}} \underline{u}=\underline{a}$ with $\vec{a}:=\nabla_{\vec{u}} \vec{u}$ (fluid 4-acceleration)
and $\underline{u} \cdot \mathcal{L}_{\vec{u}} \vec{b}=(\nabla \cdot \vec{b}) \underbrace{\boldsymbol{u} \cdot \vec{u}}_{-1}-(\nabla \cdot \vec{u}) \underbrace{\boldsymbol{u} \cdot \vec{b}}_{0}=-\nabla \cdot \vec{b}$
Hence

$$
\nabla \cdot \vec{b}=\underline{a} \cdot \vec{b}
$$

Some simple consequences

We have $\underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{b}}=0 \Longrightarrow \mathcal{L}_{\vec{u}} \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{b}}+\underline{u} \cdot \mathcal{L}_{\vec{u}} \overrightarrow{\boldsymbol{b}}=0$
Now $\mathcal{L}_{\vec{u}} \underline{u}=\underline{a}$ with $\vec{a}:=\nabla_{\vec{u}} \vec{u}$ (fluid 4-acceleration)
and $\underline{u} \cdot \mathcal{L}_{\vec{u}} \vec{b}=(\nabla \cdot \vec{b}) \underbrace{\boldsymbol{u} \cdot \vec{u}}_{-1}-(\nabla \cdot \vec{u}) \underbrace{\boldsymbol{u} \cdot \vec{b}}_{0}=-\nabla \cdot \vec{b}$
Hence

$$
\nabla \cdot \vec{b}=\underline{a} \cdot \vec{b}
$$

If we invoke baryon number conservation

$$
\nabla \cdot(n \overrightarrow{\boldsymbol{u}})=0 \Longleftrightarrow \nabla \cdot \overrightarrow{\boldsymbol{u}}=-\frac{1}{n} \mathcal{L}_{\vec{u}} n
$$

the magnetic induction equation (3) leads to a simple equation for the vector \vec{b} / n :

$$
\mathcal{L}_{\vec{u}}\left(\frac{\vec{b}}{n}\right)=\left(\underline{a} \cdot \frac{\vec{b}}{n}\right) \vec{u}
$$

Perfect fluid

From now on, we assume that the fluid is a perfect one: its energy-momentum tensor is

$$
\boldsymbol{T}^{\text {fluid }}=(\varepsilon+p) \underline{\boldsymbol{u}} \otimes \underline{\boldsymbol{u}}+p \boldsymbol{g}
$$

Simple fluid model: all thermodynamical quantities depend on

- s : entropy density in the fluid frame,
- n : baryon number density in the fluid frame

Equation of state $: \varepsilon=\varepsilon(s, n) \Longrightarrow\left\{\begin{aligned} T & :=\frac{\partial \varepsilon}{\partial s} \text { temperature } \\ \mu & :=\frac{\partial \varepsilon}{\partial n} \text { baryon chemical potential }\end{aligned}\right.$
First law of thermodynamics $\Longrightarrow p=-\varepsilon+T s+\mu n$
\Longrightarrow enthalpy per baryon : $h=\frac{\varepsilon+p}{n}=\mu+T S$, with $S:=\frac{s}{n}$ (entropy per baryon)

Conservation of energy-momentum

Conservation law for the total energy-momentum:

$$
\begin{equation*}
\nabla \cdot\left(\boldsymbol{T}^{\text {fluid }}+\boldsymbol{T}^{\mathrm{em}}\right)=0 \tag{4}
\end{equation*}
$$

- from Maxwell equations, $\boldsymbol{\nabla} \cdot \boldsymbol{T}^{\mathrm{em}}=-\boldsymbol{F} \cdot \vec{j}$
- using the baryon number conservation, $\boldsymbol{\nabla} \cdot T^{\text {fluid }}$ can be decomposed in two parts:
- along $\overrightarrow{\boldsymbol{u}}: \overrightarrow{\boldsymbol{u}} \cdot \nabla \cdot T^{\text {fluid }}=-n T \overrightarrow{\boldsymbol{u}} \cdot \mathbf{d} S$
- orthogonal to $\overrightarrow{\boldsymbol{u}}: \perp_{\boldsymbol{u}} \boldsymbol{\nabla} \cdot \boldsymbol{T}^{\text {fluid }}=n(\overrightarrow{\boldsymbol{u}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}})-T \mathbf{d} S)$ [Synge 1937][Lichnerowicz 1941][Taub 1959] [Carter 1979]

Since $\overrightarrow{\boldsymbol{u}} \cdot \boldsymbol{F} \cdot \overrightarrow{\boldsymbol{j}}=0$, Eq. (4) is equivalent to the system

$$
\begin{equation*}
\overrightarrow{\boldsymbol{u}} \cdot \mathbf{d} S=0 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{\boldsymbol{u}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}})-T \mathbf{d} S=\frac{1}{n} \boldsymbol{F} \cdot \overrightarrow{\boldsymbol{j}} \tag{6}
\end{equation*}
$$

Eq. (6) is the MHD-Euler equation in canonical form.

Example of application : Kelvin's theorem

$\mathcal{C}(\tau)$: closed contour dragged along by the fluid (proper time τ)
Fluid circulation around $\mathcal{C}(\tau): C(\tau):=\oint_{\mathcal{C}(\tau)} h \underline{u}$
Variation of the circulation as the contour is dragged by the fluid:

$$
\frac{d C}{d \tau}=\frac{d}{d \tau} \oint_{\mathcal{C}(\tau)} h \underline{\boldsymbol{u}}=\oint_{\mathcal{C}(\tau)} \mathcal{L}_{\overrightarrow{\boldsymbol{u}}}(h \underline{\boldsymbol{u}})=\oint_{\mathcal{C}(\tau)} \overrightarrow{\boldsymbol{u}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}})+\oint_{\mathcal{C}(\tau)} \mathbf{d}(h \underbrace{\boldsymbol{u} \cdot \overrightarrow{\boldsymbol{u}}}_{-1})
$$

where the last equality follows from Cartan's identity
Now, since $\mathcal{C}(\tau)$ is closed, $\oint_{\mathcal{C}(\tau)} \mathrm{d} h=0$
Using the MHD-Euler equation (6), we thus get

$$
\frac{d C}{d \tau}=\oint_{\mathcal{C}(\tau)}\left(T \mathbf{d} S+\frac{1}{n} \boldsymbol{F} \cdot \overrightarrow{\boldsymbol{j}}\right)
$$

If $\boldsymbol{F} \cdot \overrightarrow{\boldsymbol{j}}=0$ (force-free MHD) and $T=$ const or $S=$ const on $\mathcal{C}(\tau)$, then C is conserved (Kelvin's theorem)

(1) Relativistic MHD with exterior calculus

(2) Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

Assume that $(\mathscr{M}, \boldsymbol{g})$ is endowed with two symmetries:
(1) stationarity : \exists a group action of $(\mathbb{R},+)$ on \mathscr{M} such that

- the orbits are timelike curves
- \boldsymbol{g} is invariant under the $(\mathbb{R},+)$ action :
if $\vec{\xi}$ is a generator of the group action,

$$
\begin{equation*}
\mathcal{L}_{\vec{\xi}} \boldsymbol{g}=0 \tag{7}
\end{equation*}
$$

(2) axisymmetry: \exists a group action of $\mathrm{SO}(2)$ on \mathscr{M} such that

- the set of fixed points is a 2-dimensional submanifold $\Delta \subset \mathscr{M}$ (called the rotation axis)
- \boldsymbol{g} is invariant under the $\mathrm{SO}(2)$ action :
if $\vec{\chi}$ is a generator of the group action,

$$
\begin{equation*}
\mathcal{L}_{\vec{\chi}} \boldsymbol{g}=0 \tag{8}
\end{equation*}
$$

(7) and (8) are equivalent to Killing equations:

$$
\nabla_{\alpha} \xi_{\beta}+\nabla_{\beta} \xi_{\alpha}=0 \text { and } \nabla_{\alpha} \chi_{\beta}+\nabla_{\beta} \chi_{\alpha}=0
$$

Stationary and axisymmetric spacetimes

No generality is lost by considering that the stationary and axisymmetric actions commute [Carter 1970]:
$(\mathscr{M}, \boldsymbol{g})$ is invariant under the action of the Abelian group $(\mathbb{R},+) \times \mathrm{SO}(2)$, and not only under the actions of $(\mathbb{R},+)$ and $\mathrm{SO}(2)$ separately. It is equivalent to say that the Killing vectors commute:

$$
[\vec{\xi}, \vec{\chi}]=0
$$

Stationary and axisymmetric spacetimes

No generality is lost by considering that the stationary and axisymmetric actions commute [Carter 1970]:
$(\mathscr{M}, \boldsymbol{g})$ is invariant under the action of the Abelian group $(\mathbb{R},+) \times \mathrm{SO}(2)$, and not only under the actions of $(\mathbb{R},+)$ and $\mathrm{SO}(2)$ separately. It is equivalent to say that the Killing vectors commute:

$$
[\vec{\xi}, \vec{\chi}]=0
$$

$\Longrightarrow \exists$ coordinates $\left(x^{\alpha}\right)=\left(t, x^{1}, x^{2}, \varphi\right)$ on \mathscr{M} such that $\vec{\xi}=\frac{\partial}{\partial t}$ and $\vec{\chi}=\frac{\partial}{\partial \varphi}$
Within them, $g_{\alpha \beta}=g_{\alpha \beta}\left(x^{1}, x^{2}\right)$
Adapted coordinates are not unique: $\left\{\begin{array}{l}t^{\prime}=t+F_{0}\left(x^{1}, x^{2}\right) \\ x^{\prime 1}=F_{1}\left(x^{1}, x^{2}\right) \\ x^{\prime 2}=F_{2}\left(x^{1}, x^{2}\right) \\ \varphi^{\prime}=\varphi+F_{3}\left(x^{1}, x^{2}\right)\end{array}\right.$

Stationary and axisymmetric electromagnetic field

Assume that the electromagnetic field is both stationary and axisymmetric:

$$
\begin{equation*}
\mathcal{L}_{\overrightarrow{\boldsymbol{\xi}}} \boldsymbol{F}=0 \quad \text { and } \quad \mathcal{L}_{\vec{\chi}} \boldsymbol{F}=0 \tag{9}
\end{equation*}
$$

Cartan identity and Maxwell eq. $\Longrightarrow \mathcal{L}_{\overrightarrow{\boldsymbol{\xi}}} \boldsymbol{F}=\overrightarrow{\boldsymbol{\xi}} \cdot \underbrace{\mathrm{d} \boldsymbol{F}}_{0}+\mathbf{d}(\overrightarrow{\boldsymbol{\xi}} \cdot \boldsymbol{F})=\mathrm{d}(\overrightarrow{\boldsymbol{\xi}} \cdot \boldsymbol{F})$
Hence (9) is equivalent to

$$
\mathrm{d}(\overrightarrow{\boldsymbol{\xi}} \cdot \boldsymbol{F})=0 \quad \text { and } \quad \mathrm{d}(\overrightarrow{\boldsymbol{\chi}} \cdot \boldsymbol{F})=0
$$

Poincaré lemma $\Longrightarrow \exists$ locally two scalar fields Φ and Ψ such that

$$
\overrightarrow{\boldsymbol{\xi}} \cdot \boldsymbol{F}=-\mathrm{d} \Phi \text { and } \vec{\chi} \cdot \boldsymbol{F}=-\mathbf{d} \Psi
$$

Stationary and axisymmetric electromagnetic field

Assume that the electromagnetic field is both stationary and axisymmetric:

$$
\begin{equation*}
\mathcal{L}_{\vec{\xi}} \boldsymbol{F}=0 \quad \text { and } \quad \mathcal{L}_{\vec{\chi}} \boldsymbol{F}=0 \tag{9}
\end{equation*}
$$

Cartan identity and Maxwell eq. $\Longrightarrow \mathcal{L}_{\overrightarrow{\boldsymbol{\xi}}} \boldsymbol{F}=\overrightarrow{\boldsymbol{\xi}} \cdot \underbrace{\mathrm{d} \boldsymbol{F}}_{0}+\mathbf{d}(\overrightarrow{\boldsymbol{\xi}} \cdot \boldsymbol{F})=\mathrm{d}(\overrightarrow{\boldsymbol{\xi}} \cdot \boldsymbol{F})$
Hence (9) is equivalent to

$$
\mathrm{d}(\overrightarrow{\boldsymbol{\xi}} \cdot \boldsymbol{F})=0 \quad \text { and } \quad \mathrm{d}(\vec{\chi} \cdot \boldsymbol{F})=0
$$

Poincaré lemma $\Longrightarrow \exists$ locally two scalar fields Φ and Ψ such that

$$
\overrightarrow{\boldsymbol{\xi}} \cdot \boldsymbol{F}=-\mathbf{d} \Phi \text { and } \vec{\chi} \cdot \boldsymbol{F}=-\mathbf{d} \Psi
$$

Link with the 4-potential \boldsymbol{A} : one may use the gauge freedom on \boldsymbol{A} to set

$$
\Phi=\boldsymbol{A} \cdot \overrightarrow{\boldsymbol{\xi}}=A_{t} \quad \text { and } \quad \Psi=\boldsymbol{A} \cdot \vec{\chi}=A_{\varphi}
$$

Symmetries of the scalar potentials

From the definitions of Φ and Ψ :

- $\mathcal{L}_{\vec{\xi}} \Phi=\overrightarrow{\boldsymbol{\xi}} \cdot \mathrm{d} \Phi=-\boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, \overrightarrow{\boldsymbol{\xi}})=0$
- $\mathcal{L}_{\vec{\chi}} \Psi=\vec{\chi} \cdot \mathbf{d} \Psi=-\boldsymbol{F}(\vec{\chi}, \vec{\chi})=0$
- $\mathcal{L}_{\vec{\chi}} \Phi=\vec{\chi} \cdot \mathbf{d} \Phi=-\boldsymbol{F}(\vec{\xi}, \vec{\chi})$
- $\mathcal{L}_{\vec{\xi}} \Psi=\vec{\xi} \cdot \mathbf{d} \Psi=-\boldsymbol{F}(\vec{\chi}, \overrightarrow{\boldsymbol{\xi}})=\boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi})$

Symmetries of the scalar potentials

From the definitions of Φ and Ψ :

- $\mathcal{L}_{\vec{\xi}} \Phi=\overrightarrow{\boldsymbol{\xi}} \cdot \mathrm{d} \Phi=-\boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, \overrightarrow{\boldsymbol{\xi}})=0$
- $\mathcal{L}_{\vec{\chi}} \Psi=\vec{\chi} \cdot \mathbf{d} \Psi=-\boldsymbol{F}(\vec{\chi}, \vec{\chi})=0$
- $\mathcal{L}_{\vec{\chi}} \Phi=\vec{\chi} \cdot \mathbf{d} \Phi=-\boldsymbol{F}(\vec{\xi}, \vec{\chi})$
- $\mathcal{L}_{\vec{\xi}} \Psi=\overrightarrow{\boldsymbol{\xi}} \cdot \mathbf{d} \Psi=-\boldsymbol{F}(\overrightarrow{\boldsymbol{\chi}}, \overrightarrow{\boldsymbol{\xi}})=\boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi})$

We have $\mathrm{d}[\boldsymbol{F}(\vec{\xi}, \vec{\chi})]=\mathrm{d}[\vec{\xi} \cdot \mathbf{d} \Psi]=\mathcal{L}_{\vec{\xi}} \mathbf{d} \Psi-\vec{\xi} \cdot \underbrace{\operatorname{dd} \Psi}_{0}=\mathcal{L}_{\vec{\xi}}(\boldsymbol{F} \cdot \vec{\chi})=0$
Hence $\boldsymbol{F}(\vec{\xi}, \vec{\chi})=$ const
Assuming that \boldsymbol{F} vanishes somewhere in \mathscr{M} (for instance at spatial infinity), we conclude that

$$
\boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi})=0
$$

Then $\mathcal{L}_{\vec{\xi}} \Phi=\mathcal{L}_{\vec{\chi}} \Phi=0$ and $\mathcal{L}_{\vec{\xi}} \Psi=\mathcal{L}_{\vec{\chi}} \Psi=0$
i.e. the scalar potentials Φ and Ψ obey to the two spacetime symmetries

Most general stationary-axisymmetric electromagnetic field

$$
\begin{equation*}
\boldsymbol{F}=\mathbf{d} \Phi \wedge \boldsymbol{\xi}^{*}+\mathbf{d} \Psi \wedge \chi^{*}+\frac{I}{\sigma} \boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, ., .) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\star \boldsymbol{F}=\boldsymbol{\epsilon}\left(\overrightarrow{\boldsymbol{\nabla}} \Phi, \overrightarrow{\boldsymbol{\xi}^{*}}, ., .\right)+\boldsymbol{\epsilon}\left(\vec{\nabla} \Psi, \overrightarrow{\chi^{*}}, ., .\right)-\frac{I}{\sigma} \underline{\boldsymbol{\xi}} \wedge \underline{\boldsymbol{\chi}} \tag{11}
\end{equation*}
$$

with

- $\boldsymbol{\xi}^{*}:=\frac{1}{\sigma}(-X \underline{\boldsymbol{\xi}}+W \underline{\boldsymbol{\chi}}), \quad \chi^{*}:=\frac{1}{\sigma}(W \underline{\boldsymbol{\xi}}+V \underline{\boldsymbol{\chi}})$
- $V:=-\underline{\xi} \cdot \vec{\xi}, \quad W:=\underline{\xi} \cdot \vec{\chi}, \quad X:=\underline{\chi} \cdot \vec{\chi}$
- $\sigma:=V X+W^{2}$
- $I:=\star \boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}) \leftarrow$ the only non-trivial scalar, apart from $\boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi})$, one can form from $\boldsymbol{F}, \overrightarrow{\boldsymbol{\xi}}$ and $\overrightarrow{\boldsymbol{\chi}}$
$\left(\boldsymbol{\xi}^{*}, \chi^{*}\right)$ is the dual basis of $(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi})$ in the 2 -plane $\Pi:=\operatorname{Vect}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi})$:

$$
\begin{aligned}
& \boldsymbol{\xi}^{*} \cdot \overrightarrow{\boldsymbol{\xi}}=1, \quad \boldsymbol{\xi}^{*} \cdot \vec{\chi}=0, \quad \chi^{*} \cdot \overrightarrow{\boldsymbol{\xi}}=0, \quad \chi^{*} \cdot \vec{\chi}=1 \\
& \forall \overrightarrow{\boldsymbol{v}} \in \Pi^{\perp}, \quad \boldsymbol{\xi}^{*} \cdot \overrightarrow{\boldsymbol{v}}=0 \quad \text { and } \quad \chi^{*} \cdot \overrightarrow{\boldsymbol{v}}=0
\end{aligned}
$$

Most general stationary-axisymmetric electromagnetic field

 The proofConsider the 2-form $\boldsymbol{H}:=\boldsymbol{F}-\mathrm{d} \Phi \wedge \xi^{*}-\mathrm{d} \Psi \wedge \chi^{*}$
It satisfies

$$
\boldsymbol{H}(\overrightarrow{\boldsymbol{\xi}}, .)=\underbrace{\boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, .)}_{-\mathrm{d} \Phi}-(\underbrace{\overrightarrow{\boldsymbol{\xi}} \cdot \mathrm{d} \Phi}_{0}) \boldsymbol{\xi}^{*}+(\underbrace{\boldsymbol{\xi}^{*} \cdot \overrightarrow{\boldsymbol{\xi}}}_{1}) \mathbf{d} \Phi-(\underbrace{\overrightarrow{\boldsymbol{\xi}} \cdot \mathbf{d} \Psi}_{0}) \chi^{*}+(\underbrace{\chi^{*} \cdot \overrightarrow{\boldsymbol{\xi}}}_{0}) \mathbf{d} \Psi=0
$$

Similarly $\boldsymbol{H}(\overrightarrow{\boldsymbol{\chi}},)=$.0 . Hence $\left.\boldsymbol{H}\right|_{\Pi}=0$
On $\Pi^{\perp},\left.\boldsymbol{H}\right|_{\Pi^{\perp}}$ is a 2-form. Another 2-form on Π^{\perp} is $\left.\epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, .,)\right|_{.\Pi^{\perp}}$ Since $\operatorname{dim} \Pi^{\perp}=2$ and $\left.\epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \ldots,)\right|_{.\Pi^{\perp}} \neq 0, \exists$ a scalar field I such that $\left.\boldsymbol{H}\right|_{\Pi^{\perp}}=\left.\frac{I}{\sigma} \boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, .,)\right|_{.\Pi^{\perp}}$. Because both \boldsymbol{H} and $\boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, .,$.$) vanish on \Pi$, we can extend the equality to all space:

$$
\boldsymbol{H}=\frac{I}{\sigma} \boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, ., .)
$$

Thus \boldsymbol{F} has the form (10). Taking the Hodge dual gives the form (11) for $\star \boldsymbol{F}$, on which we readily check that $I=\star \boldsymbol{F}(\vec{\xi}, \vec{\chi})$, thereby completing the proof

Example: Kerr-Newman electromagnetic field

Using Boyer-Lindquist coordinates (t, r, θ, φ), the electromagnetic field of the Kerr-Newman solution (charged rotating black hole) is

$$
\begin{aligned}
\boldsymbol{F}= & \frac{\mu_{0} Q}{4 \pi\left(r^{2}+a^{2} \cos ^{2} \theta\right)^{2}}\left\{\left[\left(r^{2}-a^{2} \cos ^{2} \theta\right) \mathbf{d} r-a^{2} r \sin 2 \theta \mathbf{d} \theta\right] \wedge \mathbf{d} t\right. \\
& \left.+\left[a\left(a^{2} \cos ^{2} \theta-r^{2}\right) \sin ^{2} \theta \mathbf{d} r+a r\left(r^{2}+a^{2}\right) \sin 2 \theta \mathbf{d} \theta\right] \wedge \mathbf{d} \varphi\right\}
\end{aligned}
$$

Q : total electric charge, $a:=J / M$: reduced angular momentum
For Kerr-Newman, $\boldsymbol{\xi}^{*}=\mathrm{d} t$ and $\chi^{*}=\mathrm{d} \varphi$; comparison with (10) leads to

$$
\Phi=-\frac{\mu_{0} Q}{4 \pi} \frac{r}{r^{2}+a^{2} \cos ^{2} \theta},
$$

$$
\Psi=\frac{\mu_{0} Q}{4 \pi} \frac{a r \sin ^{2} \theta}{r^{2}+a^{2} \cos ^{2} \theta}, \quad I=0
$$

Non-rotating limit $(a=0)$: Reissner-Nordström solution: $\Phi=-\frac{\mu_{0}}{4 \pi} \frac{Q}{r}, \Psi=0$

Maxwell equations

First Maxwell equation: $\mathrm{d} \boldsymbol{F}=0$
It is automatically satisfied by the form (10) of \boldsymbol{F}
Second Maxwell equation: $\mathbf{d} \star \boldsymbol{F}=\mu_{0} \star \underline{\boldsymbol{j}}$
It gives the electric 4-current:

$$
\begin{equation*}
\mu_{0} \overrightarrow{\boldsymbol{j}}=a \overrightarrow{\boldsymbol{\xi}}+b \vec{\chi}+\frac{1}{\sigma} \vec{\epsilon}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} I, .) \tag{12}
\end{equation*}
$$

with

- $a:=\nabla_{\mu}\left(\frac{X}{\sigma} \nabla^{\mu} \Phi-\frac{W}{\sigma} \nabla^{\mu} \Psi\right)+\frac{I}{\sigma^{2}}[-X \mathscr{C}(\overrightarrow{\boldsymbol{\xi}})+W \mathscr{C}(\vec{\chi})]$
- $b:=-\nabla_{\mu}\left(\frac{W}{\sigma} \nabla^{\mu} \Phi+\frac{V}{\sigma} \nabla^{\mu} \Psi\right)+\frac{I}{\sigma^{2}}[W \mathscr{C}(\overrightarrow{\boldsymbol{\xi}})+V \mathscr{C}(\vec{\chi})]$
- $\mathscr{C}(\overrightarrow{\boldsymbol{\xi}}):=\star(\underline{\boldsymbol{\xi}} \wedge \underline{\chi} \wedge \mathbf{d} \underline{\boldsymbol{\xi}})=\epsilon^{\mu \nu \rho \sigma} \xi_{\mu} \chi_{\nu} \nabla_{\rho} \xi_{\sigma}$ (circularity factor)
- $\mathscr{C}(\vec{\chi}):=\star(\underline{\boldsymbol{\xi}} \wedge \underline{\chi} \wedge \mathbf{d} \underline{\chi})=\epsilon^{\mu \nu \rho \sigma} \xi_{\mu} \chi_{\nu} \nabla_{\rho} \chi_{\sigma}$ (circularity factor)

Remark: \vec{j} has no meridional component (i.e. $\vec{j} \in \Pi$) $\Longleftrightarrow \mathrm{d} I=0$

Simplification for circular spacetimes

Spacetime $(\mathscr{M}, \boldsymbol{g})$ is circular

$$
\Longleftrightarrow \mathscr{C}(\vec{\xi})=\mathscr{C}(\vec{\chi})=0
$$

Generalized Papapetrou theorem [Papapetrou 1966] [Kundt \& Trümper 1966] [Carter 1969] : a stationary and axisymmetric spacetime ruled by the Einstein equation is circular iff the total energy-momemtum tensor \boldsymbol{T} obeys to

$$
\begin{aligned}
\xi^{\mu} T_{\mu}{ }^{[\alpha} \xi^{\beta} \chi^{\gamma]} & =0 \\
\chi^{\mu} T_{\mu}{ }^{[\alpha} \xi^{\beta} \chi^{\gamma]} & =0
\end{aligned}
$$

Examples:

- circular spacetimes: Kerr-Newman, rotating star, magnetized rotating star with either purely poloidal magnetic field or purely toroidal magnetic field
- non-circular spacetimes: rotating star with meridional flow, magnetized rotating star with mixed magnetic field

In what follows, we do not assume that $(\mathscr{M}, \boldsymbol{g})$ is circular

Outline

(1) Relativistic MHD with exterior calculus

(2) Stationary and axisymmetric electromagnetic fields in general relativity
(3) Stationary and axisymmetric MHD

Perfect conductor hypothesis (1/2)

$$
\boldsymbol{F} \cdot \overrightarrow{\boldsymbol{u}}=0
$$

with the fluid 4 -velocity decomposed as

$$
\overrightarrow{\boldsymbol{u}}=\lambda(\overrightarrow{\boldsymbol{\xi}}+\Omega \vec{\chi})+\overrightarrow{\boldsymbol{w}}, \quad \overrightarrow{\boldsymbol{w}} \in \Pi^{\perp}
$$

\vec{w} is the meridional flow

$$
\underline{u} \cdot \vec{u}=-1 \Longleftrightarrow \lambda=\sqrt{\frac{1+\underline{w} \cdot \overrightarrow{\boldsymbol{w}}}{V-2 \Omega W-\Omega^{2} X}}
$$

Perfect conductor hypothesis ($1 / 2$)

$$
\boldsymbol{F} \cdot \overrightarrow{\boldsymbol{u}}=0
$$

with the fluid 4 -velocity decomposed as

$$
\overrightarrow{\boldsymbol{u}}=\lambda(\overrightarrow{\boldsymbol{\xi}}+\Omega \overrightarrow{\boldsymbol{\chi}})+\overrightarrow{\boldsymbol{w}}, \quad \overrightarrow{\boldsymbol{w}} \in \Pi^{\perp}
$$

\vec{w} is the meridional flow

$$
\underline{u} \cdot \vec{u}=-1 \Longleftrightarrow \lambda=\sqrt{\frac{1+\underline{w} \cdot \overrightarrow{\boldsymbol{w}}}{V-2 \Omega W-\Omega^{2} X}}
$$

We have

$$
\begin{equation*}
\mathcal{L}_{\vec{u}} \Phi=0 \quad \text { and } \quad \mathcal{L}_{\vec{u}} \Psi=0, \tag{13}
\end{equation*}
$$

i.e. the scalar potentials Φ and Ψ are constant along the fluid lines.

Proof: $\mathcal{L}_{\vec{u}} \Phi=\overrightarrow{\boldsymbol{u}} \cdot \mathrm{d} \Phi=-\boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, \vec{u})=0$ by the perfect conductor property.
Corollary: since we had already $\mathcal{L}_{\vec{\xi}} \Phi=\mathcal{L}_{\vec{\chi}} \Phi=0$ and $\mathcal{L}_{\vec{\xi}} \Psi=\mathcal{L}_{\vec{\chi}} \Psi=0$, it follows from (13) that

$$
\overrightarrow{\boldsymbol{w}} \cdot \mathbf{d} \Phi=0 \quad \text { and } \quad \overrightarrow{\boldsymbol{w}} \cdot \mathbf{d} \Psi=0
$$

Perfect conductor hypothesis (2/2)

Expressing the condition $\boldsymbol{F} \cdot \overrightarrow{\boldsymbol{u}}=0$ with the general form of a stationary-axisymmetric electromagnetic field yields

$$
(\underbrace{\xi^{*} \cdot \vec{u}}_{\lambda}) \mathrm{d} \Phi-(\underbrace{\mathrm{d} \Phi \cdot \vec{u}}_{0}) \xi^{*}+(\underbrace{\chi^{*} \cdot \vec{u}}_{\lambda \Omega}) \mathrm{d} \Psi-(\underbrace{\mathrm{d} \Psi \cdot \vec{u}}_{0}) \chi^{*}+\frac{I}{\sigma} \underbrace{\epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, ., \vec{u})}_{-\epsilon(\vec{\xi}, \vec{\chi}, \overrightarrow{\boldsymbol{w}}, .)}=0
$$

Hence

$$
\begin{equation*}
\mathbf{d} \Phi=-\Omega \mathbf{d} \Psi+\frac{I}{\sigma \lambda} \epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \overrightarrow{\boldsymbol{w}}, .) \tag{14}
\end{equation*}
$$

Case $\mathbf{d} \Psi \neq 0$

$\mathbf{d} \Psi \neq 0 \Longrightarrow \operatorname{dim} \operatorname{Vect}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} \Psi)=3$
Consider the 1-form $q:=\epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} \Psi,$.$) . It obeys$

$$
\boldsymbol{q} \cdot \vec{\xi}=0, \quad \boldsymbol{q} \cdot \vec{\chi}=0, \quad \boldsymbol{q} \cdot \vec{\nabla} \Psi=0
$$

Besides

$$
\underline{\boldsymbol{w}} \cdot \overrightarrow{\boldsymbol{\xi}}=0, \quad \underline{\boldsymbol{w}} \cdot \vec{\chi}=0, \quad \underline{\boldsymbol{w}} \cdot \vec{\nabla} \Psi=0
$$

Hence the 1 -forms q and \underline{w} must be proportional: \exists a scalar field a such that

$$
\begin{equation*}
\underline{\boldsymbol{w}}=a \epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} \Psi, .) \tag{15}
\end{equation*}
$$

A consequence of the above relation is

$$
\epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \overrightarrow{\boldsymbol{w}}, .)=a \sigma \mathrm{~d} \Psi
$$

$$
a=0 \Longleftrightarrow \text { no meridional flow }
$$

Perfect conductor relation with $\mathrm{d} \Psi \neq 0$

Inserting $\epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \overrightarrow{\boldsymbol{w}},)=.a \sigma \mathrm{~d} \Psi$ into the perfect conductor relation (14) yields

$$
\begin{equation*}
\mathrm{d} \Phi=-\omega \mathrm{d} \Psi \tag{16}
\end{equation*}
$$

with

$$
\omega:=\Omega-\frac{a I}{\lambda}
$$

(16) implies

$$
\mathbf{d} \omega \wedge \mathbf{d} \Psi=0
$$

from which we deduce that ω is a function of Ψ :

$$
\omega=\omega(\Psi)
$$

Remark: for a pure rotating flow ($a=0$), $\omega=\Omega$

Expression of the electromagnetic field with $d \Psi \neq 0$

$$
\boldsymbol{F}=\mathrm{d} \Psi \wedge\left(\chi^{*}-\omega \boldsymbol{\xi}^{*}\right)+\frac{I}{\sigma} \boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \ldots .)
$$

$$
\star \boldsymbol{F}=\epsilon\left(\vec{\nabla} \Psi, \overrightarrow{\chi^{*}}-\omega \overrightarrow{\boldsymbol{\xi}}^{*}, \ldots .\right)-\frac{I}{\sigma} \underline{\underline{\xi}} \wedge \underline{\chi}
$$

Conservation of baryon number

Taking the Lie derivative along \vec{u} of the relation $\epsilon(\vec{\xi}, \vec{\chi}, \vec{u},)=.a \sigma \mathrm{~d} \Psi$ and using $\mathcal{L}_{\vec{u}} \epsilon=(\nabla \cdot \vec{u}) \epsilon$ yields

$$
\mathcal{L}_{\vec{u}}(a \sigma)-a \sigma \nabla \cdot \overrightarrow{\boldsymbol{u}}=0
$$

Invoking the baryon number conservation

$$
\nabla \cdot \overrightarrow{\boldsymbol{u}}=-\frac{1}{n} \mathcal{L}_{\vec{u}} n
$$

leads to

$$
\mathcal{L}_{\vec{u}} K=0
$$

where

$$
K:=a n \sigma
$$

K is thus constant along the fluid lines.

Conservation of baryon number

Taking the Lie derivative along \vec{u} of the relation $\epsilon(\vec{\xi}, \vec{\chi}, \vec{u},)=.a \sigma \mathrm{~d} \Psi$ and using $\mathcal{L}_{\vec{u}} \epsilon=(\nabla \cdot \vec{u}) \epsilon$ yields

$$
\mathcal{L}_{\vec{u}}(a \sigma)-a \sigma \nabla \cdot \overrightarrow{\boldsymbol{u}}=0
$$

Invoking the baryon number conservation

$$
\nabla \cdot \overrightarrow{\boldsymbol{u}}=-\frac{1}{n} \mathcal{L}_{\vec{u}} n
$$

leads to

$$
\mathcal{L}_{\vec{u}} K=0
$$

where

$$
K:=a n \sigma
$$

K is thus constant along the fluid lines.
Moreoever, we have

$$
\begin{array}{llr}
\mathrm{d} K \cdot \overrightarrow{\boldsymbol{\xi}}=0, & \mathrm{~d} K \cdot \overrightarrow{\boldsymbol{\chi}}=0, & \mathrm{~d} K \cdot \overrightarrow{\boldsymbol{w}}=0 \\
\mathrm{~d} \Psi \cdot \overrightarrow{\boldsymbol{\xi}}=0, & \mathrm{~d} \Psi \cdot \vec{\chi}=0, & \mathrm{~d} \Psi \cdot \overrightarrow{\boldsymbol{w}}=0
\end{array}
$$

Hence $\mathbf{d} K \propto \mathbf{d} \Psi$ and

$$
K=K(\Psi)
$$

Comparison with previous work Bekenstein \& Oron (1978)

[Bekenstein \& Oron (1978)] have shown that the quantity

$$
C:=\frac{F_{31}}{\sqrt{-g} n u^{2}}
$$

is conserved along the fluid lines.
We have $C=\frac{1}{K}$
Remark: for a purely rotational fluid motion $(\overrightarrow{\boldsymbol{w}}=0 \Longleftrightarrow a=0 \Longleftrightarrow K=0)$,

$$
C \rightarrow \infty
$$

Helical vector

Let us introduce $\vec{k}=\vec{\xi}+\omega \vec{\chi}$
Since in general ω is not constant, \vec{k} is not a Killing vector. However

- $\nabla \cdot \vec{k}=0$
- for any scalar field f that obeys to spacetime symmetries, $\mathcal{L}_{\vec{k}} f=0$
- $\mathcal{L}_{\vec{k}} \vec{u}=0$

All these properties are readily verified.
Moreover, $\overrightarrow{\boldsymbol{k}} \cdot \boldsymbol{F}=\underbrace{\overrightarrow{\boldsymbol{\xi}} \cdot \boldsymbol{F}}_{-\mathrm{d} \Phi}+\omega \underbrace{\overrightarrow{\boldsymbol{\chi}} \cdot \boldsymbol{F}}_{-\mathrm{d} \Psi}=0$:

$$
\overrightarrow{\boldsymbol{k}} \cdot \boldsymbol{F}=0
$$

A conserved quantity from the MHD-Euler equation

From now on, we make use of the MHD-Euler equation (6):

$$
\overrightarrow{\boldsymbol{u}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}})-T \mathbf{d} S=\frac{1}{n} \boldsymbol{F} \cdot \overrightarrow{\boldsymbol{j}}
$$

Let us apply this equality between 1 -forms to the helical vector \vec{k} :

$$
\overrightarrow{\boldsymbol{u}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}}) \cdot \overrightarrow{\boldsymbol{k}}-T \overrightarrow{\boldsymbol{k}} \cdot \mathbf{d} S=\frac{1}{n} \boldsymbol{F}(\overrightarrow{\boldsymbol{k}}, \overrightarrow{\boldsymbol{j}})
$$

Now, from previously listed properties of $\overrightarrow{\boldsymbol{k}}, \overrightarrow{\boldsymbol{k}} \cdot \mathrm{d} S=0$ and $\boldsymbol{F}(\overrightarrow{\boldsymbol{k}}, \overrightarrow{\boldsymbol{j}})=0$. Hence there remains

$$
\begin{equation*}
\overrightarrow{\boldsymbol{k}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}}) \cdot \overrightarrow{\boldsymbol{u}}=0 \tag{17}
\end{equation*}
$$

A conserved quantity from the MHD-Euler equation

Besides, via Cartan's identity,
$\overrightarrow{\boldsymbol{k}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}})=\mathcal{L}_{\overrightarrow{\boldsymbol{k}}}(h \underline{\boldsymbol{u}})-\mathbf{d}(h \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{k}})=\underbrace{\mathcal{L}_{\vec{\xi}}(h \underline{\boldsymbol{u}})}_{0}+\omega \underbrace{\mathcal{L}_{\vec{\chi}}(h \underline{\boldsymbol{u}})}_{0}+(h \underline{\boldsymbol{u}} \cdot \vec{\chi}) \mathbf{d} \omega-\mathbf{d}(h \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{k}})$
Hence Eq. (17) becomes

$$
(h \underline{\boldsymbol{u}} \cdot \vec{\chi}) \underbrace{\overrightarrow{\boldsymbol{u}} \cdot \mathbf{d} \omega}_{0}-\overrightarrow{\boldsymbol{u}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{k}})=0
$$

Thus we conclude

$$
\mathcal{L}_{\vec{u}} D=0
$$

where

$$
D:=h \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{k}}
$$

Another conserved quantity from the MHD-Euler equation

Restart previous computation with $\vec{\xi}$ instead of \vec{k} :
MHD-Euler equation $\Longrightarrow \overrightarrow{\boldsymbol{u}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}}) \cdot \overrightarrow{\boldsymbol{\xi}}-T \underbrace{\overrightarrow{\boldsymbol{\xi}} \cdot \mathbf{d} S}_{0}=\frac{1}{n} \underbrace{\boldsymbol{F}(\overrightarrow{\boldsymbol{\xi}}, \overrightarrow{\boldsymbol{j}})}_{-\mathbf{d} \Phi \cdot \vec{j}}$
Since $d \Phi=-\omega d \Psi$, we get

$$
\overrightarrow{\boldsymbol{u}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}}) \cdot \overrightarrow{\boldsymbol{\xi}}=\frac{\omega}{n} \overrightarrow{\boldsymbol{j}} \cdot \mathbf{d} \Psi
$$

Cartan ident. $\Longrightarrow \overrightarrow{\boldsymbol{\xi}} \cdot \mathbf{d}(h \underline{\boldsymbol{u}})=\underbrace{\mathcal{L}_{\vec{\xi}}(h \underline{\boldsymbol{u}})}_{0}-\mathbf{d}(h \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{\xi}}) \Longrightarrow \mathbf{d}(h \underline{\boldsymbol{u}}) \cdot \overrightarrow{\boldsymbol{\xi}}=\mathbf{d}(h \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{\xi}})$
Hence

$$
\begin{equation*}
\mathcal{L}_{\overrightarrow{\boldsymbol{u}}}(h \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{\xi}})=\frac{\omega}{n} \overrightarrow{\boldsymbol{j}} \cdot \mathbf{d} \Psi \tag{18}
\end{equation*}
$$

There remains to evaluate the term $\vec{j} \cdot \mathrm{~d} \Psi$

Another conserved quantity from the MHD-Euler equation

From the expression (12) for \vec{j} along with the properties $\vec{\xi} \cdot \mathbf{d} \Psi=0$ and $\vec{\chi} \cdot \mathrm{d} \Psi=0$, we get

$$
\begin{equation*}
\vec{j} \cdot \mathbf{d} \Psi=\frac{1}{\mu_{0} \sigma} \epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} I, \vec{\nabla} \Psi)=-\frac{1}{\mu_{0} \sigma} \epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} \Psi, \vec{\nabla} I) \tag{19}
\end{equation*}
$$

Another conserved quantity from the MHD-Euler equation

From the expression (12) for \vec{j} along with the properties $\vec{\xi} \cdot \mathbf{d} \Psi=0$ and $\vec{\chi} \cdot \mathrm{d} \Psi=0$, we get

$$
\begin{equation*}
\vec{j} \cdot \mathbf{d} \Psi=\frac{1}{\mu_{0} \sigma} \epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} I, \vec{\nabla} \Psi)=-\frac{1}{\mu_{0} \sigma} \epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} \Psi, \vec{\nabla} I) \tag{19}
\end{equation*}
$$

Two cases must be considered:
(i) $a=0(\overrightarrow{\boldsymbol{w}}=0)$:
$\vec{u}=\lambda(\vec{\xi}+\Omega \vec{\chi}) \Longrightarrow \mathcal{L}_{\vec{u}}(h \underline{u} \cdot \vec{\xi})=0$.
Eqs. (18) and (19) then yield

$$
\epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} \Psi, \vec{\nabla} I)=0
$$

from which we deduce

$$
\mathbf{d} I \propto \mathbf{d} \Psi
$$

and

$$
I=I(\Psi)
$$

Another conserved quantity from the MHD-Euler equation

(ii) $a \neq 0(\overrightarrow{\boldsymbol{w}} \neq 0)$: then Eq. (15) gives

$$
\boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} \Psi, .)=\frac{1}{a} \underline{w}
$$

and we may write (19) as

$$
\overrightarrow{\boldsymbol{j}} \cdot \mathbf{d} \Psi=-\frac{1}{\mu_{0} a \sigma} \underline{\boldsymbol{w}} \cdot \vec{\nabla} I=-\frac{1}{\mu_{0} a \sigma} \overrightarrow{\boldsymbol{w}} \cdot \mathbf{d} I=-\frac{1}{\mu_{0} a \sigma} \overrightarrow{\boldsymbol{u}} \cdot \mathbf{d} I=-\frac{1}{\mu_{0} a \sigma} \mathcal{L}_{\overrightarrow{\boldsymbol{u}}} I
$$

Thus Eq. (18) becomes, using $K=a n \sigma$,

$$
\mathcal{L}_{\overrightarrow{\boldsymbol{u}}}(h \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{\xi}})=-\frac{\omega}{\mu_{0} K} \mathcal{L}_{\overrightarrow{\boldsymbol{u}}} I
$$

Since $\mathcal{L}_{\vec{u}} \omega=0$ and $\mathcal{L}_{\vec{u}} K=0$, we obtain

$$
\mathcal{L}_{\vec{u}} E=0,
$$

with

$$
\begin{equation*}
E:=-h \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{\xi}}-\frac{\omega I}{\mu_{0} K} \tag{20}
\end{equation*}
$$

Another conserved quantity from the MHD-Euler equation

Similarly, using $\vec{\chi}$ instead of $\vec{\xi}$, we arrive at

$$
\mathcal{L}_{\vec{u}}(h \underline{\boldsymbol{u}} \cdot \vec{\chi})=\frac{1}{\mu_{0} n \sigma} \epsilon(\overrightarrow{\boldsymbol{\xi}}, \vec{\chi}, \vec{\nabla} \Psi, \vec{\nabla} I)
$$

Again we have to distinguish two cases:
(i) $a=0(\overrightarrow{\boldsymbol{w}}=0)$: then $\mathcal{L}_{\overrightarrow{\boldsymbol{u}}}(h \underline{\boldsymbol{u}} \cdot \vec{\chi})=0$ and we recover $I=I(\Psi)$ as above
(ii) $a \neq 0(\vec{w} \neq 0):$ we obtain then

$$
\mathcal{L}_{\vec{u}} L=0,
$$

with

$$
\begin{equation*}
L:=h \underline{\boldsymbol{u}} \cdot \vec{\chi}-\frac{I}{\mu_{0} K} \tag{21}
\end{equation*}
$$

Remark: the conserved quantities D, E and L are not independent since

$$
D=-E+\omega L
$$

Summary

- For purely rotational fluid motion ($a=0$): any scalar quantity which obeys to the spacetime symmetries is conserved along the fluid lines
- For a fluid motion with meridional components $(a \neq 0)$: there exist four scalar quantities which are constant along the fluid lines:

$$
\omega, \quad K, \quad E, \quad L
$$

(D being a combination of ω, E and L)
If there is no electromagnetic field, $E=-h \underline{\boldsymbol{u}} \cdot \vec{\xi}$ and the constancy of E along the fluid lines is the relativistic Bernoulli theorem

Comparison with previous work Bekenstein \& Oron (1978)

The constancy of ω, K, D, E and L along the fluid lines has been shown first by [Bekenstein \& Oron (1978)]
Bekenstein \& Oron have provided coordinate-dependent definitions of ω and K, namely

$$
\omega:=-\frac{F_{01}}{F_{31}} \quad \text { and } \quad K^{-1}:=\frac{F_{31}}{\sqrt{-g} n u^{2}}
$$

Besides, they have obtained expressions for E and L slightly more complicated than (20) and (21), namely

$$
\begin{aligned}
E & =-\left(h+\frac{|b|^{2}}{\mu_{0} n}\right) \underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{\xi}}-\frac{1}{\mu_{0} K}(\underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{k}})(\underline{\boldsymbol{b}} \cdot \overrightarrow{\boldsymbol{\xi}}) \\
L & =\left(h+\frac{|b|^{2}}{\mu_{0} n}\right) \underline{\boldsymbol{u}} \cdot \vec{\chi}+\frac{1}{\mu_{0} K}(\underline{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{k}})(\underline{\boldsymbol{b}} \cdot \overrightarrow{\boldsymbol{\chi}})
\end{aligned}
$$

It can be shown that these expressions are equivalent to (20) and (21)

Bibliography

- J. D. Bekenstein \& E. Oron: New conservation laws in general-relativistic magnetohydrodynamics, Phys. Rev. D 18, 1809 (1978)
- B. Carter: Perfect fluid and magnetic field conservations laws in the theory of black hole accretion rings, in Active Galactic Nuclei, Eds. C. Hazard \& S. Mitton, Cambridge University Press (Cambridge), p. 273 (1979)
- E. Gourgoulhon : An introduction to the theory of rotating relativistic stars, arXiv:1003.5015 (2010)
- E. Gourgoulhon, C. Markakis \& K. Uryu : Magnetohydrodynamics in stationary and axisymmetric spacetimes: a fully covariant approach, in preparation
- A. Lichnerowicz: Relativistic hydrodynamics and magnetohydrodynamics, Benjamin (New York) (1967)

