Compact objects and strange quark stars

Eric Gourgoulhon
Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris Diderot
F-92190 Meudon, France
eric.gourgoulhon@obspm.fr
http://www.luth.obspm.fr/~1uthier/gourgoulhon/

Journées de la division Physique Nucléaire, SFP
Du plasma de quarks et de gluons aux étoiles à neutrons
Nantes, 13-14 May 2008
(1) Compact stars in general relativity
(2) Confronting theoretical models and observations: astrophysics as a lab
(3) The search for strange stars
(4) Gravitational wave observations

Outline

(1) Compact stars in general relativity
(2) Confronting theoretical models and observations: astrophysics as a lab
(3) The search for strange stars
(4) Gravitational wave observations

Density and compactness

Spherical object of mass M and radius R

- density : $\rho=\frac{M}{\frac{4}{3} \pi R^{3}}$
- compactness : $\equiv:=\frac{G M}{c^{2} R} \sim \frac{\left|E_{\text {grav }}\right|}{M c^{2}} \sim \frac{\left|\Phi_{\text {surf }}\right|}{c^{2}} \sim \frac{V_{\text {esc }}^{2}}{c^{2}} \sim \frac{R_{\mathrm{S}}}{R}$
$E_{\text {grav }}=$ gravitational potential energy; $\Phi_{\text {surf }}=$ gravitational potential at the surface; $V_{\text {esc }}=$ escape velocity from surf.; $R \mathrm{~S}=$ Schwarzschild radius

Density and compactness

Spherical object of mass M and radius R

- density : $\rho=\frac{M}{\frac{4}{3} \pi R^{3}}$
- compactness : $\equiv:=\frac{G M}{c^{2} R} \sim \frac{\left|E_{\text {grav }}\right|}{M c^{2}} \sim \frac{\left|\Phi_{\text {surf }}\right|}{c^{2}} \sim \frac{V_{\text {esc }}^{2}}{c^{2}} \sim \frac{R_{\mathrm{S}}}{R}$
$E_{\text {grav }}=$ gravitational potential energy; $\Phi_{\text {surf }}=$ gravitational potential at the surface; $V_{\text {esc }}=$ escape velocity from surf.; $R_{\mathrm{S}}=$ Schwarzschild radius

$$
\equiv=\frac{4 \pi G}{3 c^{2}} \rho R^{2} \Longrightarrow \equiv=6 \times 10^{-10}\left(\frac{R}{\mathrm{~m}}\right)^{2} \text { for } \rho=\rho_{\mathrm{nuc}}=210^{17} \mathrm{~kg} \mathrm{~m}^{-3}
$$

Density and compactness

Spherical object of mass M and radius R

- density : $\rho=\frac{M}{\frac{4}{3} \pi R^{3}}$
- compactness : $\equiv:=\frac{G M}{c^{2} R} \sim \frac{\left|E_{\text {grav }}\right|}{M c^{2}} \sim \frac{\left|\Phi_{\text {surf }}\right|}{c^{2}} \sim \frac{V_{\text {esc }}^{2}}{c^{2}} \sim \frac{R_{\mathrm{S}}}{R}$
$E_{\text {grav }}=$ gravitational potential energy; $\Phi_{\text {surf }}=$ gravitational potential at the surface; $V_{\text {esc }}=$ escape velocity from surf.; $R_{\mathrm{S}}=$ Schwarzschild radius

$$
\equiv=\frac{4 \pi G}{3 c^{2}} \rho R^{2} \Longrightarrow \equiv=6 \times 10^{-10}\left(\frac{R}{\mathrm{~m}}\right)^{2} \text { for } \rho=\rho_{\mathrm{nuc}}=210^{17} \mathrm{~kg} \mathrm{~m}^{-3}
$$

proton

$R=10^{-15} \mathrm{~m} \Rightarrow$ 三~ 10^{-39}
no need for general relativity

Density and compactness

Spherical object of mass M and radius R

- density : $\rho=\frac{M}{\frac{4}{3} \pi R^{3}}$
- compactness : $\equiv:=\frac{G M}{c^{2} R} \sim \frac{\left|E_{\text {grav }}\right|}{M c^{2}} \sim \frac{\left|\Phi_{\text {surf }}\right|}{c^{2}} \sim \frac{V_{\text {esc }}^{2}}{c^{2}} \sim \frac{R_{\mathrm{S}}}{R}$
$E_{\text {grav }}=$ gravitational potential energy; $\Phi_{\text {surf }}=$ gravitational potential at the surface; $V_{\text {esc }}=$ escape velocity from surf.; $R_{\mathrm{S}}=$ Schwarzschild radius

$$
\equiv=\frac{4 \pi G}{3 c^{2}} \rho R^{2} \Longrightarrow \equiv=6 \times 10^{-10}\left(\frac{R}{\mathrm{~m}}\right)^{2} \text { for } \rho=\rho_{\mathrm{nuc}}=210^{17} \mathrm{~kg} \mathrm{~m}^{-3}
$$

proton

$R=10^{-15} \mathrm{~m} \Rightarrow$ 三~ 10^{-39} no need for general relativity

neutron star

$R=10^{4} \mathrm{~m} \Rightarrow$ 三~0.1 general relativity required!

Density and compactness

Spherical object of mass M and radius R

- density : $\rho=\frac{M}{\frac{4}{3} \pi R^{3}}$
- compactness : $\equiv:=\frac{G M}{c^{2} R} \sim \frac{\left|E_{\text {grav }}\right|}{M c^{2}} \sim \frac{\left|\Phi_{\text {surf }}\right|}{c^{2}} \sim \frac{V_{\text {esc }}^{2}}{c^{2}} \sim \frac{R_{\mathrm{S}}}{R}$
$E_{\text {grav }}=$ gravitational potential energy; $\Phi_{\text {surf }}=$ gravitational potential at the surface; $V_{\text {esc }}=$ escape velocity from surf.; $R_{\mathrm{S}}=$ Schwarzschild radius

$$
\equiv=\frac{4 \pi G}{3 c^{2}} \rho R^{2} \Longrightarrow \equiv=6 \times 10^{-10}\left(\frac{R}{\mathrm{~m}}\right)^{2} \text { for } \rho=\rho_{\mathrm{nuc}}=210^{17} \mathrm{~kg} \mathrm{~m}^{-3}
$$

proton

$R=10^{-15} \mathrm{~m} \Rightarrow$ 三~ 10^{-39} no need for general relativity

neutron star

$$
R=10^{4} \mathrm{~m} \Rightarrow \equiv \sim 0.1
$$

general relativity required!

Remark: $\bar{E}_{\text {Earth }} \sim 10^{-10} \bar{\Xi}_{\text {Sun }} \sim 10^{-6} \quad \Xi_{\text {white dwarf }} \sim 10^{-4} \quad \Xi_{\text {black hole }} \sim 1$

Einstein equation

$$
\boldsymbol{R}-\frac{1}{2} R \boldsymbol{g}=\frac{8 \pi G}{c^{4}} \boldsymbol{T}
$$

- $g=$ metric tensor on the 4-dimensional spacetime manifold
- $\boldsymbol{R}=$ Ricci tensor ; $R=\operatorname{tr}_{g} \boldsymbol{R}$
- $T=$ matter stress-energy tensor perfect fluid : $\boldsymbol{T}=(e+p) \boldsymbol{u} \otimes \boldsymbol{u}+p \boldsymbol{g}$ ($e=$ proper energy density, $p=$ pressure, $u=$ fluid 4-velocity)

Einstein equation

$$
\boldsymbol{R}-\frac{1}{2} R \boldsymbol{g}=\frac{8 \pi G}{c^{4}} \boldsymbol{T}
$$

- $g=$ metric tensor on the 4-dimensional spacetime manifold \mathscr{M}
- $\boldsymbol{R}=$ Ricci tensor ; $R=\operatorname{tr}_{g} \boldsymbol{R}$
- $T=$ matter stress-energy tensor perfect fluid : $\boldsymbol{T}=(e+p) \boldsymbol{u} \otimes \boldsymbol{u}+p \boldsymbol{g}(e=$ proper energy density, $p=$ pressure, $u=$ fluid 4 -velocity)
Coordinate system $\left(x^{\alpha}\right)$ on $\mathscr{M} \Rightarrow$ Einstein equation results in a system of 10 coupled non-linear second order partial differential equations for the 10 coefficients $g_{\alpha \beta}$ of the metric tensor

$$
\begin{gathered}
R_{\alpha \beta}=-\frac{1}{2} g^{\mu \nu}\left(\frac{\partial^{2} g_{\alpha \beta}}{\partial x^{\mu} \partial x^{\nu}}+\frac{\partial^{2} g_{\mu \nu}}{\partial x^{\alpha} \partial x^{\beta}}-\frac{\partial^{2} g_{\nu \beta}}{\partial x^{\alpha} \partial x^{\mu}}-\frac{\partial^{2} g_{\alpha \nu}}{\partial x^{\beta} \partial x^{\mu}}\right)+\mathcal{Q}_{\alpha \beta}\left(g_{\mu \nu}, \frac{\partial g_{\mu \nu}}{\partial x^{\rho}}\right) \\
R=g^{\mu \nu} R_{\mu \nu} \quad T_{\alpha \beta}=(e+p) u_{\alpha} u_{\beta}+p g_{\alpha \beta}
\end{gathered}
$$

Stationary rotating star

- stationarity: \exists coordinates $\left(x^{\alpha}\right)$ on \mathscr{M} such that $\frac{\partial g_{\alpha \beta}}{\partial x^{0}}=0$ and $k:=\frac{\partial}{\partial x^{0}}$ asymptotically timelike
- axisymmetry: \exists coordinates $\left(x^{\alpha}\right)$ on \mathscr{M} such that $\frac{\partial g_{\alpha \beta}}{\partial x^{3}}=0, \boldsymbol{m}:=\frac{\partial}{\partial x^{3}}$ spacelike, vanishes on a 2-surface (rotation axis) and has closed orbits k and m are called Killing vectors associated with resp. stationarity and axisymmetry
Stationarity + axisymmetry $\Rightarrow \exists$ coord. $\left(x^{\alpha}\right)=(t, r, \theta, \varphi)$ on \mathscr{M} such that

$$
g_{\alpha \beta}=g_{\alpha \beta}(r, \theta)
$$

Stationary rotating star

- stationarity: \exists coordinates $\left(x^{\alpha}\right)$ on \mathscr{M} such that $\frac{\partial g_{\alpha \beta}}{\partial x^{0}}=0$ and $k:=\frac{\partial}{\partial x^{0}}$ asymptotically timelike
- axisymmetry: \exists coordinates $\left(x^{\alpha}\right)$ on \mathscr{M} such that $\frac{\partial g_{\alpha \beta}}{\partial x^{3}}=0, \boldsymbol{m}:=\frac{\partial}{\partial x^{3}}$ spacelike, vanishes on a 2-surface (rotation axis) and has closed orbits k and m are called Killing vectors associated with resp. stationarity and axisymmetry
Stationarity + axisymmetry $\Rightarrow \exists$ coord. $\left(x^{\alpha}\right)=(t, r, \theta, \varphi)$ on \mathscr{M} such that

$$
g_{\alpha \beta}=g_{\alpha \beta}(r, \theta)
$$

Another important simplification: Papapetrou theorem:
if $\boldsymbol{u}=u^{0} \boldsymbol{k}+u^{\varphi} \boldsymbol{m}$ (circular motion), then \exists coordinates $\left(x^{\alpha}\right)=(t, r, \theta, \varphi)$ on
\mathscr{M} such that $g_{t r}=0, g_{t \theta}=0, g_{r \theta}=0, g_{r \varphi}=0, g_{\theta \varphi}=0$, i.e.

$$
\begin{gathered}
g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-N^{2} d t^{2}+A^{2}\left(d r^{2}+r^{2} d \theta^{2}\right)+B^{2} r^{2} \sin ^{2} \theta\left(d \varphi+\beta^{\varphi} d t\right)^{2} \\
N=N(r, \theta), \quad \begin{array}{l}
\beta^{\varphi}=\beta^{\varphi}(r, \theta), \quad A=A(r, \theta), \quad B=B(r, \theta) \\
\text { (quasi-isotropic coordinates) }
\end{array}
\end{gathered}
$$

Stationary rotating star in Q1 coordinates

$$
\begin{gathered}
g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-N^{2} c^{2} d t^{2}+A^{2}\left(d r^{2}+r^{2} d \theta^{2}\right)+B^{2} r^{2} \sin ^{2} \theta\left(d \varphi+\beta^{\varphi} d t\right)^{2} \\
N=N(r, \theta), \quad \beta^{\varphi}=\beta^{\varphi}(r, \theta), \quad A=A(r, \theta), \quad B=B(r, \theta)
\end{gathered}
$$

Important limits:

- Vanishing gravitational field : $N \rightarrow 1, \beta^{\varphi} \rightarrow 0, A \rightarrow 1, B \rightarrow 1$
$g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-c^{2} d t^{2}+d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} d \varphi^{2}$
(Minkowski metric in spherical coordinates)

Stationary rotating star in Q1 coordinates

$$
\begin{gathered}
g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-N^{2} c^{2} d t^{2}+A^{2}\left(d r^{2}+r^{2} d \theta^{2}\right)+B^{2} r^{2} \sin ^{2} \theta\left(d \varphi+\beta^{\varphi} d t\right)^{2} \\
N=N(r, \theta), \quad \beta^{\varphi}=\beta^{\varphi}(r, \theta), \quad A=A(r, \theta), \quad B=B(r, \theta)
\end{gathered}
$$

Important limits:

- Vanishing gravitational field : $N \rightarrow 1, \beta^{\varphi} \rightarrow 0, A \rightarrow 1, B \rightarrow 1$
$g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-c^{2} d t^{2}+d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} d \varphi^{2}$
(Minkowski metric in spherical coordinates)
- Spherical symmetry : $\beta^{\varphi} \rightarrow 0, A-B \rightarrow 0$

$$
g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-N^{2} c^{2} d t^{2}+A^{2}\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}\right)
$$

Stationary rotating star in QI coordinates

$$
g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-N^{2} c^{2} d t^{2}+A^{2}\left(d r^{2}+r^{2} d \theta^{2}\right)+B^{2} r^{2} \sin ^{2} \theta\left(d \varphi+\beta^{\varphi} d t\right)^{2}
$$

$$
N=N(r, \theta), \quad \beta^{\varphi}=\beta^{\varphi}(r, \theta), \quad A=A(r, \theta), \quad B=B(r, \theta)
$$

Important limits:

- Vanishing gravitational field : $N \rightarrow 1, \beta^{\varphi} \rightarrow 0, A \rightarrow 1, B \rightarrow 1$

$$
g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-c^{2} d t^{2}+d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} d \varphi^{2}
$$

(Minkowski metric in spherical coordinates)

- Spherical symmetry : $\beta^{\varphi} \rightarrow 0, A-B \rightarrow 0$

$$
g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-N^{2} c^{2} d t^{2}+A^{2}\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}\right)
$$

- Weak gravitational field:

$$
g_{\alpha \beta} d x^{\alpha} d x^{\beta}=-\left(1+2 \frac{\Phi}{c^{2}}\right) c^{2} d t^{2}+\left(1-2 \frac{\Phi}{c^{2}}\right)\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}\right)
$$

$\Phi \sim$ Newtonian gravitational potential; $\left|\Phi_{\text {surf }}\right| / c^{2}=$ 三 (compactness)

Einstein equations for a stationary rotating star

In QI coord., the Einstein equations reduce to 4 elliptic equations:

$$
\begin{aligned}
& \Delta_{3} \nu=4 \pi A^{2}\left(E+S^{i}{ }_{i}\right)+\frac{B^{2} r^{2} \sin ^{2} \theta}{2 N^{2}}\left(\partial \beta^{\varphi}\right)^{2}-\partial \nu \partial(\nu+\ln B) \\
& \tilde{\Delta}_{3}\left(\beta^{\varphi} r \sin \theta\right)=16 \pi \frac{N A^{2}}{B^{2}} \frac{J_{\varphi}}{r \sin \theta}-r \sin \theta \partial \beta^{\varphi} \partial(3 \ln B-\nu) \\
& \Delta_{2}[(N B-1) r \sin \theta]=8 \pi N A^{2} B\left(S^{r}{ }_{r}+S^{\theta}{ }_{\theta}\right) r \sin \theta \\
& \Delta_{2} \zeta=8 \pi A^{2} S_{\varphi}^{\varphi}+\frac{3 B^{2} r^{2} \sin ^{2} \theta}{4 N^{2}}\left(\partial \beta^{\varphi}\right)^{2}-(\partial \nu)^{2}
\end{aligned}
$$

with the abreviations: $\nu:=\ln N, \quad \zeta:=\ln (A N)$
$\Delta_{2}:=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \quad \Delta_{3}:=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{r^{2} \tan \theta} \frac{\partial}{\partial \theta}$
$\tilde{\Delta}_{3}:=\Delta_{3}-\frac{1}{r^{2} \sin ^{2} \theta} \quad \partial a \partial b:=\frac{\partial a}{\partial r} \frac{\partial b}{\partial r}+\frac{1}{r^{2}} \frac{\partial a}{\partial \theta} \frac{\partial b}{\partial \theta}$

Fluid equations

Energy momentum conservation : $\boldsymbol{\nabla} \cdot \boldsymbol{T}=0$
Circular motion : $\boldsymbol{u}=\lambda \ell$ with $\ell=\boldsymbol{k}+\Omega \boldsymbol{m}, \Omega=$ angular rotation velocity Rigid rotation : $\Omega=$ const $\Rightarrow \ell$ Killing vector $\Rightarrow \exists$ a first integral to $\boldsymbol{\nabla} \cdot \boldsymbol{T}=0$:

$$
\boldsymbol{\ell} \cdot(h \boldsymbol{u})=\mathrm{const}
$$

with $h:=\frac{e+p}{m_{\mathrm{B}} n c^{2}}$ (specific enthalpy).
Newtonian limit : $(h-1)+\Phi-\frac{1}{2}(\Omega \times r)^{2}=$ const

Fluid equations

Energy momentum conservation : $\boldsymbol{\nabla} \cdot \boldsymbol{T}=0$
Circular motion : $\boldsymbol{u}=\lambda \ell$ with $\ell=\boldsymbol{k}+\Omega \boldsymbol{m}, \Omega=$ angular rotation velocity
Rigid rotation : $\Omega=$ const $\Rightarrow \ell$ Killing vector $\Rightarrow \exists$ a first integral to $\boldsymbol{\nabla} \cdot \boldsymbol{T}=0$:

$$
\boldsymbol{\ell} \cdot(h \boldsymbol{u})=\text { const }
$$

with $h:=\frac{e+p}{m_{\mathrm{B}} n c^{2}}$ (specific enthalpy).
Newtonian limit : $(h-1)+\Phi-\frac{1}{2}(\Omega \times \boldsymbol{r})^{2}=\mathrm{const}$
Equation of state (EOS): cold dense matter: $e=e(h), \quad p=p(h), \quad n=n(h)$

Fluid equations

Energy momentum conservation: $\boldsymbol{\nabla} \cdot \boldsymbol{T}=0$
Circular motion : $\boldsymbol{u}=\lambda \ell$ with $\ell=\boldsymbol{k}+\Omega \boldsymbol{m}, \Omega=$ angular rotation velocity Rigid rotation : $\Omega=$ const $\Rightarrow \ell$ Killing vector $\Rightarrow \exists$ a first integral to $\boldsymbol{\nabla} \cdot \boldsymbol{T}=0$:

$$
\boldsymbol{\ell} \cdot(h \boldsymbol{u})=\text { const }
$$

with $h:=\frac{e+p}{m_{\mathrm{B}} n c^{2}}$ (specific enthalpy).
Newtonian limit : $(h-1)+\Phi-\frac{1}{2}(\Omega \times \boldsymbol{r})^{2}=\mathrm{const}$

Equation of state (EOS): cold dense matter: $e=e(h), \quad p=p(h), \quad n=n(h)$
closed system of equations
At fixed EOS, a model is fully specified by two parameters, e.g. central density and Ω.

Computational code

Framework: RotStar code based on Lorene C++ library http://www.lorene.obspm.fr/

Resolution of Einstein equations for stationary axisymmetric rotating stars
Numerical technique: spectral methods \Rightarrow high accuracy
Microphysics input: equation of state (EOS)

Examples of numerical results

Rapidly rotating model

Enthalpy isocontours ($\mathbf{f}=1 \mathrm{kHz}$)

Maximum rotation rate (Keplerian limit)

Enthalpy isocontours Keplerian frequency

Isocontour of specific enthalpy h :
$h<1 \Longleftrightarrow$ stellar exterior (dashed lines); $h=1 \Longleftrightarrow$ stellar surface (thick solid line) $h>1 \Longleftrightarrow$ stellar interior (solid line)

Global quantities

- M : gravitational mass $\left({ }^{*}\right)$
- M_{B} : baryon mass $=m_{\mathrm{B}} \times$ total baryon number
- J : total angular momentum (about the rotation axis) (*)
- Ω : angular rotation frequency (as seen from infinity)
- R : circumferential radius of the equator
- $z_{\mathrm{p}}, z_{\mathrm{eq}}^{ \pm}$: redshifts from pole, and equator (forward and backward) $\left(^{*}\right)$
- $f_{\text {isco }}$: orbital frequency at the innermost stable circular orbit (*)
$\left(^{*}\right)=$ measurable quantities

Confronting theoretical models and observations: astrophvsics as a lab
Outline
(1) Compact stars in general relativity
(2) Confronting theoretical models and observations: astrophysics as a lab
(3) The search for strange stars

4 Gravitational wave observations

Confronting theoretical models and observations: astrophvsics as a lab

Our (poor) knowledge of matter at supernuclear densities

Internal structure of compact stars

[Weber, J. Phys. G 27, 465 (2001)]

Confronting theoretical models and observations: astrophysics as a lab

Large discrepancies in theoretical models...

Confronting theoretical models and observations: astrophysics as a lab

Measured neutron star masses

[Lattimer \& Prakash, astro-ph/0612440 (2006)]

Measured rotation velocity

\leftarrow Period derivative \dot{P} vs period P for radio pulsars
[Lorimer, Liv. Rev. Relat. 8, 7 (2005)]

Fastest pulsar known to date: PSR J1748-2446ad $P=1.396 \mathrm{~ms} \quad f=716 \mathrm{~Hz}$
[Hessels et al., Science 311, 1901 (2006)]

Measured rotation velocity

\leftarrow Period derivative \dot{P} vs period P for radio pulsars
[Lorimer, Liv. Rev. Relat. 8, 7 (2005)]

Fastest pulsar known to date: PSR J1748-2446ad $P=1.396 \mathrm{~ms} \quad f=716 \mathrm{~Hz}$
[Hessels et al., Science 311, 1901 (2006)]

Discovery of an oscillation frequency of $f=1122 \mathrm{~Hz}$ in a X-ray burst from X-ray transient XTE J1739-285 [Kaaret et al., ApJL 657, 97 (2007)]
Spin frequency? This would imply $P=0.89 \mathrm{~ms}$!
Not confirmed yet!

Confronting theoretical models and observations: astrophysics as a lab

Impact of the discovery of very high rotation frequencies

Mass-radius relation at $f=1122 \mathrm{~Hz}$

[Bejger, Haensel \& Zdunik, A\&A 464, L49 (2007)]

Confronting theoretical models and observations: astrophvsics as a lab

Impact of the discovery of very high rotation frequencies

Mass-radius relation at $f=1122 \mathrm{~Hz}$

[Bejger, Haensel \& Zdunik, A\&A 464, L49 (2007)]

Mass-radius relation at fixed f

[Zdunik, Haensel, Bejger \& Gourgoulhon, arXiv:0710.5010]

Confronting theoretical models and observations: astrophvsics as a lab

Measured compactness (M/R)

Observation (XMM-Newton) of iron and oxygen spectral lines from the compact star in the low-mass X-ray binary EXO 07748-676

[Cottam, Paerels \& Mendez, Nature 420, 51 (2002)]
\Rightarrow gravitational redshift: $z=\frac{\lambda_{\text {obs }}-\lambda}{\lambda}=0.35$ (NB: $z_{\text {Doppler }} \sim 10^{-3}$)

$$
z=\left(1-2 \overline{ } \overline{)^{-1 / 2}-1=0.35 \Longrightarrow \equiv=\frac{G M}{c^{2} R}=0.23}\right.
$$

Unfortunately we know neither M nor R for this system...

Confronting theoretical models and observations: astrophvsics as a lab

Search for an indicator of hyperonization of matter $(1 / 2)$

Hyperon = baryon (i.e. hadron + fermion) made of 3 quarks, with at least one strange quark:

- $\Lambda_{0}=u d s$
- $\Sigma^{-}=\mathrm{dds}$
- $\Xi^{0}=$ uss
- etc...

Should appear at high density
($\rho>2 \rho_{\text {nuc }}$)
\Rightarrow EOS softening
$\mathrm{N} 1=\mathrm{np}, \mathrm{N} 1 \mathrm{H} 1, \mathrm{~N} 2 \mathrm{H} 1=\mathrm{np} \wedge \Sigma$,
$\mathrm{N} 1 \mathrm{H} 2, \mathrm{~N} 2 \mathrm{H} 2=\mathrm{np} \wedge \Sigma \equiv$
Balberg \& Gal (1997)

Confronting theoretical models and observations: astrophvsics as a lab

Search for an indicator of hyperonization of matter (2/2)

Hyperon softening of the $\mathrm{EOS} \Rightarrow$ back-bending : spin-up by angular momentum loss

Detectability: pulsar with $\dot{P}<0$
[Zdunik, Haensel, Gourgoulhon \& Bejger, A\&A 416, 1013 (2004)]

Outline

(1) Compact stars in general relativity
(2) Confronting theoretical models and observations: astrophysics as a lab
(3) The search for strange stars

4 Gravitational wave observations

A short history of strange stars

- 1970: N. Itoh considered compact stars made of free degenerate Fermi gas of u, d and s quarks of equal mass $m_{q}=10 \mathrm{GeV} / \mathrm{c}^{2}$ (not self-bound, vanishing density at the surface) $\Rightarrow M_{\max }=10^{-3} M_{\odot}$.
- 1971: A.R. Bodmer: the ground state of nuclear matter may be a state of deconfined quarks.
- 1984: E. Witten reformulated (independently) this idea, and contemplated the possibility that neutron stars are in fact strange quark stars.
- 1986: first detailed numerical models of static strange stars by P. Haensel, J.L. Zdunik \& R. Schaeffer, as well as C. Alcock, E. Farhi \& A.V. Olinto.
- 1989: announcement of a half-millisecond pulsar in SN 1987A
- 1996: discovery of high frequency QPO in low-mass X-ray binaries
- 2002: NASA announcement of "discovery" of two strange stars

Basic properties of strange stars

Simplest models: improved MIT bag model $\Rightarrow 3$-parameter EOS for SQM matter:
B : bag constant, m_{s} mass of s quark, α_{s} : QCD structure constant ($\alpha_{\mathrm{s}}=g^{2} /(4 \pi), g$: QCD coupling constant)

- finite density at the surface (zero pressure)
- for small mass (weak gravity): almost constant density profile $\varepsilon \sim 4 B$
- more compact than neutron stars
\leftarrow figures from [Glendenning (1997)]

Mass-radius relation

From strangelets to strange stars

[Gondek-Rosińska, Bejger, Bulik, Gourgoulhon, Haensel, Limousin, Taniguchi \& Zdunik, ASR 39, 271 (2007)]

Rapidly rotating strange stars

Enthalpy

[Gourgoulhon, Haensel, Livine, Paluch, Bonazzola \& Marck, A\&A 349, 851 (1999)]
Minimal rotation period (for $m_{\mathrm{s}}=0$ and $\alpha_{\mathrm{s}}=0$): $P_{\min }=0.634 B_{60}{ }^{-1 / 2} \mathrm{~ms}$

Models with solid crust

EOS: $B=56 \mathrm{MeV} \mathrm{fm}^{-3}, \alpha_{\mathrm{s}}=0.2, m_{\mathrm{s}}=200 \mathrm{MeV} c^{-2}$ star: $M_{\mathrm{B}}=1.63 M_{\odot}, f=1210 \mathrm{~Hz}$.
[Zdunik, Haensel, Gourgoulhon, A\&A 372, 535 (2001)]

Recent studies of quark matter

- Study of quark matter (u, d, s) in color-flavor-locked (CFL) states \Rightarrow No stable configuration with uniquely CFL matter
[Buballa, Neumann, Oertel \& Shovkoy, PLB 595, 36 (2004)]
- Goldstone bosons in CFL states [Werth, Buballa \& Oertel, PPNP 59, 308 (2007)], [Kleinhaus, Buballa, Nickel \& Oertel, PRD 76, 074024 (2007)]
- Color superconductivity effects on the properties of a strange star: electron atmosphere, transport properties
[Oertel \& Urban, PRD 77, 074015 (2008)]

The case of RX J1856.5-3754

- Discovered as an X-ray source with ROSAT in 1996 [Walter et al., Nature 379, 233 (1996)]

Best fit black body $k T_{\infty}=57 \pm 1 \mathrm{eV}$ $\Longleftrightarrow T_{\infty} \simeq 6.6 \times 10^{5} \mathrm{~K}$
In front of molecular cloud R Coronae Australis $\Rightarrow d \lesssim 130-170 \mathrm{pc}$

- Optical counterpart discovered in 1997 with HST [Walter \& Matthews, Nature 389, 358 (1997)]
magnitude $V=25.6$
Optical flux 2 to 3 times larger than the tail of the 57 eV black body

RX J1856.5-3754 observed by VLT

VLT Kueyen + FORS2 (field: $80^{\prime \prime} \times 80^{\prime \prime}$)
\rightarrow bowshock (heated interstellar gas by accelerated e^{-}and p from the star ?) [ESO 2000]

Distance to RX J1856.5-3754

- First measure of proper motion and parallax (erroneous) [Walter, ApJ 549, 433 (2001)]
\Rightarrow erroneous $d=61 \pm 9 \mathrm{pc}$
- Correct determinations of parallax:
$d=140 \pm 40$ pc [Kaplan, van Kerkwijk,
Anderson, ApJ 571, 447 (2002)]
$d=117 \pm 12 \mathrm{pc}[$ Walter \& Lattimer, ApJ 576,
L145 (2002)]

RX J1856.5-3754 spectrum

Chandra image of RX J1856.5-3754

Spectrum from Chandra, EUVE and HST data:
-- - - : black body best fit to Chandra data $k T_{\infty}=63 \mathrm{eV}$
[Burwitz et al., A\&A 379, L35 (2001)]
.........: 63 eV black body +15 eV black body with $R_{\infty}(15 \mathrm{eV})=5 R_{\infty}(63 \mathrm{eV})$
[Walter \& Lattimer, ApJ 576, L145 (2002)]

Is RX J1856.5-3754 a strange star ?

The small "radius" issue:
Assuming black body emission from the entire surface :

$$
R_{\infty}=\frac{d}{T_{\infty}^{2}}\left(\frac{f_{\infty}}{\sigma}\right)^{1 / 2}
$$

$$
R_{\infty}=\left(1-\frac{2 G M}{c^{2} R}\right)^{-1 / 2} R>R
$$

- Distance of Walter \& Lattimer 2002 : $d=117 \mathrm{pc} \Rightarrow R_{\infty}=4.8 \mathrm{~km}$
- Distance of Kaplan et al. 2002 : $d=140 \mathrm{pc} \Rightarrow R_{\infty}=5.8 \mathrm{~km}$

Is RX J1856.5-3754 a strange star ?

The small "radius" issue:
Assuming black body emission from the entire surface :

$$
R_{\infty}=\frac{d}{T_{\infty}^{2}}\left(\frac{f_{\infty}}{\sigma}\right)^{1 / 2}
$$

$$
R_{\infty}=\left(1-\frac{2 G M}{c^{2} R}\right)^{-1 / 2} R>R
$$

- Distance of Walter \& Lattimer 2002 : $d=117 \mathrm{pc} \Rightarrow R_{\infty}=4.8 \mathrm{~km}$
- Distance of Kaplan et al. 2002 : $d=140 \mathrm{pc} \Rightarrow R_{\infty}=5.8 \mathrm{~km}$

Recent discovery of pulsations of period $P=7.055$ s from XMM-Newton observations (with a pulsed fraction of only 1.2\%)
[Tiengo \& Mereghetti, ApJ 657, L101 (2007)]
\Rightarrow Hot spot model favored today

Outline

(1) Compact stars in general relativity
(2) Confronting theoretical models and observations: astrophysics as a lab
(3) The search for strange stars
(4) Gravitational wave observations

Observing compact stars via gravitational waves

LIGO: USA, Louisiana

LIGO: USA, Washington

VIRGO: France/Italy (Pisa)

Michelson-type lasers VIRGO (3 km) and LIGO (4 km) \Rightarrow they are currently acquiring data.

Constraints on EOS from gravitational radiation (1/2)

GW from inspiraling binary
neutrons stars
Primary target for VIRGO /
LIGO
\leftarrow Irrotational binary configurations close to mass-shedding limit for GlendNH3, AkmaIPR and BPAL12 EOS
[Bejger, Gondek-Rosińska, Gourgoulhon, Haensel, Taniguchi \& Zdunik, A\&A 431, 297 (2005)]

Constraints on EOS from gravitational radiation (2/2)

3 nuclear matter EOS
3 strange matter EOS

Inspiraling sequences

[Bejger, Gondek-Rosińska, Gourgoulhon, Haensel, Taniguchi \& Zdunik, A\&A 431, 297 (2005)]
[Limousin, Gondek-Rosińska \& Gourgoulhon, PRD 71, 064012 (2005)]
[Gondek-Rosińska, Bejger, Bulik, Gourgoulhon, Haensel, Limousin, Taniguchi \& Zdunik, ASR 39, 271 (2007)]

