The black hole no-hair theorem

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) Observatoire de Paris - PSL, CNRS, Université Paris Cité, Meudon, France

and

Laboratoire de Mathématiques de Bretagne Atlantique CNRS, Université de Bretagne Occidentale, Brest, France

https://luth.obspm.fr/~luthier/gourgoulhon

GRAVITY+ Workshop: Centers of Galaxies Observatoire de Paris, Meudon 19-21 November 2024

1/22

The no-hair theorem

2 Theoretical options to evade the no-hair theorem

Itesting the no-hair theorem with GRAVITY observations

Outline

The no-hair theorem

2 Theoretical options to evade the no-hair theorem

3) Testing the no-hair theorem with GRAVITY observations

The no-hair theorem: a major achievement in general relativity

Black hole uniqueness theorem ("no-hair")

(Dorochkevitch, Novikov & Zeldovitch 1965, Israel 1967, Carter 1971, Hawking 1972, Robinson 1975)

Within 4-dimensional general relativity and modulo some "reasonable" hypotheses (to be discussed below), any isolated *stationary* black hole is a Kerr-Newman black hole, which is entirely described by only three numbers:

- $\bullet\,$ the mass M
- \bullet the angular momentum J
- ${\ensuremath{\, \bullet \,}}$ the electric charge Q

Special cases:

- Q = 0: Kerr BH (1963)
- J = 0: Reissner-Nordström BH (1916)
- Q = 0, J = 0: Schwarzschild BH (1915)
- \implies "A black hole has no hair" (John A. Wheeler, 1971)

The Kerr black hole

Kerr solution to the vacuum Einstein equation (1963)

Expression in Boyer-Lindquist coordinates (t, r, θ, φ) :

$$ds^{2} = -\left(1 - \frac{2Mr}{\rho^{2}}\right) dt^{2} - \frac{4Mar\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} + \left(r^{2} + \frac{a^{2}}{\rho^{2}} + \frac{2Ma^{2}r\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\varphi^{2}$$

where ${m a}:={m J}/{m M}$, $ho^2:=r^2+{m a}^2\cos^2 heta$, $\Delta:=r^2-2{m M}r+{m a}^2$

- → spacetime manifold: $\mathcal{M} = \mathbb{R}^2 \times \mathbb{S}^2 \setminus \{r = 0 \& \theta = \pi/2\};$ *NB*: $r \in (-\infty, \infty)$
- → describes a rotating black hole with the event horizon \mathscr{H} located at $r = r_+ := M + \sqrt{M^2 a^2}$ (in c = 1 and G = 1 units)

The no-hair theorem

The Kerr black hole

View of a section t = const of the $\mathbb{R}^2 \times \mathbb{S}^2$ manifold in O'Neill coord. (R, θ, φ) with $R := e^r$

Physical meaning of the two parameters M and J

Mass M: not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
 → measurable from the orbital period of a test particle in remote circular orbit around the black hole (Kepler's third law)

7/22

Physical meaning of the two parameters M and J

- Mass M: not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
 → measurable from the orbital period of a test particle in remote circular orbit around the black hole (Kepler's third law)
- Angular momentum J = aM: characterizes the *gravito-magnetic* part of the gravitational field

 \rightarrow measurable from the precession of a gyroscope orbiting the black hole (Lense-Thirring effect)

The no-hair theorem: a precise mathematical statement (for Q = 0)

Let $(\mathscr{M},\boldsymbol{g})$ be a spacetime (Lorentzian manifold) that

- is 4-dimensional,
- is asymptotically flat,
- is stationary,
- obeys the vacuum Einstein equation: $\mathbf{Ric}(\boldsymbol{g})=0$,
- contains a black hole with a connected regular horizon that is either (i) rotating or (ii) non-rotating and non-degenerate,
- is analytic,
- has no closed timelike curve in the domain of outer communications (DOC) (= black hole exterior).

Then (\mathcal{M}, g) has a DOC that is isometric to the DOC of Kerr spacetime.

Discussion: weak points in the theorem

From an (astro)physical point of view, it would be more satisfactory if the last two hypotheses of the theorem would appear as *consequences*, not as *premises*:

- \bullet the Lorentzian manifold $(\mathscr{M}, \boldsymbol{g})$ is analytic
- there is no closed timelike curve in the black hole exterior.

Analyticity hypothesis

A function $f : I \subset \mathbb{R} \to \mathbb{R}$ is (real) analytic iff for each $x_0 \in I$, there exists a neighborhood of x_0 in which f(x) is expressible as a convergent series:

$$f(x) = \sum_{n=0}^{+\infty} a_n (x - x_0)^n$$

NB: f analytic \implies f smooth (C^{∞}), but the converse is false (for real functions).

Analyticity is a very rigid concept and in physics, one usually considers smooth fields, not analytic ones.

To date, the analyticity hypothesis has been removed from the no-hair theorem only under the assumption of slow rotation [Alexakis, Ionescu & Klainerman, Duke Math. J. **163**, 2603 (2014)]

Hypothesis of no closed timelike curves in the BH exterior

...sounds a "reasonable" requirement: who wants to break causality in the black hole exterior? However, general relativity by itself offers no guarantee against causality violation. So it is not superfluous to state the no-CTC hypothesis if it is required in the proof.

An example of causality violation in general relativity comes from the Kerr spacetime itself! In its *deep interior* (probably unstable), it contains the Carter time machine.

 \leftarrow meridional cut of Kerr spacetime with $a=0.9\,M$

- grey area: ergoregion
- red dots: ring singularity
- yellow area: Carter time machine

The no-hair theorem

2 Theoretical options to evade the no-hair theorem

3) Testing the no-hair theorem with GRAVITY observations

Black holes with scalar hair in general relativity

Herdeiro & Radu discovery (2014)

A black hole can have a complex scalar hair

Stationary axisymmetric configurations with a massive complex scalar field Φ minimally coupled to general relativity

$$\Phi(t, r, \theta, \varphi) = \Phi_0(r, \theta) e^{i(\omega t + k\varphi)}$$

 $\omega = k\Omega_{\rm H}, \quad k \in \mathbb{N}$

 \Longrightarrow the energy-momentum tensor of Φ is independent from t

 \implies stationary solution g to the Einstein equation, distinct from the Kerr metric

[Herdeiro & Radu, PRL 112, 221101 (2014)]

Difference in the images of an accretion torus

[[1] Vincent, Gourgoulhon, Herdeiro & Radu, Phys. Rev. D **94**, 084045 (2016)]

[[2] Vincent, Meliani, Grandclément, Gourgoulhon & Straub, Class. Quantum Grav. 33, 105015 (2016)]

E. Gourgoulhon (LUTH)

The black hole no-hair theorem

Meudon, 19 Nov. 2024

14 / 22

No-hair theorem in scalar-tensor theories

Scalar-tensor theories

Modified gravity theories involving a (real) scalar field ϕ in addition to the metric tensor g, with a non-minimal coupling.

Basically the no-hair theorem remains true for a large class of scalar tensor theories (including Brans-Dicke, as shown by Hawking in 1972), provided that ϕ is stationary $\left(\frac{\partial \phi}{\partial t} = 0\right)$, as g: Kerr metric is the only black hole solution. In particular, BHs have no scalar hair.

See [Capuano, Santoni & Barausse, PRD 108, 064058 (2023)] for recent results.

No-hair theorem not obeyed by

- Einstein-scalar-Gauss-Bonnet gravity
- scalar-tensor theories with $\phi(t,r,\theta) = qt + \psi(r,\theta)$ and action depending only on $\nabla_{\alpha}\phi$

Cf. Nicolas Lecœur's recent thesis (2024) for a review [arXiv:2406.11095]

15 / 22

General relativity in dimension higher than 4

For spacetime dimension n > 4, Kerr solution generalizes to Myers-Perry solution (1986) However, the no-hair theorem does not hold for n > 4: Myers-Perry BHs are not the only stationary BH solution to the vacuum Einstein equation.

General relativity in dimension higher than 4

For spacetime dimension n > 4, Kerr solution generalizes to Myers-Perry solution (1986) However, the no-hair theorem does not hold for n > 4: Myers-Perry BHs are not the only stationary BH solution to the vacuum Einstein equation.

BH solutions for n=5

Myers-Perry BHs are only those with an event horizon having cross-sections of \mathbb{S}^3 topology (fig. a), but there exist $\mathbb{S}^2\times\mathbb{S}^1$ topologies (figs. b and c), as well as disconnected topologies (figs. d, e and f).

Fig. 10.11 Schematical illustration of 5D black objects: (a) MP black hole; (b) Fat black ring; (c) Thin black ring; (d) Black Saturn; (e) Di-ring; (f) Black Saturn with several rings. [Frolov & Zelnikov: Introduction to Black Hole Physics, Oxford Univ. Press (2011)]

E. Gourgoulhon (LUTH)

The black hole no-hair theorem

Meudon, 19 Nov. 2024

Bicycling black rings in dimension 5

[Elvang & Rodriguez, JHEP04(2008)045]

17 / 22

Outline

The no-hair theorem

2 Theoretical options to evade the no-hair theorem

Itesting the no-hair theorem with GRAVITY observations

The Kerr metric is specific to black holes

Spherically symmetric (non-rotating) bodies:

Birkhoff theorem

Within 4-dimensional general relativity, the spacetime outside any spherically symmetric body is described by Schwarzschild metric

 \implies No possibility to distinguish a non-rotating black hole from a non-rotating dark star by monitoring orbital motion or fitting accretion disk spectra

The Kerr metric is specific to black holes

Spherically symmetric (non-rotating) bodies:

Birkhoff theorem

Within 4-dimensional general relativity, the spacetime outside any spherically symmetric body is described by Schwarzschild metric

 \implies No possibility to distinguish a non-rotating black hole from a non-rotating dark star by monitoring orbital motion or fitting accretion disk spectra

Rotating axisymmetric bodies: *no Birkhoff-like theorem* Moreover, no "reasonable" matter source has ever been found for the Kerr metric The only known source consists of two counter-rotating thin disks of collisionless particles [Bicak & Ledvinka, PRL 71, 1669 (1993)]

 \implies The Kerr metric is specific to rotating black holes (in 4-dimensional general relativity)

E. Gourgoulhon (LUTH)

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments $(\mathcal{M}_k, \mathcal{J}_k)_{k \in \mathbb{N}}$ [Geroch (1970), Hansen (1974)]:

- \mathcal{M}_k : mass 2^k -pole moment
- \mathcal{J}_k : angular momentum 2^k -pole moment
- \implies For the Kerr metric, all the multipole moments are determined by (M, a):
 - $\mathcal{M}_0 = M$ • $\mathcal{J}_1 = aM = J$ • $\mathcal{M}_2 = -a^2 M \Longrightarrow \mathcal{M}_2 = -\frac{J^2}{M}$ (1) \leftarrow mass quadrupole moment • $\mathcal{J}_3 = -a^3 M$ • $\mathcal{M}_4 = a^4 M$
 - o . . .

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments $(\mathcal{M}_k, \mathcal{J}_k)_{k \in \mathbb{N}}$ [Geroch (1970), Hansen (1974)]:

- \mathcal{M}_k : mass 2^k -pole moment
- \mathcal{J}_k : angular momentum 2^k -pole moment
- \implies For the Kerr metric, all the multipole moments are determined by (M, a):
 - $\mathcal{M}_0 = M$ • $\mathcal{J}_1 = aM = J$ • $\mathcal{M}_2 = -a^2 M \Longrightarrow \mathcal{M}_2 = -\frac{J^2}{M}$ (1) \leftarrow mass quadrupole moment • $\mathcal{J}_3 = -a^3 M$ • $\mathcal{M}_4 = a^4 M$ • \cdots

Measuring the three quantities M, J, \mathcal{M}_2 provides a compatibility test w.r.t. the Kerr metric, by checking (1)

The no-hair theorem

2) Theoretical options to evade the no-hair theorem

3) Testing the no-hair theorem with GRAVITY observations

Conclusions

- The no-hair theorem is a striking result of general relativity; it has no equivalent in other areas of physics.
- As a mathematical theorem, it relies on some technical hypotheses that one would like to get rid of (analyticity and causality in the black hole exterior).
- The no-hair theorem may not hold if some physical hypotheses are violated:
 - the black hole is not isolated (e.g. surrounded by some massive complex scalar field or dark matter);
 - the theory of gravity is not general relativity, nor a "simple" scalar-tensor theory;
 - the spacetime dimension is not 4.
- GRAVITY+ (or GRAVITY++ ?) could perform the lowest order test of the no-hair theorem by measuring the mass quadrupole moment of Sgr A*, in addition to its mass and spin.
- The ultimate test: monitoring extreme mass-ratio inspirals (EMRIs) with LISA?