Introduction to spectral methods

Eric Gourgoulhon
Laboratoire de I'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris
Meudon, France

Based on a collaboration with
Silvano Bonazzola, Philippe Grandclément, Jean-Alain Marck \& Jérome Novak

Plan

1. Basic principles
2. Legendre and Chebyshev expansions
3. An illustrative example
4. Spectral methods in numerical relativity

1

Basic principles

Solving a partial differential equation

Consider the PDE with boundary condition

$$
\begin{array}{cl}
L u(\boldsymbol{x})=s(\boldsymbol{x}), & \boldsymbol{x} \in U \subset \mathbb{R}^{d} \\
B u(\boldsymbol{y})=0, & \boldsymbol{y} \in \partial U, \tag{2}
\end{array}
$$

where L and B are linear differential operators.
Question: What is a numerical solution of (1)-(2) ?
Answer: It is a function \bar{u} which satisfies (2) and makes the residual

$$
R:=L \bar{u}-s
$$

small.

What do you mean by "small" ?

Answer in the framework of

Method of Weighted Residuals (MWR):

Search for solutions \bar{u} in a finite-dimensional sub-space \mathcal{P}_{N} of some Hilbert space \mathcal{W} (typically a L^{2} space).

Expansion functions $=$ trial functions: basis of $\mathcal{P}_{N}:\left(\phi_{0}, \ldots, \phi_{N}\right)$
\bar{u} is expanded in terms of the trial functions: $\bar{u}(\boldsymbol{x})=\sum_{n=0}^{N} \tilde{u}_{n} \phi_{n}(\boldsymbol{x})$
Test functions: family of functions $\left(\chi_{0}, \ldots, \chi_{N}\right)$ to define the smallness of the residual R, by means of the Hilbert space scalar product:

$$
\forall n \in\{0, \ldots, N\}, \quad\left(\chi_{n}, R\right)=0
$$

Various numerical methods

Classification according to the trial functions ϕ_{n} :

Finite difference: trial functions = overlapping local polynomials of low order
Finite element: trial functions = local smooth functions (polynomial of fixed degree which are non-zero only on subdomains of U)

Spectral methods : trial functions = global smooth functions (example: Fourier series)

Various spectral methods

All spectral method: trial functions $\left(\phi_{n}\right)=$ complete family (basis) of smooth global functions

Classification according to the test functions χ_{n} :
Galerkin method: test functions $=$ trial functions: $\chi_{n}=\phi_{n}$ and each ϕ_{n} satisfy the boundary condition : $B \phi_{n}(\boldsymbol{y})=0$
tau method: (Lanczos 1938) test functions $=$ (most of) trial functions: $\chi_{n}=\phi_{n}$ but the ϕ_{n} do not satisfy the boundary conditions; the latter are enforced by an additional set of equations.
collocation or pseudospectral method: test functions $=$ delta functions at special points, called collocation points: $\chi_{n}=\delta\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right)$.

Solving a PDE with a Galerkin method

Let us return to Equation (1).
Since $\chi_{n}=\phi_{n}$, the smallness condition for the residual reads, for all $n \in\{0, \ldots, N\}$,

$$
\begin{align*}
\left(\phi_{n}, R\right)=0 & \Longleftrightarrow\left(\phi_{n}, L \bar{u}-s\right)=0 \\
& \Longleftrightarrow\left(\phi_{n}, L \sum_{k=0}^{N} \tilde{u}_{k} \phi_{k}\right)-\left(\phi_{n}, s\right)=0 \\
& \Longleftrightarrow \sum_{k=0}^{N} \tilde{u}_{k}\left(\phi_{n}, L \phi_{k}\right)-\left(\phi_{n}, s\right)=0 \\
& \Longleftrightarrow \sum_{k=0}^{N} L_{n k} \tilde{u}_{k}=\left(\phi_{n}, s\right) \tag{3}
\end{align*}
$$

where $L_{n k}$ denotes the matrix $L_{n k}:=\left(\phi_{n}, L \phi_{k}\right)$.
\rightarrow Solving for the linear system (3) leads to the $(N+1)$ coefficients \tilde{u}_{k} of \bar{u}

Solving a PDE with a tau method

Here again $\chi_{n}=\phi_{n}$, but the ϕ_{n} 's do not satisfy the boundary condition: $B \phi_{n}(\boldsymbol{y}) \neq 0$. Let $\left(g_{p}\right)$ be an orthonormal basis of $M+1<N+1$ functions on the boundary ∂U and let us expand $B \phi_{n}(\boldsymbol{y})$ upon it:

$$
B \phi_{n}(\boldsymbol{y})=\sum_{p=0}^{M} b_{p n} g_{p}(\boldsymbol{y})
$$

The boundary condition (2) then becomes

$$
B u(\boldsymbol{y})=0 \Longleftrightarrow \sum_{k=0}^{N} \sum_{p=0}^{M} \tilde{u}_{k} b_{p k} g_{p}(\boldsymbol{y})=0
$$

hence the $M+1$ conditions:

$$
\sum_{k=0}^{N} b_{p k} \tilde{u}_{k}=0 \quad 0 \leq p \leq M
$$

Solving a PDE with a tau method (cont'd)

The system of linear equations for the $N+1$ coefficients \tilde{u}_{n} is then taken to be the $N-M$ first raws of the Galerkin system (3) plus the $M+1$ equations above:

The solution $\left(\tilde{u}_{k}\right)$ of this system gives rise to a function $\bar{u}=\sum_{k=0}^{N} \tilde{u}_{k} \phi_{k}$ such that

$$
L \bar{u}(\boldsymbol{x})=s(\boldsymbol{x})+\sum_{p=0}^{M} \tau_{p} \phi_{N-M+p}(\boldsymbol{x})
$$

Solving a PDE with a pseudospectral (collocation) method

This time: $\chi_{n}(\boldsymbol{x})=\delta\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right)$, where the $\left(\boldsymbol{x}_{n}\right)$ constitute the collocation points. The smallness condition for the residual reads, for all $n \in\{0, \ldots, N\}$,

$$
\begin{align*}
\left(\chi_{n}, R\right)=0 & \Longleftrightarrow\left(\delta\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right), R\right)=0 \Longleftrightarrow R\left(\boldsymbol{x}_{n}\right)=0 \Longleftrightarrow L u\left(\boldsymbol{x}_{n}\right)=s\left(\boldsymbol{x}_{n}\right) \\
& \Longleftrightarrow \sum_{k=0}^{N} L \phi_{k}\left(\boldsymbol{x}_{n}\right) \tilde{u}_{k}=s\left(\boldsymbol{x}_{n}\right) \tag{4}
\end{align*}
$$

The boundary condition is imposed as in the tau method. One then drops $M+1$ raws in the linear system (4) and solve the system

$$
\begin{array}{llll}
\sum_{k=0}^{N} L \phi_{k}\left(\boldsymbol{x}_{n}\right) \tilde{u}_{k} & =s\left(\boldsymbol{x}_{n}\right) & & 0 \leq n \leq N-M-1 \\
\sum_{k=0}^{N} b_{p k} \tilde{u}_{k} & =0 & & 0 \leq p \leq M
\end{array}
$$

What choice for the trial functions ϕ_{n} ?

Periodic problem : $\phi_{n}=$ trigonometric polynomials (Fourier series)
Non-periodic problem : $\phi_{n}=$ orthogonal polynomials

2
 Legendre and Chebyshev expansions

Legendre and Chebyshev polynomials

Families of orthogonal

 polynomials on $[-1,1]$:Legendre polynomials:

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1} \delta_{m n}
$$

Chebyshev polynomials:

$$
\begin{aligned}
\int_{-1}^{1} T_{m}(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}= \\
\frac{\frac{\pi}{2}\left(1+\delta_{0 n}\right) \delta_{m n}}{}
\end{aligned}
$$

[from Fornberg (1998)]
$P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2} \quad T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=2 x^{2}-1$
Both Legendre and Chebyshev polynomials are a subclass of Jacobi polynomials

Properties of Chebyshev polynomials

Definition: $\cos n \theta=T_{n}(\cos \theta)$
Recurrence relation : $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$
Eigenfunctions of the singular Sturm-Liouville problem:

$$
\frac{d}{d x}\left(\sqrt{1-x^{2}} \frac{d T_{n}}{d x}\right)=-\frac{n^{2}}{\sqrt{1-x^{2}}} T_{n}(x)
$$

Orthogonal family in the Hilbert space $L_{w}^{2}[-1,1]$, equiped with the weight $w(x)=\left(1-x^{2}\right)^{-1 / 2}:$

$$
(f, g):=\int_{-1}^{1} f(x) g(x) w(x) d x
$$

Polynomial interpolation of functions

Given a set of $N+1$ nodes $\left(x_{i}\right)_{0 \leq i \leq N}$ in $[-1,1]$, the Lagrangian interpolation of a function $u(x)$ is defined by the N-th degree polynomial:

$$
I_{N} u(x)=\sum_{i=0}^{N} u\left(x_{i}\right) \prod_{\substack{j=0 \\ j \neq i}}^{N}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right)
$$

Cauchy theorem: there exists $x_{0} \in[-1,1]$ such that

$$
u(x)-I_{N} u(x)=\frac{1}{(N+1)!} u^{(N+1)}\left(x_{0}\right) \prod_{i=0}^{N}\left(x-x_{i}\right)
$$

Minimize $u(x)-I_{N} u(x)$ independently of $u \Longleftrightarrow$ minimize $\prod_{i=0}^{N}\left(x-x_{i}\right)$

Chebyshev interpolation of functions

Note that $\prod_{i=0}^{N}\left(x-x_{i}\right)$ is a polynomial of degree $N+1$ of the type $x^{N+1}+a_{N} x^{N}+\cdots$ (leading coefficient $=1$).

Characterization of Chebyshev polynomials: Among all the polynomials of degree n with leading coefficient 1 , the unique polynomial which has the smallest maximum on $[-1,1]$ is the n-th Chebyshev polynomial divided by $2^{n-1}: T_{n}(x) / 2^{n-1}$.
\Longrightarrow take the nodes x_{i} to be the $N+1$ zeros of the Chebyshev polynomial $T_{N+1}(x)$:

$$
\begin{gathered}
\prod_{i=0}^{N}\left(x-x_{i}\right)=\frac{1}{2^{N}} T_{N+1}(x) \\
x_{i}=-\cos \left(\frac{2 i+1}{2(N+1)} \pi\right) \quad 0 \leq i \leq N
\end{gathered}
$$

Spectral expansions: continuous (exact) coefficients

Case where the trial functions are orthogonal polynomials ϕ_{n} in $L_{w}^{2}[-1,1]$ for some weight $w(x)$ (e.g. Legendre $(w(x)=1)$ or Chebyshev $\left(w(x)=\left(1-x^{2}\right)^{-1 / 2}\right)$ polynomials).

The spectral representation of any function u is its orthogonal projection on the space of polynomials of degree $\leq N$:

$$
P_{N} u(x)=\sum_{n=0}^{N} \tilde{u}_{n} \phi_{n}(x)
$$

where the coefficients \tilde{u}_{n} are given by the scalar product:

$$
\begin{equation*}
\tilde{u}_{n}=\frac{1}{\left(\phi_{n}, \phi_{n}\right)}\left(\phi_{n}, u\right) \quad \text { with } \quad\left(\phi_{n}, u\right):=\int_{-1}^{1} \phi_{n}(x) u(x) w(x) d x \tag{5}
\end{equation*}
$$

The integral (5) cannot be computed exactly...

Spectral expansions : discrete coefficients

The most precise way of numerically evaluating the integral (5) is given by Gauss integration :

$$
\begin{equation*}
\int_{-1}^{1} f(x) w(x) d x=\sum_{i=0}^{N} w_{i} f\left(x_{i}\right) \tag{6}
\end{equation*}
$$

where the x_{i} 's are the $N+1$ zeros of the polynomial ϕ_{N+1} and the coefficients w_{i} are the solutions of the linear system $\sum_{j=0}^{N} x_{j}^{i} w_{j}=\int_{-1}^{1} x^{i} w(x) d x$.

Formula (6) is exact for any polynomial $f(x)$ of degree $\leq 2 N+1$
Adaptation to include the boundaries of $[-1,1]: x_{0}=-1, x_{1}, \ldots, x_{N-1}, x_{N}=1$ \Rightarrow Gauss-Lobatto integration : $x_{i}=$ zeros of the polynomial $P=\phi_{N+1}+\lambda \phi_{N}+\mu \phi_{N-1}$, with λ and μ such that $P(-1)=P(1)=0$. Exact for any polynomial $f(x)$ of degree $\leq 2 N-1$.

Spectral expansions : discrete coefficients (con't)

Define the discrete coefficients \hat{u}_{n} to be the Gauss-Lobatto approximations of the integrals (5) giving the \tilde{u}_{n} 's:

$$
\begin{equation*}
\hat{u}_{n}:=\frac{1}{\left(\phi_{n}, \phi_{n}\right)} \sum_{i=0}^{N} w_{i} \phi_{n}\left(x_{i}\right) u\left(x_{i}\right) \tag{7}
\end{equation*}
$$

The actual numerical representation of a function u is then the polynomial formed from the discrete coefficients:

$$
I_{N} u(x):=\sum_{n=0}^{N} \hat{u}_{n} \phi_{n}(x)
$$

instead of the orthogonal projection $P_{N} u$ involving the \tilde{u}_{n}.
Note: if $\left(\phi_{n}\right)=$ Chebyshev polynomials, the coefficients $\left(\hat{u}_{n}\right)$ can be computed by means of a FFT [i.e. in $\sim N \ln N$ operations instead of the $\sim N^{2}$ operations of the matrix product (7)].

Aliasing error

Proposition: $I_{N} u(x)$ is the interpolating polynomial of u through the $N+1$ nodes $\left(x_{i}\right)_{0 \leq i \leq N}$ of the Gauss-Lobatto quadrature: $I_{N} u\left(x_{i}\right)=u\left(x_{i}\right) \quad 0 \leq i \leq N$

On the contrary the orthogonal projection $P_{N} u$ does not necessarily pass through the points $\left(x_{i}\right)$.

The difference between $I_{N} u$ and $P_{N} u$, i.e. between the coefficients \hat{u}_{n} and \tilde{u}_{n}, is called the aliasing error.

It can be seen as a contamination of \hat{u}_{n} by the high frequencies \tilde{u}_{k} with $k>N$, when performing the Gauss-Lobato integration (7).

Illustrating the aliasing error: case of Fourier series

$k=6$

$$
k=-2
$$

$$
k=-10
$$

Alias of a $\sin (-2 x)$ wave by a $\sin (6 x)$ wave

Alias of a $\sin (-2 x)$ wave by a $\sin (-10 x)$ wave
[from Canuto et al. (1998)]

Convergence of Legendre and Chebyshev expansions

Hyp.: u sufficiently regular so that all derivatives up to some order $m \geq 1$ exist.
Legendre: truncation error :

$$
\begin{aligned}
& \left\|P_{N} u-u\right\|_{L^{2}} \leq \frac{C}{N^{m}} \sum_{k=0}^{m}\left\|u^{(k)}\right\|_{L^{2}} \\
& \left\|P_{N} u-u\right\|_{\infty} \leq \frac{C^{k}}{N^{m-1 / 2}} V\left(u^{(m)}\right)
\end{aligned}
$$

$$
\text { interpolation error : } \quad\left\|I_{N} u-u\right\|_{L^{2}} \leq \frac{C}{N^{m-1 / 2}} \sum_{k=0}^{m}\left\|u^{(k)}\right\|_{L^{2}}
$$

Chebyshev: truncation error :

$$
\begin{aligned}
\left\|P_{N} u-u\right\|_{L_{w}^{2}} & \leq \frac{C}{N^{m}} \sum_{k=0}^{m}\left\|u^{(k)}\right\|_{L_{w}^{2}} \\
\left\|P_{N} u-u\right\|_{\infty} & \leq \frac{C(1+\ln N)}{N^{m}} \sum_{k=0}^{m}\left\|u^{(k)}\right\|_{\infty}
\end{aligned}
$$

$$
\text { interpolation error : } \quad\left\|I_{N} u-u\right\|_{L_{w}^{2}} \leq \frac{C}{N^{m}} \sum_{k=0}^{m}\left\|u^{(k)}\right\|_{L_{w}^{2}}
$$

$$
\left\|I_{N} u-u\right\|_{\infty} \leq \frac{C^{k=0}}{N^{m-1 / 2}} \sum_{k=0}^{m}\left\|u^{(k)}\right\|_{L_{w}^{2}}
$$

Evanescent error

From the above decay rates, we conclude that for a C^{∞} function, the error in the spectral expansion decays more rapidly than any power of $1 / N$. In practice, it is an exponential decay.

Such a behavior is a key property of spectral methods and is called evanescent error.
(Remember that for a finite difference method of order k, the error decays only as $\left.1 / N^{k}\right)$.

3
 An example

... at last!

A simple differential equation with boundary conditions

Let us consider the 1-D second-order linear (P)DE

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}-4 \frac{d u}{d x}+4 u=e^{x}+C, \quad x \in[-1,1] \tag{8}
\end{equation*}
$$

with the Dirichlet boundary conditions

$$
\begin{equation*}
u(-1)=0 \quad \text { and } \quad u(1)=0 \tag{9}
\end{equation*}
$$

and where C is a constant: $C=-4 e /\left(1+e^{2}\right)$.
The exact solution of the system (8)-(9) is

$$
u(x)=e^{x}-\frac{\sinh 1}{\sinh 2} e^{2 x}+\frac{C}{4}
$$

Resolution by means of a Chebyshev spectral method

Let us search for a numerical solution of (8)-(9) by means of the five first Chebyshev polynomials: $T_{0}(x), T_{1}(x), T_{2}(x), T_{3}(x)$ and $T_{4}(x)$, i.e. we adopt $N=4$.

Let us first expand the source $s(x)=e^{x}+C$ onto the Chebyshev polynomials:

$$
P_{4} s(x)=\sum_{n=0}^{4} \tilde{s}_{n} T_{n}(x) \quad \text { and } \quad I_{4} s(x)=\sum_{n=0}^{4} \hat{s}_{n} T_{n}(x)
$$

with
$\tilde{s}_{n}=\frac{2}{\pi\left(1+\delta_{0 n}\right)} \int_{-1}^{1} T_{n}(x) s(x) \frac{d x}{\sqrt{1-x^{2}}} \quad$ and $\quad \hat{s}_{n}=\frac{2}{\pi\left(1+\delta_{0 n}\right)} \sum_{i=0}^{4} w_{i} T_{n}\left(x_{i}\right) s\left(x_{i}\right)$
the x_{i} 's being the 5 Gauss-Lobatto quadrature points for the weight
$w(x)=\left(1-x^{2}\right)^{-1 / 2}:\left\{x_{i}\right\}=\{-\cos (i \pi / 4), 0 \leq i \leq 4\}=\left\{-1,-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 1\right\}$

The source and its Chebyshev interpolant

$\hat{s}_{0}=-0.03004, \hat{s}_{1}=1.130, \hat{s}_{2}=0.2715, \hat{s}_{3}=0.04488, \hat{s}_{4}=0.005474$

Interpolation error and aliasing error

Matrix of the differential operator

The matrices of derivative operators with respect to the Chebyshev basis $\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}\right)$ are

$$
\frac{d}{d x}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 3 & 0 \\
0 & 0 & 4 & 0 & 8 \\
0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 8 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \frac{d^{2}}{d x^{2}}=\left(\begin{array}{ccccc}
0 & 0 & 4 & 0 & 32 \\
0 & 0 & 0 & 24 & 0 \\
0 & 0 & 0 & 0 & 48 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

so that the matrix of the differential operator $\frac{d^{2}}{d x^{2}}-4 \frac{d}{d x}+4 \operatorname{Id}$ on the r.h.s. of Eq. (8) is

$$
A_{k l}=\left(\begin{array}{ccccc}
4 & -4 & 4 & -12 & 32 \\
0 & 4 & -16 & 24 & -32 \\
0 & 0 & 4 & -24 & 48 \\
0 & 0 & 0 & 4 & -32 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)
$$

Resolution by means of a Galerkin method

Galerkin basis: $\quad \phi_{0}(x):=T_{2}(x)-T_{0}(x)=2 x^{2}-2$

$$
\begin{aligned}
& \phi_{1}(x):=T_{3}(x)-T_{1}(x)=4 x^{3}-4 x \\
& \phi_{2}(x):=T_{4}(x)-T_{0}(x)=8 x^{4}-8 x^{2}
\end{aligned}
$$

Each of the ϕ_{i} satisfies the boundary conditions: $\phi_{i}(-1)=\phi_{i}(1)=0$. Note that the ϕ_{i} 's are not orthogonal.
Transformation matrix Chebyshev \rightarrow Galerkin: $\tilde{\phi}_{k i}=\left(\begin{array}{ccc}-1 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
such that $\phi_{i}(x)=\sum_{k=0}^{4} \tilde{\phi}_{k i} T_{k}(x)$.
Chebyshev coefficients and Galerkin coefficients: $u(x)=\sum_{k=0}^{4} \tilde{u}_{k} T_{k}(x)=\sum_{i=0}^{2} \tilde{\tilde{u}}_{i} \phi_{i}(x)$
The matrix $\tilde{\phi}_{k i}$ relates the two sets of coefficients via the matrix product $\tilde{\boldsymbol{u}}=\tilde{\boldsymbol{\phi}} \times \tilde{\tilde{\boldsymbol{u}}}$

Galerkin system

For Galerkin method, the test functions are equal to the trial functions, so that the condition of small residual writes

$$
\left(\phi_{i}, L u-s\right)=0 \Longleftrightarrow \sum_{j=0}^{3}\left(\phi_{i}, L \phi_{j}\right) \tilde{\tilde{u}}_{j}=\left(\phi_{i}, s\right)
$$

with

$$
\begin{aligned}
\left(\phi_{i}, L \phi_{j}\right) & =\sum_{k=0}^{4} \sum_{l=0}^{4}\left(\tilde{\phi}_{k i} T_{k}, L \tilde{\phi}_{l j} T_{l}\right)=\sum_{k=0}^{4} \sum_{l=0}^{4} \tilde{\phi}_{k i} \tilde{\phi}_{l j}\left(T_{k}, L T_{l}\right) \\
& =\sum_{k=0}^{4} \sum_{l=0}^{4} \tilde{\phi}_{k i} \tilde{\phi}_{l j}\left(T_{k}, \sum_{m=0}^{4} A_{m l} T_{m}\right)=\sum_{k=0}^{4} \sum_{l=0}^{4} \tilde{\phi}_{k i} \tilde{\phi}_{l j} \sum_{m=0}^{4} A_{m l}\left(T_{k}, T_{m}\right) \\
& =\sum_{k=0}^{4} \sum_{l=0}^{4} \tilde{\phi}_{k i} \tilde{\phi}_{l j} \frac{\pi}{2}\left(1+\delta_{0 k}\right) A_{k l}=\frac{\pi}{2} \sum_{k=0}^{4} \sum_{l=0}^{4}\left(1+\delta_{0 k}\right) \tilde{\phi}_{k i} A_{k l} \tilde{\phi}_{l j}
\end{aligned}
$$

Resolution of the Galerkin system

In the above expression appears the transpose matrix

$$
Q_{i k}:={ }^{\mathrm{t}}\left[\left(1+\delta_{0 k}\right) \tilde{\phi}_{k i}\right]=\left(\begin{array}{ccccc}
-2 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
-2 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The small residual condition amounts then to solve the following linear system in $\tilde{\tilde{\boldsymbol{u}}}=\left(\tilde{\tilde{u}}_{0}, \tilde{\tilde{u}}_{1}, \tilde{\tilde{u}}_{2}\right)$:

$$
Q \times \boldsymbol{A} \times \tilde{\boldsymbol{\phi}} \times \tilde{\tilde{\boldsymbol{u}}}=\boldsymbol{Q} \times \tilde{\boldsymbol{s}}
$$

with $\boldsymbol{Q} \times \boldsymbol{A} \times \tilde{\boldsymbol{\phi}}=\left(\begin{array}{ccc}4 & -8 & -8 \\ 16 & -16 & 0 \\ 0 & 16 & -52\end{array}\right)$ and $\boldsymbol{Q} \times \tilde{\boldsymbol{s}}=\left(\begin{array}{c}0.331625 \\ -1.08544 \\ 0.0655592\end{array}\right)$
The solution is found to be $\tilde{\tilde{u}}_{0}=-0.1596, \tilde{\tilde{u}}_{1}=-0.09176, \tilde{\tilde{u}}_{2}=-0.02949$.
The Chebyshev coefficients are obtained by taking the matrix product by $\tilde{\phi}$: $\tilde{u}_{0}=0.1891, \quad \tilde{u}_{1}=0.09176, \quad \tilde{u}_{2}=-0.1596, \quad \tilde{u}_{3}=-0.09176, \tilde{u}_{4}=-0.02949$

Comparison with the exact solution

Resolution by means of a tau method

Tau method: trial functions $=$ test functions $=$ Chebyshev polynomials T_{0}, \ldots, T_{4}.
Enforce the boundary conditions by additional equations.
Since $T_{n}(-1)=(-1)^{n}$ and $T_{n}(1)=1$, the boundary condition operator has the matrix

$$
b_{p k}=\left(\begin{array}{ccccc}
1 & -1 & 1 & -1 & 1 \tag{10}\\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The T_{n} 's being an orthogonal basis, the tau system is obtained by replacing the last two rows of the matrix \boldsymbol{A} by (10):

$$
\left(\begin{array}{ccccc}
4 & -4 & 4 & -12 & 32 \\
0 & 4 & -16 & 24 & -32 \\
0 & 0 & 4 & -24 & 48 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\tilde{u}_{0} \\
\tilde{u}_{1} \\
\tilde{u}_{2} \\
\tilde{u}_{3} \\
\tilde{u}_{4}
\end{array}\right)=\left(\begin{array}{c}
\hat{s}_{0} \\
\hat{s}_{1} \\
\hat{s}_{2} \\
0 \\
0
\end{array}\right)
$$

The solution is found to be
$\tilde{u}_{0}=0.1456, \tilde{u}_{1}=0.07885, \tilde{u}_{2}=-0.1220, \tilde{u}_{3}=-0.07885, \tilde{u}_{4}=-0.02360$.

Comparison with the exact solution

Resolution by means of a pseudospectral method

Pseudospectral method: trial functions $=$ Chebyshev polynomials T_{0}, \ldots, T_{4} and test functions $=\delta\left(x-x_{n}\right)$.

The pseudospectral system is

$$
\sum_{k=0}^{4} L T_{k}\left(x_{n}\right) \tilde{u}_{k}=s\left(x_{n}\right) \Longleftrightarrow \sum_{k=0}^{4} \sum_{l=0}^{4} A_{l k} T_{l}\left(x_{n}\right) \tilde{u}_{k}=s\left(x_{n}\right)
$$

From a matrix point of view: $\boldsymbol{T} \times \boldsymbol{A} \times \tilde{\boldsymbol{u}}=\boldsymbol{s}$, where

$$
\boldsymbol{T}_{n l}:=T_{l}\left(x_{n}\right)=\left(\begin{array}{ccccc}
1 & -1 & 1 & -1 & 1 \\
1 & -1 / \sqrt{2} & 0 & 1 / \sqrt{2} & -1 \\
1 & 0 & -1 & 0 & 1 \\
1 & 1 / \sqrt{2} & 0 & -1 / \sqrt{2} & -1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Pseudospectral system

To take into account the boundary conditions, replace the first row of the matrix $\boldsymbol{T} \times \boldsymbol{A}$ by $b_{0 k}$ and the last row by $b_{1 k}$, and end up with the system

$$
\left(\begin{array}{ccccc}
1 & -1 & 1 & -1 & 1 \\
4 & -6.82843 & 15.3137 & -26.1421 & 28 \\
4 & -4 & 0 & 12 & -12 \\
4 & -1.17157 & -7.31371 & 2.14214 & 28 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\tilde{u}_{0} \\
\tilde{u}_{1} \\
\tilde{u}_{2} \\
\tilde{u}_{3} \\
\tilde{u}_{4}
\end{array}\right)=\left(\begin{array}{c}
0 \\
s\left(x_{1}\right) \\
s\left(x_{2}\right) \\
s\left(x_{3}\right) \\
0
\end{array}\right)
$$

The solution is found to be
$\tilde{u}_{0}=0.1875, \tilde{u}_{1}=0.08867, \tilde{u}_{2}=-0.1565, \tilde{u}_{3}=-0.08867, \tilde{u}_{4}=-0.03104$.

Comparison with the exact solution

Numerical solutions with $N=6$

Exponential decay of the error with N

Not discussed here...

- Spectral methods for 3-D problems
- Time evolution
- Non-linearities
- Multi-domain spectral methods
- Weak formulation

4

Spectral methods in numerical relativity

Spectral methods developed in Meudon

Pioneered by Silvano Bonazzola \& Jean-Alain Marck (1986). Spectral methods within spherical coordinates

- 1990 : 3-D wave equation
- 1993 : First 3-D computation of stellar collapse (Newtonian)
- 1994 : Accurate models of rotating stars in GR
- 1995 : Einstein-Maxwell solutions for magnetized stars
- 1996: 3-D secular instability of rigidly rotating stars in GR

LORENE

Langage Objet pour la RElativite NumeriquE

A library of $\mathrm{C}++$ classes devoted to multi-domain spectral methods, with adaptive spherical coordinates.

- 1997 : start of Lorene
- 1999 : Accurate models of rapidly rotating strange quark stars
- 1999 : Neutron star binaries on closed circular orbits (IWM approx. to GR)
- 2001 : Public domain (GPL), Web page: http://www.lorene.obspm.fr
- 2001 : Black hole binaries on closed circular orbits (IWM approx. to GR)
- 2002 : 3-D wave equation with non-reflecting boundary conditions
- 2002 : Maclaurin-Jacobi bifurcation point in GR

Code for producing the figures of the above illustrative example available from Lorene CVS server (directory Lorene/Codes/Spectral),
see http://www.lorene.obspm.fr

Spectral methods developed in other groups

- Cornell group: Black holes
- Bartnik: quasi-spherical slicing
- Carsten Gundlach: apparent horizon finder
- Jörg Frauendiener: conformal field equations
- Jena group: extremely precise models of rotating stars, cf. Marcus Ansorg's talk

Textbooks about spectral methods

- D. Gottlieb \& S.A. Orszag : Numerical analysis of spectral methods, Society for Industrial and Applied Mathematics, Philadelphia (1977)
- C. Canuto, M.Y. Hussaini, A. Quarteroni \& T.A. Zang : Spectral methods in fluid dynamics, Springer-Verlag, Berlin (1988)
- B. Mercier : An introduction to the numerical analysis of spectral methods, SpringerVerlag, Berlin (1989)
- C. Bernardi \& Y. Maday : Approximations spectrales de problmes aux limites elliptiques, Springer-Verlag, Paris (1992)
- B. Fornberg: A practical guide to pseudospectral methods, Cambridge University Press, Cambridge (1998)
- J.P. Boyd: Chebyshev and Fourier spectral methods, 2nd edition, Dover, Mineola (2001) [web page]

