The initial data problem for $3+1$ numerical relativity Part 1

Eric Gourgoulhon
Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris Diderot
F-92190 Meudon, France
eric.gourgoulhon@obspm.fr
http://www.luth.obspm.fr/~1uthier/gourgoulhon/

2008 International Summer School on Computational Methods in Gravitation and Astrophysics Asia Pacific Center for Theoretical Physics, Pohang, Korea 28 July - 1 August 2008

Plan

(1) The initial data problem
(2) Conformal transverse-traceless method
(3) Conformal thin sandwich method

Outline

(1) The initial data problem

Initial data for the Cauchy problem

In lecture 1, we have seen
$3+1$ decomposition \Longrightarrow Einstein equation $=$ Cauchy problem with constraints

Initial data for the Cauchy problem

In lecture 1, we have seen
$3+1$ decomposition \Longrightarrow Einstein equation $=$ Cauchy problem with constraints

Constructing initial data: \exists two problems:

- The mathematical problem: given some hypersurface Σ_{0}, find a Riemannian metric γ, a symmetric bilinear form \boldsymbol{K} and some matter distribution (E, \boldsymbol{p}) on Σ_{0} such that the Hamiltonian and momentum constraints are satisfied:

$$
\begin{aligned}
& R+K^{2}-K_{i j} K^{i j}=16 \pi E \\
& D_{j} K^{j}{ }_{i}-D_{i} K=8 \pi p_{i}
\end{aligned}
$$

NB : the matter distribution (E, \boldsymbol{p}) may have some additional constraints from its own.

Initial data for the Cauchy problem

In lecture 1, we have seen
$3+1$ decomposition \Longrightarrow Einstein equation $=$ Cauchy problem with constraints

Constructing initial data: \exists two problems:

- The mathematical problem: given some hypersurface Σ_{0}, find a Riemannian metric γ, a symmetric bilinear form \boldsymbol{K} and some matter distribution (E, \boldsymbol{p}) on Σ_{0} such that the Hamiltonian and momentum constraints are satisfied:

$$
\begin{aligned}
& R+K^{2}-K_{i j} K^{i j}=16 \pi E \\
& D_{j} K^{j}{ }_{i}-D_{i} K=8 \pi p_{i}
\end{aligned}
$$

NB: the matter distribution (E, \boldsymbol{p}) may have some additional constraints from its own.

- The astrophysical problem: make sure that the obtained solution to the constraint equations have something to do with the physical system that one wish to study.

A first naive approach

Notice that the constraints involve a single hypersurface Σ_{0}, not a foliation $\left(\Sigma_{t}\right)_{t \in \mathbb{R}}$. In particular, neither the lapse function N nor the shift vector appear β in these equations

A first naive approach

Notice that the constraints involve a single hypersurface Σ_{0}, not a foliation $\left(\Sigma_{t}\right)_{t \in \mathbb{R}}$. In particular, neither the lapse function N nor the shift vector appear β in these equations

Naive method of resolution:

- choose freely the metric γ, thereby fixing the connection \boldsymbol{D} and the scalar curvature R
- solve the constraints for \boldsymbol{K}

Indeed, for fixed γ, E, and \boldsymbol{p}, the constraints form a quasi-linear system of first order for the components $K_{i j}$

A first naive approach

Notice that the constraints involve a single hypersurface Σ_{0}, not a foliation $\left(\Sigma_{t}\right)_{t \in \mathbb{R}}$. In particular, neither the lapse function N nor the shift vector appear β in these equations

Naive method of resolution:

- choose freely the metric γ, thereby fixing the connection \boldsymbol{D} and the scalar curvature R
- solve the constraints for \boldsymbol{K}

Indeed, for fixed γ, E, and \boldsymbol{p}, the constraints form a quasi-linear system of first order for the components $K_{i j}$

However, this approach is not satisfactory:
only 4 equations for 6 unknowns $K_{i j}$ and there is no natural prescription for choosing arbitrarily two among the six components $K_{i j}$

Various approaches to the initial data problem

- Conformal methods: initiated by Lichnerowicz (1944) and extended by
- Choquet-Bruhat $(1956,1971)$
- York and Ó Murchadha $(1972,1974,1979)$
- York and Pfeiffer $(1999,2003)$
\rightarrow by far the most widely spread techniques

Various approaches to the initial data problem

- Conformal methods: initiated by Lichnerowicz (1944) and extended by
- Choquet-Bruhat $(1956,1971)$
- York and Ó Murchadha $(1972,1974,1979)$
- York and Pfeiffer $(1999,2003)$
\rightarrow by far the most widely spread techniques
- Quasi-spherical ansatz introduced by Bartnik (1993)

Various approaches to the initial data problem

- Conformal methods: initiated by Lichnerowicz (1944) and extended by
- Choquet-Bruhat $(1956,1971)$
- York and Ó Murchadha $(1972,1974,1979)$
- York and Pfeiffer $(1999,2003)$
\rightarrow by far the most widely spread techniques
- Quasi-spherical ansatz introduced by Bartnik (1993)
- Gluing technique : Corvino (2000), Isenberg, Mazzeo and Pollack (2002) : gluing together known solutions of the constraints, thereby producing new ones

Various approaches to the initial data problem

- Conformal methods: initiated by Lichnerowicz (1944) and extended by
- Choquet-Bruhat $(1956,1971)$
- York and Ó Murchadha $(1972,1974,1979)$
- York and Pfeiffer $(1999,2003)$
\rightarrow by far the most widely spread techniques
- Quasi-spherical ansatz introduced by Bartnik (1993)
- Gluing technique : Corvino (2000), Isenberg, Mazzeo and Pollack (2002) : gluing together known solutions of the constraints, thereby producing new ones

In this lecture we focus on conformal methods

Outline

(1) The initial data problem

(2) Conformal transverse-traceless method
(3) Conformal thin sandwich method

Starting point

Conformal decomposition introduced in Lecture 1:

$$
\gamma_{i j}=\psi^{4} \tilde{\gamma}_{i j} \text { and } A^{i j}=\Psi^{-10} \hat{A}^{i j}
$$

The Hamiltonian and momentum constraints become respectively

$$
\begin{gathered}
\tilde{D}_{i} \tilde{D}^{i} \Psi-\frac{1}{8} \tilde{R} \Psi+\frac{1}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-7}+\left(2 \pi E-\frac{1}{12} K^{2}\right) \Psi^{5}=0 \\
\tilde{D}_{j} \hat{A}^{i j}-\frac{2}{3} \Psi^{6} \tilde{D}^{i} K=8 \pi \Psi^{10} p^{i}
\end{gathered}
$$

Longitudinal/transverse decomposition of $\hat{A}^{i j}$

York $(1973,1979)$ splitting of $\hat{A}^{i j}$:

$$
\hat{A}^{i j}=(\tilde{L} X)^{i j}+\hat{A}_{\mathrm{TT}}^{i j}
$$

with

- $(\tilde{L} X)^{i j}=$ conformal Killing operator associated with the metric $\tilde{\gamma}$ and acting on the vector field \boldsymbol{X} :

$$
(\tilde{L} X)^{i j}:=\tilde{D}^{i} X^{j}+\tilde{D}^{j} X^{i}-\frac{2}{3} \tilde{D}_{k} X^{k} \tilde{\gamma}^{i j}
$$

- $\hat{A}_{\mathrm{TT}}^{i j}$ traceless and transverse (i.e. divergence-free) with respect to the metric $\tilde{\boldsymbol{\gamma}}: \tilde{\gamma}_{i j} \hat{A}_{\mathrm{TT}}^{i j}=0$ and $\tilde{D}_{j} \hat{A}_{\mathrm{T} T}^{i j}=0$

NB: both the longitudinal part and the TT part are traceless: $\tilde{\gamma}_{i j}(\tilde{L} X)^{i j}=0$ and $\tilde{\gamma}_{i j} \hat{A}_{\mathrm{TT}}^{i j}=0$

Longitudinal/transverse decomposition of $\hat{A}^{i j}$

Determining \boldsymbol{X} and $\hat{A}_{T T}^{i j}$:
Considering the divergence of $\hat{A}^{i j}$, we see that \boldsymbol{X} must be a solution of the vector differential equation

$$
\tilde{\Delta}_{L} X^{i}=\tilde{D}_{j} \hat{A}^{i j}
$$

where $\tilde{\boldsymbol{\Delta}}_{L}$ is the conformal vector Laplacian:

$$
\tilde{\Delta}_{L} X^{i}:=\tilde{D}_{j}(\tilde{L} X)^{i j}=\tilde{D}_{j} \tilde{D}^{j} X^{i}+\frac{1}{3} \tilde{D}^{i} \tilde{D}_{j} X^{j}+\tilde{R}^{i}{ }_{j} X^{j}
$$

Longitudinal/transverse decomposition of $\hat{A}^{i j}$

Determining \boldsymbol{X} and $\hat{A}_{T T}^{i j}$:

Considering the divergence of $\hat{A}^{i j}$, we see that \boldsymbol{X} must be a solution of the vector differential equation

$$
\tilde{\Delta}_{L} X^{i}=\tilde{D}_{j} \hat{A}^{i j}
$$

where $\tilde{\mathbf{\Delta}}_{L}$ is the conformal vector Laplacian:

$$
\tilde{\Delta}_{L} X^{i}:=\tilde{D}_{j}(\tilde{L} X)^{i j}=\tilde{D}_{j} \tilde{D}^{j} X^{i}+\frac{1}{3} \tilde{D}^{i} \tilde{D}_{j} X^{j}+\tilde{R}^{i}{ }_{j} X^{j}
$$

The operator $\tilde{\boldsymbol{\Delta}}_{L}$ is elliptic and its kernel is reduced to conformal Killing vectors, i.e. vectors \boldsymbol{C} that satisfy $(\tilde{L} C)^{i j}=0$ (generators of conformal isometries, if any)

- if Σ_{0} is a closed manifold (i.e. compact without boundary): the solution \boldsymbol{X} exists; it may be not unique, but $(\tilde{L} X)^{i j}$ is unique;
- if $\left(\Sigma_{0}, \gamma\right)$ is an asymptotically flat manifold: there exists a unique solution \boldsymbol{X} which vanishes at spatial infinity
Conclusion: the longitudinal/transverse decomposition exists and is unique

Conformal transverse-traceless form of the constraints

Defining $\tilde{E}:=\psi^{8} E$ and $\tilde{p}^{i}:=\Psi^{10} p^{i}$, the Hamiltonian constraint (Lichnerowicz equation) and the momentum constraint become respectively

$$
\begin{equation*}
\tilde{D}_{i} \tilde{D}^{i} \Psi-\frac{\tilde{R}}{8} \psi+\frac{1}{8}\left[(\tilde{L} X)_{i j}+\hat{A}_{i j}^{\top \top}\right]\left[(\tilde{L} X)^{i j}+\hat{A}_{\mathrm{TT}}^{i j}\right] \psi^{-7}+2 \pi \tilde{E} \Psi^{-3}-\frac{K^{2}}{12} \psi^{5}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\Delta}_{L} X^{i}-\frac{2}{3} \psi^{6} \tilde{D}^{i} K=8 \pi \tilde{p}^{i} \tag{2}
\end{equation*}
$$

where $(\tilde{L} X)_{i j}:=\tilde{\gamma}_{i k} \tilde{\gamma}_{j l}(\tilde{L} X)^{k l}$ and $\hat{A}_{i j}^{\top \top}:=\tilde{\gamma}_{i k} \tilde{\gamma}_{j l} \hat{A}_{\mathrm{TT}}^{k l}$

Free data and constrained data

In view of the above system, we see clearly which part of the initial data on Σ_{0} can be freely chosen and which part is "constrained":

- free data:
- conformal metric $\tilde{\gamma}$
- symmetric traceless and transverse ${ }^{1}$ tensor $\hat{A}_{i j}^{\text {TT }}$
- scalar field K
- conformal matter variables: $\left(\tilde{E}, \tilde{p}^{i}\right)$
- constrained data (or "determined data"):
- conformal factor Ψ, obeying the non-linear elliptic equation (1)
- vector \boldsymbol{X}, obeying the linear elliptic equation (2)

[^0]
Strategy for construction initial data

York (1979) CTT method:
(1) choose $\left(\tilde{\gamma}_{i j}, \hat{A}_{i j}^{\mathrm{TT}}, K, \tilde{E}, \tilde{p}^{i}\right)$ on Σ_{0}
(2) solve the system (1)-(2) to get ψ and X^{i}
(0) construct

$$
\begin{aligned}
\gamma_{i j} & =\Psi^{4} \tilde{\gamma}_{i j} \\
K^{i j} & =\Psi^{-10}\left((\tilde{L} X)^{i j}+\hat{A}_{\mathrm{TT}}^{i j}\right)+\frac{1}{3} \Psi^{-4} K \tilde{\gamma}^{i j} \\
E & =\Psi^{-8} \tilde{E} \\
p^{i} & =\Psi^{-10} \tilde{p}^{i}
\end{aligned}
$$

Then one obtains a set $(\gamma, \boldsymbol{K}, E, \boldsymbol{p})$ which satisfies the constraint equations

Decoupling on hypersurfaces of constant mean curvature

Consider the momentum constraint equation: $\tilde{\Delta}_{L} X^{i}-\frac{2}{3} \psi^{6} \tilde{D}^{i} K=8 \pi \tilde{p}^{i}$
If Σ_{0} has a constant mean curvature (CMC):

$$
K=\text { const }
$$

then $\tilde{D}^{i} K=0$ and the momentum constraint equations reduces to

$$
\begin{equation*}
\tilde{\Delta}_{L} X^{i}=8 \pi \tilde{p}^{i} \tag{3}
\end{equation*}
$$

It does no longer involve ψ
\Longrightarrow decoupling of the constraint system (1)-(2)
NB: a very important case of CMC hypersurface: maximal hypersurface: $K=0$

Strategy on CMC hypersurfaces

- 1st step: Solve the linear elliptic equation (3) ($\left.\tilde{\Delta}_{L} X^{i}=8 \pi \tilde{p}^{i}\right)$ to get the vector \boldsymbol{X}
- if Σ_{0} is a closed manifold (i.e. compact without boundary): the solution \boldsymbol{X} exists; it may be not unique, but $(\tilde{L} X)^{i j}$ is unique;
- if $\left(\Sigma_{0}, \gamma\right)$ is an asymptotically flat manifold: there exists a unique solution \boldsymbol{X} which vanishes at spatial infinity
- 2nd step: Inject the solution \boldsymbol{X} into Lichnerowicz equation (1)

$$
\tilde{D}_{i} \tilde{D}^{i} \Psi-\frac{\tilde{R}}{8} \Psi+\frac{1}{8 \Psi^{7}}\left[(\tilde{L} X)_{i j}+\hat{A}_{i j}^{\mathrm{\top} \mathrm{\top}}\right]\left[(\tilde{L} X)^{i j}+\hat{A}_{\mathrm{T} \mathrm{\top}}^{i j}\right]+\frac{2 \pi \tilde{E}}{\Psi^{3}}-\frac{K^{2}}{12} \Psi^{5}=0
$$

and solve the latter for Ψ (the difficult part !)

Strategy on CMC hypersurfaces

- 1st step: Solve the linear elliptic equation (3) ($\left.\tilde{\Delta}_{L} X^{i}=8 \pi \tilde{p}^{i}\right)$ to get the vector \boldsymbol{X}
- if Σ_{0} is a closed manifold (i.e. compact without boundary): the solution \boldsymbol{X} exists; it may be not unique, but ($\tilde{L} X)^{i j}$ is unique;
- if $\left(\Sigma_{0}, \gamma\right)$ is an asymptotically flat manifold: there exists a unique solution \boldsymbol{X} which vanishes at spatial infinity
- 2nd step: Inject the solution \boldsymbol{X} into Lichnerowicz equation (1)

$$
\tilde{D}_{i} \tilde{D}^{i} \psi-\frac{\tilde{R}}{8} \psi+\frac{1}{8 \psi^{7}}\left[(\tilde{L} X)_{i j}+\hat{A}_{i j}^{T T}\right]\left[(\tilde{L} X)^{i j}+\hat{A}_{T \mathrm{~T}}^{i j}\right]+\frac{2 \pi \tilde{E}}{\psi^{3}}-\frac{K^{2}}{12} \psi^{5}=0
$$

and solve the latter for ψ (the difficult part !)
Existence and uniqueness of solutions to Lichnerowicz equation:

- asymptotically flat case: (1) is solvable iff the metric $\tilde{\gamma}$ is conformal to a metric with vanishing scalar curvature (Cantor 1977)
- closed manifold: complete analysis carried out by Isenberg (1995) (vacuum case)
More details: see review by Bartnik and Isenberg (2004)

Conformally flat initial data on maximal slices

Simplest choice for free data ($\left.\tilde{\gamma}_{i j}, \hat{A}_{i j}^{\top \top}, K, \tilde{E}, \tilde{p}^{i}\right)$:

- $\tilde{\gamma}_{i j}=f_{i j}$ (flat metric)
- $\hat{A}_{i j}^{\mathrm{TT}}=0$
- $K=0$ ($\Sigma_{0}=$ maximal hypersurface)
- $\tilde{E}=0$ and $\tilde{p}^{i}=0$ (vacuum)

Conformally flat initial data on maximal slices

Simplest choice for free data ($\left.\tilde{\gamma}_{i j}, \hat{A}_{i j}^{\top \top}, K, \tilde{E}, \tilde{p}^{i}\right)$:

- $\tilde{\gamma}_{i j}=f_{i j}$ (flat metric)
- $\hat{A}_{i j}^{\mathrm{TT}}=0$
- $K=0$ ($\Sigma_{0}=$ maximal hypersurface)
- $\tilde{E}=0$ and $\tilde{p}^{i}=0$ (vacuum)

Then the constraint equations (1)-((2) reduce to

$$
\begin{equation*}
\Delta \psi+\frac{1}{8}(L X)_{i j}(L X)^{i j} \psi^{-7}=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\Delta X^{i}+\frac{1}{3} \mathcal{D}^{i} \mathcal{D}_{j} X^{j}=0 \tag{5}
\end{equation*}
$$

where $\Delta:=\mathcal{D}_{i} \mathcal{D}^{i}$ (flat Laplacian) and $(L X)^{i j}:=\mathcal{D}^{i} X^{j}+\mathcal{D}^{j} X^{i}-\frac{2}{3} \mathcal{D}_{k} X^{k} f^{i j}$
(\mathcal{D}_{i} flat connection: in Cartesian coordinates $\mathcal{D}_{i}=\partial_{i}$)
Asymptotic flatness \Longrightarrow boundary conditions $\left\{\begin{array}{l}\left.\Psi\right|_{r \rightarrow \infty}=1 \\ \left.\boldsymbol{X}\right|_{r \rightarrow \infty}=0\end{array}\right.$

A (too) simple solution

Choose $\Sigma_{0} \sim \mathbb{R}^{3}$
Then the only regular solution to $\Delta X^{i}+\frac{1}{3} \mathcal{D}^{i} \mathcal{D}_{j} X^{j}=0$ with the boundary condition $\left.\boldsymbol{X}\right|_{r \rightarrow \infty}=0$ is

$$
\boldsymbol{X}=0
$$

A (too) simple solution

Choose $\Sigma_{0} \sim \mathbb{R}^{3}$
Then the only regular solution to $\Delta X^{i}+\frac{1}{3} \mathcal{D}^{i} \mathcal{D}_{j} X^{j}=0$ with the boundary condition $\left.\boldsymbol{X}\right|_{r \rightarrow \infty}=0$ is

$$
\boldsymbol{X}=0
$$

Plugging this solution into the Hamiltonian constraint (4) yields Laplace equation for ψ :

$$
\Delta \Psi=0
$$

With the boundary condition $\left.\Psi\right|_{r \rightarrow \infty}=1$ the unique regular solution is

$$
\psi=1
$$

Hence the initial $(\boldsymbol{\gamma}, \boldsymbol{K})$ is $\left\{\begin{array}{l}\gamma_{i j}=f_{i j} \\ K_{i j}=0\end{array}\right.$ (momentarily static)
This is a standard slice $t=$ const of Minkowski spacetime

A less trivial solution

Keep the same simple free data as above, but choose for Σ_{0} a less trivial topology: $\Sigma_{0} \sim \mathbb{R}^{3} \backslash \mathcal{B}(\mathcal{B}=$ ball $)$:

\Longrightarrow boundary conditions (BC) for \boldsymbol{X} and Ψ must be supplied at the sphere \mathcal{S} delimiting \mathcal{B}

A less trivial solution

Keep the same simple free data as above, but choose for Σ_{0} a less trivial topology: $\Sigma_{0} \sim \mathbb{R}^{3} \backslash \mathcal{B}(\mathcal{B}=$ ball $)$:

\Longrightarrow boundary conditions (BC) for \boldsymbol{X} and Ψ must be supplied at the sphere \mathcal{S} delimiting \mathcal{B}
Let us choose $\left.\boldsymbol{X}\right|_{\mathcal{S}}=0$. Altogether with the outer $\left.\mathrm{BC} \boldsymbol{X}\right|_{r \rightarrow \infty}=0$ this yields to the following solution of momentum constraint (5)

$$
X=0
$$

A less trivial solution

Keep the same simple free data as above, but choose for Σ_{0} a less trivial topology: $\Sigma_{0} \sim \mathbb{R}^{3} \backslash \mathcal{B}(\mathcal{B}=$ ball $)$:

\Longrightarrow boundary conditions (BC) for \boldsymbol{X} and Ψ must be supplied at the sphere \mathcal{S} delimiting \mathcal{B}
Let us choose $\left.\boldsymbol{X}\right|_{\mathcal{S}}=0$. Altogether with the outer $\left.\mathrm{BC} \boldsymbol{X}\right|_{r \rightarrow \infty}=0$ this yields to the following solution of momentum constraint (5)

$$
X=0
$$

Hamiltonian constraint (4) \Longrightarrow Laplace equation $\Delta \Psi=0$
The choice $\left.\Psi\right|_{\mathcal{S}}=1$ would result in the same trivial solution $\Psi=1$ as before...

A less trivial solution

In order to have something not trivial, i.e. to ensure that the metric γ will not be flat, let us demand that γ admits a closed minimal surface:

$$
\mathcal{S} \text { minimal surface }
$$

$\Longleftrightarrow \mathcal{S}$'s mean curvature $=0$
$\left.\Longleftrightarrow D_{i} s^{i}\right|_{\mathcal{S}}=0$
$\left.\Longleftrightarrow \mathcal{D}_{i}\left(\Psi^{6} s^{i}\right)\right|_{\mathcal{S}}=0$
$\left.\Longleftrightarrow \mathcal{D}_{i}\left(\Psi^{4} \tilde{S}^{i}\right)\right|_{\mathcal{S}}=0$
\Longleftrightarrow

$$
\begin{equation*}
\left.\left(\frac{\partial \Psi}{\partial r}+\frac{\Psi}{2 r}\right)\right|_{r=a}=0 \tag{6}
\end{equation*}
$$

s : unit normal to \mathcal{S} for the metric γ \tilde{s} : unit normal to \mathcal{S} for the metric $\tilde{\gamma}$ $(r, \theta, \varphi):$ coors. sys. / $f_{i j}=\operatorname{diag}\left(1, r^{2}, r^{2} \sin ^{2} \theta\right)$ and $\mathcal{S}=$ sphere $\{r=a\}$

A less trivial solution

In order to have something not trivial, i.e. to ensure that the metric γ will not be flat, let us demand that γ admits a closed minimal surface:

$$
\mathcal{S} \text { minimal surface }
$$

$\Longleftrightarrow \mathcal{S}$'s mean curvature $=0$
$\left.\Longleftrightarrow D_{i} s^{i}\right|_{\mathcal{S}}=0$
$\left.\Longleftrightarrow \mathcal{D}_{i}\left(\Psi^{6} s^{i}\right)\right|_{\mathcal{S}}=0$
$\left.\Longleftrightarrow \mathcal{D}_{i}\left(\Psi^{4} \tilde{S}^{i}\right)\right|_{\mathcal{S}}=0$
s : unit normal to \mathcal{S} for the metric γ
\tilde{s} : unit normal to \mathcal{S} for the metric $\tilde{\gamma}$

$$
\begin{equation*}
\left.\left(\frac{\partial \Psi}{\partial r}+\frac{\Psi}{2 r}\right)\right|_{r=a}=0 \tag{6}
\end{equation*}
$$

(r, θ, φ) : coord. sys. / $f_{i j}=\operatorname{diag}\left(1, r^{2}, r^{2} \sin ^{2} \theta\right)$ and $\mathcal{S}=$ sphere $\{r=a\}$
The solution to Laplace equation $\Delta \psi=0$ with the $B C(6)$ and $\left.\psi\right|_{r \rightarrow \infty}=1$ is

$$
\Psi=1+\frac{a}{r}
$$

A less trivial solution

A less trivial solution

ADM mass of that solution:

$$
\begin{aligned}
& m=-\frac{1}{2 \pi} \lim _{r \rightarrow \infty} \oint_{r=\text { const }} \frac{\partial \Psi}{\partial r} r^{2} \sin \theta d \theta d \varphi \\
& \Rightarrow m=2 a
\end{aligned}
$$

$$
\text { Hence } \Psi=1+\frac{m}{2 r}
$$

The obtained initial data is then $\left\{\begin{array}{l}\gamma_{i j}=\left(1+\frac{m}{2 r}\right)^{4} \operatorname{diag}\left(1, r^{2}, r^{2} \sin \theta\right) \\ K_{i j}=0\end{array}\right.$

This is a slice $t=$ const of Schwarzschild spacetime

Remember: Schwarzschild metric in isotropic coordinates (t, r, θ, φ) :

$$
g_{\mu \nu} d x^{\mu} d x^{\nu}=-\left(\frac{1-\frac{m}{2 r}}{1+\frac{m}{2 r}}\right)^{2} d t^{2}+\left(1+\frac{m}{2 r}\right)^{4}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

Link with Schwarzschild coordinates $(t, R, \theta, \varphi): R=r\left(1+\frac{m}{2 r}\right)^{2}$

Extended solution

\mathcal{S} minimal surface $\Longrightarrow\left(\Sigma_{0}, \gamma\right)$ can be extended smoothly to a larger Riemannian manifold $\left(\Sigma_{0}^{\prime}, \gamma^{\prime}\right)$ by gluing a copy of Σ_{0} at \mathcal{S} :

Extended solution

\mathcal{S} minimal surface $\Longrightarrow\left(\Sigma_{0}, \gamma\right)$ can be extended smoothly to a larger Riemannian manifold $\left(\Sigma_{0}^{\prime}, \gamma^{\prime}\right)$ by gluing a copy of Σ_{0} at \mathcal{S} :

$\mathcal{S}=$ Einstein-Rosen bridge

 between two asymptotically flat manifolds

$$
\text { range of } r \text { in } \Sigma_{0}^{\prime}:(0,+\infty)
$$

extended metric :

$$
\begin{aligned}
& \gamma_{i j}^{\prime} d x^{i} d x^{j}=\left(1+\frac{m}{2 r}\right)^{4} \times \\
& \quad\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}\right) \\
& \text { region } r \rightarrow 0=\text { second } \\
& \text { asymptotically flat region } \\
& \text { map } r \mapsto r^{\prime}=\frac{m^{2}}{4 r} \text { is an } \\
& \text { isometry }
\end{aligned}
$$

This extended solution is still a slice $t=$ const of Schwarzschild spacetime topology of $\Sigma_{0}^{\prime}=\mathbb{R}^{3} \backslash\{O\}$ (puncture)

The Bowen-York solution

Same free data as before:
$\tilde{\gamma}_{i j}=f_{i j}, \hat{A}_{i j}^{\top \top}=0, K=0, \tilde{E}=0$ and $\tilde{p}^{i}=0$
so that the constraint equations are still

$$
\begin{align*}
& \Delta \psi+\frac{1}{8}(L X)_{i j}(L X)^{i j} \psi^{-7}=0 \tag{7}\\
& \Delta X^{i}+\frac{1}{3} \mathcal{D}^{i} \mathcal{D}_{j} X^{j}=0 \tag{8}
\end{align*}
$$

Choice of $\Sigma_{0}: \Sigma_{0}=\mathbb{R}^{3} \backslash\{O\}$ (puncture topology)

The Bowen-York solution

Same free data as before:
$\tilde{\gamma}_{i j}=f_{i j}, \hat{A}_{i j}^{\top \top}=0, K=0, \tilde{E}=0$ and $\tilde{p}^{i}=0$
so that the constraint equations are still

$$
\begin{align*}
& \Delta \psi+\frac{1}{8}(L X)_{i j}(L X)^{i j} \Psi^{-7}=0 \tag{7}\\
& \Delta X^{i}+\frac{1}{3} \mathcal{D}^{i} \mathcal{D}_{j} X^{j}=0 \tag{8}
\end{align*}
$$

Choice of $\Sigma_{0}: \Sigma_{0}=\mathbb{R}^{3} \backslash\{O\}$ (puncture topology)
Difference with previous case: $\boldsymbol{X} \neq 0$ (no longer momentarily static data)
Bowen-York (1980) solution of Eq. (8) in Cartesian coord. $\left(x^{i}\right)=(x, y, z)$:

$$
X^{i}=-\frac{1}{4 r}\left(7 P^{i}+P_{j} \frac{x^{j} x^{i}}{r^{2}}\right)-\frac{1}{r^{3}} \epsilon^{i}{ }_{j k} S^{j} x^{k}
$$

Two constant vector parameters : $\left\{\begin{array}{l}P^{i}=\text { ADM linear momentum } \\ S^{i}=\text { angular momentum }\end{array}\right.$

The Bowen-York solution

Example: choose S^{i} perpendicular to P^{i} and choose Cartesian coordinates (x, y, z) such that $P^{i}=(0, P, 0)$ and $S^{i}=(0,0, S)$. Then

$$
\begin{aligned}
X^{x} & =-\frac{P}{4} \frac{x y}{r^{3}}+S \frac{y}{r^{3}} \\
X^{y} & =-\frac{P}{4 r}\left(7+\frac{y^{2}}{r^{2}}\right)-S \frac{x}{r^{3}} \\
X^{z} & =-\frac{P}{4} \frac{x z}{r^{3}}
\end{aligned}
$$

Bowen-York extrinsic curvature: $\hat{A}^{i j}=(L X)^{i j}$:
$\hat{A}^{i j}=\frac{3}{2 r^{3}}\left[P^{i} x^{j}+P^{j} x^{i}-\left(\delta^{i j}-\frac{x^{i} x^{j}}{r^{2}}\right) P^{k} x_{k}\right]+\frac{3}{r^{5}}\left(\epsilon^{i}{ }_{k l} S^{k} x^{l} x^{j}+\epsilon^{j}{ }_{k l} S^{k} x^{l} x^{i}\right)$
ADM linear momentum : $P_{i}:=\frac{1}{8 \pi} \lim _{\mathcal{S}_{t} \rightarrow \infty} \oint_{\mathcal{S}_{t}}\left(K_{j k}-K \gamma_{j k}\right)\left(\partial_{i}\right)^{j} s^{k} \sqrt{q} d^{2} y$
Angular momentum (QI) : $S_{i}:=\frac{1}{8 \pi} \lim _{t} \rightarrow \infty$

The Bowen-York solution

There remains to solve (numerically !) the Hamiltonian constraint equation (7):

$$
\Delta \Psi+\frac{1}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-7}=0
$$

and to reconstruct $\left\{\begin{array}{l}\gamma_{i j}=\psi^{4} f_{i j} \\ K_{i j}=\psi^{-2} \hat{A}_{i j}\end{array}\right.$

The Bowen-York solution

There remains to solve (numerically !) the Hamiltonian constraint equation (7):

$$
\Delta \psi+\frac{1}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-7}=0
$$

and to reconstruct $\left\{\begin{array}{l}\gamma_{i j}=\psi^{4} f_{i j} \\ K_{i j}=\psi^{-2} \hat{A}_{i j}\end{array}\right.$
Remark 1: static Bowen-York solution $\left(P^{i}=0, S^{i}=0\right)=$ maximal slice of Schwarzschild spacetime considered above
Remark 2: Bowen-York solution with $S^{i} \neq 0$ is not a slice of Kerr spacetime: it is initial data for a rotating black hole but in a non stationary state (black hole "surrounded" by gravitational radiation)

Outline

(1) The initial data problem

(2) Conformal transverse-traceless method
(3) Conformal thin sandwich method

Conformal thin sandwich decomposition of extrinsic curvature

Origin: York (1999)
From Lecture 1: $\left(\frac{\partial}{\partial t}-\mathcal{L}_{\beta}\right) \tilde{\gamma}^{i j}=2 N \tilde{A}^{i j}+\frac{2}{3} \tilde{D}_{k} \beta^{k} \tilde{\gamma}^{i j}$
with $\tilde{A}^{i j}=\psi^{4} A^{i j}=\psi^{-6} \hat{A}^{i j}$ and $-\mathcal{L}_{\boldsymbol{\beta}} \tilde{\gamma}^{i j}=(\tilde{L} \beta)^{i j}+\frac{2}{3} \tilde{D}_{k} \beta^{k}$
Hence

$$
\hat{A}^{i j}=\frac{\psi^{6}}{2 N}\left[\dot{\tilde{\gamma}}^{i j}+(\tilde{L} \beta)^{i j}\right]
$$

where $\dot{\tilde{\gamma}}^{i j}:=\frac{\partial}{\partial t} \tilde{\gamma}^{i j}$
Introduce the conformal lapse: $\tilde{N}:=\Psi^{-6} N$ then

$$
\hat{A}^{i j}=\frac{1}{2 \tilde{N}}\left[\dot{\tilde{\gamma}}^{i j}+(\tilde{L} \beta)^{i j}\right]
$$

Conformal thin sandwich equations

Hamiltonian and momentum constraints become

$$
\begin{array}{|c}
\tilde{D}_{i} \tilde{D}^{i} \Psi-\frac{\tilde{R}}{8} \Psi+\frac{1}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-7}+2 \pi \tilde{E} \Psi^{-3}-\frac{K^{2}}{12} \psi^{5}=0 \\
\tilde{D}_{j}\left(\frac{1}{\tilde{N}}(\tilde{L} \beta)^{i j}\right)+\tilde{D}_{j}\left(\frac{1}{\tilde{N}} \dot{\tilde{\gamma}}^{i j}\right)-\frac{4}{3} \Psi^{6} \tilde{D}^{i} K=16 \pi \tilde{p}^{i} \\
\hline
\end{array}
$$

- free data : $\left(\tilde{\gamma}_{i j}, \dot{\tilde{\gamma}}^{i j}, K, \tilde{N}, \tilde{E}, \tilde{p}^{i}\right)$
- constrained data: ψ and β^{i}

Extended conformal thin sandwich (XCTS)

Origin: Pfeiffer \& York (2003)
Idea: instead of choosing the conformal lapse \tilde{N}, compute it from the Einstein equation (not a constraint!) involving the time derivative \dot{K} of K : from Lecture 1 :

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}-\mathcal{L}_{\boldsymbol{\beta}}\right) K= & -\Psi^{-4}\left(\tilde{D}_{i} \tilde{D}^{i} N+2 \tilde{D}_{i} \ln \psi \tilde{D}^{i} N\right) \\
& +N\left[4 \pi(E+S)+\tilde{A}_{i j} \tilde{A}^{i j}+\frac{K^{2}}{3}\right]
\end{aligned}
$$

Combining with the Hamiltonian constraint, we get

$$
\begin{aligned}
& \tilde{D}_{i} \tilde{D}^{i}\left(\tilde{N} \Psi^{7}\right)-\left(\tilde{N} \Psi^{7}\right)\left[\frac{1}{8} \tilde{R}+\frac{5}{12} K^{2} \Psi^{4}+\frac{7}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-8}+2 \pi(\tilde{E}+2 \tilde{S}) \Psi^{-4}\right] \\
& \quad+\left(\dot{K}-\beta^{i} \tilde{D}_{i} K\right) \Psi^{5}=0
\end{aligned}
$$

where $\tilde{E}:=\psi^{8} E$ and $\tilde{S}:=\psi^{8} S$

Extended conformal thin sandwich system

PDE system of 5 equations:

$$
\begin{aligned}
& \tilde{D}_{i} \tilde{D}^{i} \psi-\frac{\tilde{R}}{8} \Psi+\frac{1}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-7}+2 \pi \tilde{E} \Psi^{-3}-\frac{K^{2}}{12} \Psi^{5}=0 \\
& \tilde{D}_{j}\left(\frac{1}{\tilde{N}}(\tilde{L} \beta)^{i j}\right)+\tilde{D}_{j}\left(\frac{1}{\tilde{N}} \dot{\tilde{\gamma}}^{i j}\right)-\frac{4}{3} \Psi^{6} \tilde{D}^{i} K-16 \pi \tilde{p}^{i}=0 \\
& \tilde{D}_{i} \tilde{D}^{i}\left(\tilde{N} \psi^{7}\right)-\left(\tilde{N} \Psi^{7}\right)\left[\frac{1}{8} \tilde{R}+\frac{5}{12} K^{2} \Psi^{4}+\frac{7}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-8}+2 \pi(\tilde{E}+2 \tilde{S}) \psi^{-4}\right] \\
& \quad+\left(\dot{K}-\beta^{i} \tilde{D}_{i} K\right) \Psi^{5}=0
\end{aligned}
$$

- free data : $\left(\tilde{\gamma}_{i j}, \dot{\tilde{\gamma}}^{i j}, K, \dot{K}, \tilde{E}, \tilde{S}, \tilde{p}^{i}\right)$
- constrained data: ψ, \tilde{N} and β^{i}

Existence and uniqueness of solutions

Pfeiffer \& York (2005): in some cases, solutions $\left(\Psi, \tilde{N}, \beta^{i}\right)$ to the (non-linear !) XCTS system are not unique, even on maximal surfaces

See also analysis by Baumgarte, Ó Murchadha \& Pfeiffer (2007) and Walsh (2007)

XCTS at work: a simple example

Choose the same manifold $\Sigma_{0}=\mathbb{R}^{3} \backslash \mathcal{B}\left(\mathbb{R}^{3}\right.$ with an excised ball) as considered previously Choose the free data to be
$\tilde{\gamma}_{i j}=f_{i j}, \dot{\tilde{\gamma}}^{i j}=0, K=0, \dot{K}=0, \tilde{E}=0$,
$\tilde{S}=0, \tilde{p}^{i}=0$

XCTS at work: a simple example

Choose the same manifold $\Sigma_{0}=\mathbb{R}^{3} \backslash \mathcal{B}\left(\mathbb{R}^{3}\right.$ with an excised ball) as considered previously Choose the free data to be

$$
\tilde{\gamma}_{i j}=f_{i j}, \dot{\tilde{\gamma}}^{i j}=0, K=0, \dot{K}=0, \tilde{E}=0,
$$

$$
\tilde{S}=0, \tilde{p}^{i}=0
$$

\Longrightarrow the XCTS equations reduce to

$$
\begin{align*}
& \Delta \Psi+\frac{1}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-7}=0 \tag{9}\\
& \mathcal{D}_{j}\left(\frac{1}{\tilde{N}}(L \beta)^{i j}\right)=0 \tag{10}\\
& \Delta\left(\tilde{N} \Psi^{7}\right)-\frac{7}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-1} \tilde{N}=0 \tag{11}
\end{align*}
$$

with $\hat{A}^{i j}=\frac{1}{2 \tilde{N}}(L \beta)^{i j}$

XCTS at work: a simple example

Choose the same manifold $\Sigma_{0}=\mathbb{R}^{3} \backslash \mathcal{B}\left(\mathbb{R}^{3}\right.$ with an excised ball) as considered previously
Choose the free data to be
$\tilde{\gamma}_{i j}=f_{i j}, \dot{\tilde{\gamma}}^{i j}=0, K=0, \dot{K}=0, \tilde{E}=0$,
$\tilde{S}=0, \tilde{p}^{i}=0$
\Longrightarrow the XCTS equations reduce to

$$
\begin{align*}
& \Delta \Psi+\frac{1}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-7}=0 \tag{9}\\
& \mathcal{D}_{j}\left(\frac{1}{\tilde{N}}(L \beta)^{i j}\right)=0 \tag{10}\\
& \Delta\left(\tilde{N} \Psi^{7}\right)-\frac{7}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-1} \tilde{N}=0 \tag{11}
\end{align*}
$$

with $\hat{A}^{i j}=\frac{1}{2 \tilde{N}}(L \beta)^{i j}$
Choose the boundary condition $\left.\beta\right|_{\mathcal{S}}=0$ in addition to $\left.\beta\right|_{r \rightarrow \infty}=0$. Then, independently of the value of \tilde{N}, the unique solution to Eq. (10) is

$$
\boldsymbol{\beta}=0
$$

XCTS at work: a simple example

Accordingly $\hat{A}^{i j}=0$ and Eqs. (9) and (11) reduce to two Laplace equations:

$$
\begin{align*}
& \Delta \Psi=0 \tag{12}\\
& \Delta\left(\tilde{N} \Psi^{7}\right)=0 \tag{13}
\end{align*}
$$

As previously use the minimal surface requirement for \mathcal{S} to get the solution $\Psi=1+\frac{m}{2 r}$ to Eq. (12).

XCTS at work: a simple example

Accordingly $\hat{A}^{i j}=0$ and Eqs. (9) and (11) reduce to two Laplace equations:

$$
\begin{align*}
& \Delta \Psi=0 \tag{12}\\
& \Delta\left(\tilde{N} \Psi^{7}\right)=0 \tag{13}
\end{align*}
$$

As previously use the minimal surface requirement for \mathcal{S} to get the solution $\Psi=1+\frac{m}{2 r}$ to Eq. (12).
Regarding Eq. (13), choose the $\left.\mathrm{BC} \tilde{N}\right|_{\mathcal{S}}=0$ (singular slicing). Along with the asymptotic flatness $\left.\mathrm{BCs} \tilde{N}\right|_{r \rightarrow \infty}=1$ and $\left.\Psi\right|_{r \rightarrow \infty}=1$, this yields the solution

$$
\tilde{N} \Psi^{7}=1-\frac{m}{2 r} \text {, i.e., since } N=\psi^{6} \tilde{N}, N=\left(1-\frac{m}{2 r}\right)\left(1+\frac{m}{2 r}\right)^{-1}
$$

XCTS at work: a simple example

Accordingly $\hat{A}^{i j}=0$ and Eqs. (9) and (11) reduce to two Laplace equations:

$$
\begin{align*}
& \Delta \Psi=0 \tag{12}\\
& \Delta\left(\tilde{N} \Psi^{7}\right)=0 \tag{13}
\end{align*}
$$

As previously use the minimal surface requirement for \mathcal{S} to get the solution $\Psi=1+\frac{m}{2 r}$ to Eq. (12).
Regarding Eq. (13), choose the $\left.\mathrm{BC} \tilde{N}\right|_{\mathcal{S}}=0$ (singular slicing). Along with the asymptotic flatness $\left.\mathrm{BCs} \tilde{N}\right|_{r \rightarrow \infty}=1$ and $\left.\Psi\right|_{r \rightarrow \infty}=1$, this yields the solution

$$
\tilde{N} \Psi^{7}=1-\frac{m}{2 r} \text {, i.e., since } N=\psi^{6} \tilde{N}, N=\left(1-\frac{m}{2 r}\right)\left(1+\frac{m}{2 r}\right)^{-1}
$$

We obtain Schwarzschild metric (in isotropic coordinates):

$$
g_{\mu \nu} d x^{\mu} d x^{\nu}=-\left(\frac{1-\frac{m}{2 r}}{1+\frac{m}{2 r}}\right)^{2} d t^{2}+\left(1+\frac{m}{2 r}\right)^{4}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

Comparing CTT and (X)CTS methods

- CTT : choose some transverse traceless part $\hat{A}_{T T}^{i j}$ of the extrinsic curvature $K^{i j}$, i.e. some momentum ${ }^{2} \Longrightarrow$ CTT $=$ Hamiltonian representation
- CTS or XCTS : choose some time derivative $\dot{\tilde{\gamma}}^{i j}$ of the conformal metric $\tilde{\gamma}^{i j}$, i.e. some velocity $\Longrightarrow(X) C T S ~=~ L a g r a n g i a n ~ r e p r e s e n t a t i o n ~$

[^1]
Comparing CTT and (X)CTS methods

- CTT : choose some transverse traceless part $\hat{A}_{T T}^{i j}$ of the extrinsic curvature $K^{i j}$, i.e. some momentum ${ }^{2} \Longrightarrow$ CTT $=$ Hamiltonian representation
- CTS or XCTS : choose some time derivative $\dot{\tilde{\gamma}}^{i j}$ of the conformal metric $\tilde{\gamma}^{i j}$,

Advantage of CTT : mathematical theory well developed; existence and uniqueness of solutions established (at least for constant mean curvature ($K=$ const) slices)
Advantage of XCTS : better suited to the description of quasi-stationary spacetimes (\rightarrow quasiequilibrium initial data) :

$$
\frac{\partial}{\partial t} \text { Killing vector } \Rightarrow \dot{\tilde{\gamma}}^{i j}=0 \text { and } \dot{K}=0
$$

[^2]
[^0]: ${ }^{1}$ traceless and transverse are meant with respect to $\tilde{\gamma}$

[^1]: ${ }^{2}$ recall the relation $\pi^{i j}=\sqrt{\gamma}\left(K \gamma^{i j}-K^{i j}\right)$ between $K^{i j}$ and the ADM canonical momentum

[^2]: ${ }^{2}$ recall the relation $\pi^{i j}=\sqrt{\gamma}\left(K \gamma^{i j}-K^{i j}\right)$ between $K^{i j}$ and the ADM canonical momentam

