The initial data problem for $3+1$ numerical relativity Part 2

Eric Gourgoulhon
Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris Diderot
F-92190 Meudon, France
eric.gourgoulhon@obspm.fr
http://www.luth.obspm.fr/~1uthier/gourgoulhon/

2008 International Summer School on Computational Methods in Gravitation and Astrophysics Asia Pacific Center for Theoretical Physics, Pohang, Korea 28 July - 1 August 2008
(1) Helical symmetry for binary systems
(2) Initial data for orbiting binary black holes
(3) Initial data for orbiting binary neutron stars
(4) Initial data for orbiting black hole - neutron star systems
(5) References for lectures 1-3

Outline

(1) Helical symmetry for binary systems
(2) Initial data for orbiting binary black holes
(3) Initial data for orbiting binary neutron stars
(4) Initial data for orbiting black hole - neutron star systems
(5) References for lectures 1-3

Helical symmetry for binary systems

Physical assumption: when the two objects are sufficiently far apart, the radiation reaction can be neglected \Rightarrow closed orbits
Gravitational radiation reaction circularizes the orbits \Rightarrow circular orbits Geometrical translation: spacetime possesses some helical symmetry

Helical Killing vector ξ :

(i) timelike near the system,
(ii) spacelike far from it, but such that \exists a smaller $T>0$ such that the separation between any point P and and its image $\chi_{T}(P)$ under the symmetry group is timelike [Bonazzola, Gourgoulhon \& Marck, PRD 56, 7740 (1997)]
[Friedman, Uryu \& Shibata, PRD 65, 064035 (2002)]

Helical symmetry: discussion

Helical symmetry is exact

- in Newtonian gravity and in 2nd order Post-Newtonian gravity
- in the Isenberg-Wilson-Mathews approximation to General Relativity [Baumgarte et al., PRL 79, 1182 (1997)]
- in general relativity for a non-axisymmetric system (binary) only with standing gravitational waves [Detweiler, PRD 50, 4929 (1994)]

A spacetime with a helical Killing vector and standing gravitational waves cannot be asymptotically flat in full GR [Gibbons \& Stewart 1983].

Helical symmetry and extended conformal thin sandwich (XCTS)

Choose coordinates $\left(t, x^{i}\right)$ adapted to the helical Killing vector: $\frac{\partial}{\partial t}=\boldsymbol{\xi}$. \Longrightarrow the "velocity" part of the freely specifiable data of the XCTS approach is fully determined:

$$
\dot{\tilde{\gamma}}^{i j}=\frac{\partial \tilde{\gamma}^{i j}}{\partial t}=0 \quad \text { and } \quad \dot{K}=\frac{\partial K}{\partial t}=0
$$

No such direct translation of helical symmetry in the CTT scheme
In addition, choose maximal slicing $K=0$
The XCTS system becomes then

$$
\begin{aligned}
& \tilde{D}_{i} \tilde{D}^{i} \Psi-\frac{\tilde{R}}{8} \Psi+\frac{1}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-7}+2 \pi \tilde{E} \Psi^{-3}=0 \\
& \tilde{D}_{j}\left(\frac{1}{\tilde{N}}(\tilde{L} \beta)^{i j}\right)=16 \pi \tilde{p}^{i} \\
& \tilde{D}_{i} \tilde{D}^{i}\left(\tilde{N} \Psi^{7}\right)-\left(\tilde{N} \Psi^{7}\right)\left[\frac{1}{8} \tilde{R}+\frac{7}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-8}+2 \pi(\tilde{E}+2 \tilde{S}) \Psi^{-4}\right]=0
\end{aligned}
$$

Helical symmetry and extended conformal thin sandwich (XCTS)

Case of flat conformal metric: if one choose, as part of free data, $\tilde{\gamma}_{i j}=f_{i j}$, the helical-symmetry XCTS equations reduce to

$$
\begin{aligned}
& \Delta \Psi+\frac{1}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-7}+2 \pi \tilde{E} \Psi^{-3}=0 \\
& \Delta \beta^{i}+\frac{1}{3} \mathcal{D}^{i} \mathcal{D}_{j} \beta^{j}-(L \beta)^{i j} \tilde{D}_{j} \ln \tilde{N}=16 \pi \tilde{N} \tilde{p}^{i} \\
& \Delta\left(\tilde{N} \Psi^{7}\right)-\left(\tilde{N} \Psi^{7}\right)\left[\frac{7}{8} \hat{A}_{i j} \hat{A}^{i j} \Psi^{-8}+2 \pi(\tilde{E}+2 \tilde{S}) \Psi^{-4}\right]=0
\end{aligned}
$$

$\Delta:=\mathcal{D}_{i} \mathcal{D}^{i}$ flat Laplacian, \mathcal{D}_{i} flat connection ($\mathcal{D}_{i}=\partial_{i}$ in Cartesian coord.),
$\hat{A}^{i j}=\frac{1}{2 \tilde{N}}(L \beta)^{i j}, \quad(L \beta)^{i j}:=\mathcal{D}^{i} \beta^{j}+\mathcal{D}^{j} \beta^{i}-\frac{2}{3} \mathcal{D}_{k} \beta^{k} f^{i j}$

Helical symmetry and IWM approximation

Isenberg-Wilson-Mathews approximation: waveless approximation to General Relativity based on a conformally flat spatial metric: $\gamma=\psi^{4} f$ [Isenberg (1978)], [Wilson \& Mathews (1989)]
\Rightarrow spacetime metric: $d s^{2}=-N^{2} d t^{2}+\psi^{4} f_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t\right)$ Amounts to solve only 5 of the 10 Einstein equations:

- Hamiltonian constraint
- momentum constraint (3 equations)
- trace of the evolution equation for the extrinsic curvature

Within the helical symmetry, the IWM equations reduce to the XCTS equations with choice $\tilde{\gamma}=f$

but note

XCTS is not some approximation to general relativity (contrary to IWM): it provides exact initial data

Outline

(1) Helical symmetry for binary systems
(2) Initial data for orbiting binary black holes
(3) Initial data for orbiting binary neutron stars
4. Initial data for orbiting black hole - neutron star systems
(5) References for lectures 1-3

Basic framework

- $\partial_{t}=\xi$ helical Killing vector \Longrightarrow XCTS scheme with $\dot{\tilde{\gamma}}^{i j}=0$ and $\dot{K}=0$
- each black hole is a non-expanding horizon

Non-expanding horizon boundary conditions: (cf. Lecture 4)

- $4 \tilde{s}^{i} \tilde{D}_{i} \psi+\tilde{D}_{i} \tilde{s}^{i} \psi+\frac{1}{2 \tilde{N}}(\tilde{L} \beta)_{i j} \tilde{s}^{i} \tilde{s}^{j} \Psi^{-3}-\frac{2}{3} K \psi^{3} \stackrel{S}{=} 0$
- $\beta^{\perp} \stackrel{\underline{S}}{=} N$
- V conformal Killing vector of $\tilde{\boldsymbol{q}}$, e.g. $V \stackrel{\mathcal{S}}{=} \omega \partial_{\varphi_{*}} \quad(\omega=$ const $)$
$\mathcal{S}=\mathcal{S}_{1}$ or \mathcal{S}_{2} (one the two excised surfaces), \tilde{q} : conformal induced metric on \mathcal{S} Hence $\boldsymbol{\beta} \stackrel{\mathcal{S}}{=} \beta^{\perp} s-\boldsymbol{V}$ yields $\boldsymbol{\beta} \stackrel{\mathcal{S}}{=} N s-\omega \boldsymbol{\partial}_{\varphi_{\star}}$
The remains to choose, for each hole,
- the lapse N (choice of foliation)
- the conformal Killing vector $\partial_{\varphi_{\star}}$ on \mathcal{S} (choice of the direction of spin)
- the constant ω (choice of spin amplitude, cf. below)

Boundary conditions at spatial infinity

At spatial infinity:

$$
\xi=\partial_{t_{0}}+\Omega \partial_{\varphi_{0}}
$$

where $\left(t_{0}, r_{0}, \theta_{0}, \varphi_{0}\right)=$ coordinate system associated with an asymptotically inertial observer
Ω : constant $=$ orbital angular velocity
Hence the boundary conditions:

- asymptotic flatness : $\left.\Psi\right|_{r \rightarrow \infty}=1$ and $\left.\tilde{N}\right|_{r \rightarrow \infty}=1$
- $\partial_{t}=N n+\boldsymbol{\beta}=\boldsymbol{\xi}$ helical vector: $\left.\boldsymbol{\beta}\right|_{r \rightarrow \infty}=\Omega \partial_{\varphi_{0}}$

Rotation state of the holes

1. Corotating state (synchronized configuration)

the BHs are corotating
 the null generators of the non-expanding horizons are colinear to the helical Killing vector
$\Longleftrightarrow \quad$ the non-expanding horizons are Killing horizons
= the helical Killing vector ∂_{t} is null at \mathcal{S}_{1} and \mathcal{S}_{2}
$\Longleftrightarrow \quad(N n+\beta) \cdot(N n+\beta) \stackrel{S}{=} 0$
$\Longleftrightarrow \quad-N^{2}+\boldsymbol{\beta} \cdot \boldsymbol{\beta} \stackrel{\underline{S}}{\underline{\mathcal{S}}} 0$
$\Longleftrightarrow \quad-N^{2}+N^{2}+\omega^{2} \boldsymbol{\partial}_{\varphi_{0}} \cdot \boldsymbol{\partial}_{\varphi_{0}} \stackrel{\mathcal{S}}{=} 0$
$\Longleftrightarrow \quad \omega \underline{\underline{\mathcal{S}}} 0$
Remark: From a full spacetime point of view, the corotating state is the only rotation state fully compatible with the helical symmetry (rigidity property) [Friedman, Uryu \& Shibata, PRD 65, 064035 (2002)]

Rotation state of the holes

2. Irrotational state

Spin of a non-expanding horizon [Ashtekar, Beetle \& Lewandowski, CQG 19, 1195 (2002)]

$$
S_{(\phi)}:=\frac{1}{8 \pi} \oint_{\mathcal{S}}\langle\boldsymbol{L}, \boldsymbol{\phi}\rangle \sqrt{q} d^{2} x
$$

where

- L is the 1 -form defined by $L_{a}=K_{i j} s^{i} q^{j}{ }_{a}$
- ϕ is a Killing vector of $(\mathcal{S}, \boldsymbol{q})$ (\boldsymbol{q} : induced metric on \mathcal{S})

In terms of conformal quantities: $S_{(\phi)}:=\frac{1}{16 \pi} \oint_{\mathcal{S}} \frac{1}{\tilde{N}}(\tilde{L} \beta)_{i j} \tilde{S}^{i} \phi^{j} \sqrt{\tilde{q}} d^{2} x$
Problem: find a (approximate) Killing vector on \mathcal{S}
numerical method: [Dreyer, Krishnan, Shoemaker \& Schnetter, PRD 67, 024018 (2003)]
Definition of irrotationality [Caudill, Cook, Grigsby \& Pfeiffer, PRD 74, 064011 (2006)] :

$$
S_{(\phi)}=0
$$

\Longrightarrow choose ω to ensure $S_{(\phi)}=0$

Global quantities

- Orbital angular velocity: $\Omega / \xi=\partial_{t_{0}}+\Omega \partial_{\varphi_{0}}$
- ADM mass: $M_{\text {ADM }}=-\frac{1}{2 \pi} \oint_{\infty} s^{i}\left(\mathcal{D}_{i} \Psi-\frac{1}{8} \mathcal{D}^{j} \tilde{\gamma}_{i j}\right) \sqrt{q} d^{2} x$
- Total angular momentum: $J=\frac{1}{8 \pi} \oint_{\infty}\left(K_{i j}-K \gamma_{i j}\right)\left(\boldsymbol{\partial}_{\varphi_{0}}\right)^{i} s^{j} \sqrt{q} d^{2} x$
- Irreducible masses: $M_{\text {irri }}:=\sqrt{\frac{A_{i}}{16 \pi}} \quad(i=1,2)$
$A_{i}=$ area of surface \mathcal{S}_{i} (measured with induced metric \boldsymbol{q})

Determination of Ω

1. Effective potential method

Origin: [Cook, PRD 50, 5025 (1994)], improved by [Caudill, Cook, Grigsby \& Pfeiffer, PRD 74, 064011 (2006)]

- Define the binding energy by $E:=M_{\text {ADM }}-M_{\mathrm{irr1}}-M_{\mathrm{irr2}}$
- Define a circular orbit as an extremum of E with respect to proper separation l at fixed angular momentum, irreducible masses and spins:

$$
\left.\frac{\partial E}{\partial l}\right|_{J, M_{\mathrm{irr} 1}, M_{\mathrm{irr} 2}, S_{1}, S_{2}}=0
$$

Determination of Ω

2. Virial theorem method

Origin: [Gourgoulhon, Grandclément \& Bonazzola, PRD 65, 044020 (2002)],
Virial assumption: $O\left(r^{-1}\right)$ part of the metric $(r \rightarrow \infty)$ same as Schwarzschild [The only quantity "felt" at the $O\left(r^{-1}\right)$ level by a distant observer is the total mass of the system.]
A priori

$$
\Psi \sim 1+\frac{M_{\mathrm{ADM}}}{2 r} \quad \text { and } \quad N \sim 1-\frac{M_{\mathrm{K}}}{r}
$$

Hence

$$
(\text { virial assumption }) \Longleftrightarrow M_{\mathrm{ADM}}=M_{\mathrm{K}}
$$

Note

$$
(\text { virial assumption }) \Longleftrightarrow \Psi^{2} N \sim 1+\frac{\alpha}{r^{2}}
$$

Determination of Ω

2. Virial theorem method (con't)

Link with the classical virial theorem
Einstein equations \Rightarrow

$$
\begin{aligned}
\Delta \ln \left(\Psi^{2} N\right)= & \Psi^{4}\left[4 \pi S_{i}{ }^{i}+\frac{3}{4} \tilde{A}_{i j} \tilde{A}^{i j}\right] \\
& -\frac{1}{2}\left[\mathcal{D}_{i} \ln N \mathcal{D}^{i} \ln N+\mathcal{D}_{i} \ln \left(\Psi^{2} N\right) \mathcal{D}^{i} \ln \left(\Psi^{2} N\right)\right]
\end{aligned}
$$

No monopolar $1 / r$ term in $\Psi^{2} N \Longleftrightarrow$

$$
\begin{aligned}
\int_{\Sigma_{t}}\left\{4 \pi S_{i}{ }^{i}\right. & +\frac{3}{4} \tilde{A}_{i j} \tilde{A}^{i j} \\
& \left.-\frac{\Psi^{-4}}{2}\left[\mathcal{D}_{i} \ln N \mathcal{D}^{i} \ln N+\mathcal{D}_{i} \ln \left(\Psi^{2} N\right) \mathcal{D}^{i} \ln \left(\Psi^{2} N\right)\right]\right\} \Psi^{4} \sqrt{f} d^{3} x=0
\end{aligned}
$$

Newtonian limit is the classical virial theorem:

$$
2 E_{\text {kin }}+3 P+E_{\text {grav }}=0
$$

Determination of Ω

2. Virial theorem method : validation
recovering Kepler's third law

Initial data for orbiting binarv black holes

Determination of Ω : comparison of the two methods

Agreement between the effective potential method and the virial theorem method: very good
[Skoge \& Baumgarte, PRD 66, 107501 (2002)]
[Caudill, Cook, Grigsby \& Pfeiffer, PRD 74, 064011 (2006)]

Numerical implementation

- [Grandclément, Gourgoulhon \& Bonazzola, PRD 65, 044021 (2002)] : corotating BH
- [Cook \& Pfeiffer, PRD 70, 104016 (2004)] : corotating and "quasi-irrotational" BH
- [Ansorg, PRD 72, 024018 (2005)], [Ansorg, CQG 24, S1 (2007)] : corotating BH
- [Caudill, Cook, Grigsby \& Pfeiffer, PRD 74, 064011 (2006)] : corotating and irrotational BH All are using $\tilde{\gamma}=f$ and $K=0$

Results

Binding energy along an evolutionary sequence of equal-mass binary black holes

[Damour, Gourgoulhon, Grandclément, PRD 66, 024007 (2002)]

Results

ISCO configurations

Punctured initial data

Choice of the initial data 3-dimensional manifold: twice-punctured \mathbb{R}^{3} : $\Sigma_{0}=\mathbb{R}^{3} \backslash\left\{O_{1}, O_{2}\right\}$
Problem: incompatible with XCTS [Hannam, Evans, Cook \& Baumgarte, PRD 68, 064003 (2003)]
\Longrightarrow computations within the CTT framework
then no way to implement helical symmetry instead select

- $\hat{A}_{T T}^{i j}=0$
- $\hat{A}^{i j}=(L X)^{i j}$ with $X=$ Bowen-York solution \leftarrow ad hoc solution (no link with helical symmetry)

Punctured initial data: numerical implementations

- [Baumgarte, PRD 62, 024018 (2000)]
- [Baker, Campanelli, Lousto \& Takashi, PRD 65, 124012 (2002)]
- [Ansorg, Brügman \& Tichy, PRD 70, 064011 (2004)]

Used in the UTB and NASA/Goddard binary BH merger computations
Good agreement with XCTS at large separation but deviation from XCTS and post-Newtonian at close separation

Bowen-York extrinsic curvature is bad for binary systems in quasi-equilibrium

Post-Newtonian based initial data

- [Tichy, Brügman, Campanelli \& Diener, PRD 67, 064008 (2003)] : punctures + CTT method with free data $\left(\tilde{\gamma}_{i j}, \hat{A}_{\mathrm{TT}}^{i j}\right)$ given by the 2 PN metric
- [Nissanke, PRD 73, 124002 (2006)]: provides 2PN free data for both CTT and XCTS schemes
(1) Helical symmetry for binary systems
(2) Initial data for orbiting binary black holes
(3) Initial data for orbiting binary neutron stars

4. Initial data for orbiting black hole - neutron star systems
(5) References for lectures 1-3

Fluid equation of motion

Neutron star fluid $=$ perfect fluid : $\boldsymbol{T}=(e+p) \underline{\boldsymbol{u}} \otimes \underline{\boldsymbol{u}}+p \boldsymbol{g}$.
Carter-Lichnerowicz equations of motion for zero-temperature fluids:
$\nabla \cdot \boldsymbol{T}=0 \Longleftrightarrow\left\{\begin{array}{l}\boldsymbol{u} \cdot \mathbf{d} \boldsymbol{w}=0 \\ \nabla \cdot(n \boldsymbol{u})=0\end{array}\right.$
(1) $\quad \boldsymbol{w}:=h \underline{u} \quad:$ co-momentum 1-form
(2) $\mathbf{d} w$: vorticity 2 -form
with $n=$ baryon number density and $h=(e+p) /\left(m_{\mathrm{B}} n\right)$ specific enthalpy.
Cartan identity : Killing vector $\xi \Longrightarrow \mathcal{L}_{\xi} \boldsymbol{w}=0=\boldsymbol{\xi} \cdot \mathbf{d} \boldsymbol{w}+\mathbf{d}(\xi \cdot \boldsymbol{w})$
Two cases with a first integral : $\boldsymbol{\xi \cdot \boldsymbol { w } = \text { const }}$
(4)

- Rigid motion: $\boldsymbol{u}=\lambda \boldsymbol{\xi}:(3)+(1) \Leftrightarrow(4)$; (2) automatically satisfied
- Irrotational motion: $\mathbf{d} w=0 \Leftrightarrow w=\nabla \Phi:(3) \Leftrightarrow(4)$; (1) automatically satisfied

$$
\text { (2) } \Leftrightarrow \frac{n}{h} \nabla \cdot \nabla \Phi+\nabla\left(\frac{n}{h}\right) \cdot \nabla \Phi=0
$$

[Bonazzola, Gourgoulhon \& Marck, PRD 56, 7740 (1997)], [Asada, PRD 57, 7292 (1998)], [Shibata, PRD 58, 024012 (1998)], [Teukolsky, ApJ 504, 442 (1998)]
review: [Gourgoulhon, EAS Pub. Ser. 21, 43 (2006); gr-qc/0603009]

Astrophysical relevance of the two rotation states

- Rigid motion (synchronized binaries) (also called corotating binaries) : the viscosity of neutron star matter is far too low to ensure synchronization of the stellar spins with the orbital motion
[Kochanek, ApJ 398, 234 (1992)], [Bildsten \& Cutler, ApJ 400, 175 (1992)]
\Longrightarrow unrealistic state of rotation
- Irrotational motion: good approximation for neutron stars which are not initially millisecond rotators, because then $\Omega_{\text {spin }} \ll \Omega_{\text {orb }}$ at the late stages.

Fluid equations to be solved

Baryon number conservation for irrotational flows:

$$
n \Delta \Phi+\mathcal{D}_{i} n \mathcal{D}^{i} \Phi=\cdots
$$

\rightarrow singular ($n=0$ at the stellar surface) elliptic equation to be solved for Φ.
First integral of fluid motion $\xi \cdot w=$ const writes $\quad h N \frac{\Gamma}{\Gamma_{0}}=$ const
with 「: Lorentz factor between fluid co-moving observer and co-orbiting obse ($=1$ for synchronized binaries)
Γ_{0} : Lorentz factor between co-orbiting observer and asymptotically inertial observer
\rightarrow solve (5) for the specific enthalpy h.
From h compute the fluid proper energy density e, pressure p and baryon number n via an equation of state:

$$
e=e(h), \quad p=p(h), \quad n=n(h)
$$

Determination of Ω

First integral of fluid motion:

$$
h N \frac{\Gamma}{\Gamma_{0}}=\text { const }
$$

The Lorentz factor Γ_{0} contains Ω : at the Newtonian limit, $\ln \Gamma_{0}$ is nothing but the centrifugal potential: $\ln \Gamma_{0} \sim \frac{1}{2}(\Omega \times r)^{2}$.
At each step of the iterative procedure, Ω and the location of the rotation axis are then determined so that the stellar centers (density maxima) remain at fixed coordinate distance from each other.

Numerical results

- Polytropic EOS corotating : [Baumgarte et al., PRL 79, 1182 (1997)], [Baumgarte et al., PRD 57, 7299 (1998)], [Marronetti, Mathews \& Wilson, PRD 58, 107503 (1998)]
- Polytropic EOS irrotational : [Bonazzola, Gourgoulhon \& Marck, PRL 82, 892 (1999)], [Gourgoulhon et al., PRD 63, 064029 (2001)], [Marronetti, Mathews \& Wilson, PRD 60, 087301 (2000)], [Uryu \& Eriguchi, PRD 61, 124023 (2000)], [Uryu \& Eriguchi, PRD 62, 104015 (2000)], [Taniguchi \& Gourgoulhon, PRD 66, 104019 (2002)], [Taniguchi \& Gourgoulhon, PRD 68, 124025 (2003)]
- Nuclear matter EOS : [Bejger, Gondek-Rosińska, Gourgoulhon, Haensel, Taniguchi \& Zdunik, A\&A 431, 297 (2005)], [Oechslin, Janka \& Marek, astro-ph/0611047]
- Strange quark stars: [Oechslin, Uryu, Poghosyan \& Thielemann, MNRAS 349, 1469 (2004)], [Limousin, Gondek-Rosińska \& Gourgoulhon, PRD 71, 064012 (2005)]

Results

[Taniguchi \& Gourgoulhon, PRD 66, 104019 (2002)]
First non conformally flat initial data for binary NS:
[Uryu, Limousin, Friedman, Gourgoulhon, \& Shibata, PRL 97, 171101 (2006)]

Comparing BH and NS evolutionary sequences

Evolutionary sequence:
BH : configurations of decreasing separation with fixed irreducible mass NS : configurations of decreasing separation with fixed baryon mass

[Taniguchi \& Gourgoulhon, PRD 68, 124025 (2003)]
(1) Helical symmetry for binary systems
(2) Initial data for orbiting binary black holes
(3) Initial data for orbiting binary neutron stars
4) Initial data for orbiting black hole - neutron star systems
(5) References for lectures 1-3

Orbiting BH - NS systems

Computations with excised BH

XCTS framework with $\tilde{\gamma}_{i j}=f_{i j}$ (flat conformal metric), $K=0$ (maximal slicing) and $\dot{\tilde{\gamma}}^{i j}=0, \dot{K}=0$ (quasiequilibrium) Irrotational neutron star with polytropic EOS $\gamma=2$

- [Grandclément, PRD 74, 124002 (2006); PRD 75, 129903(E)]: irrotational BH, maximum NS compactness $\equiv=0.15 ; M_{\mathrm{BH}} / M_{\mathrm{NS}}=5$
- [Taniguchi, Baumgarte, Faber \& Shapiro, PRD 75, 084005 (2007)] :
approx. irrot. $\mathrm{BH}, \max \equiv=0.145,1 \leq M_{\mathrm{BH}} / M_{\mathrm{NS}} \leq 10$
- [Taniguchi, Baumgarte, Faber \& Shapiro, PRD 77, 044003 (2008)] :
irrot. $\mathrm{BH}, \max \equiv=0.178,1 \leq M_{\mathrm{BH}} / M_{\mathrm{NS}} \leq 10$
- [Foucart, Kidder, Pfeiffer \& Teukolsky, PRD 77, 124051 (2008)] :
irrot. BH and spinning BH with $J_{\mathrm{BH}}=-0.5 M_{\mathrm{BH}}^{2}, \equiv=0.14, M_{\mathrm{BH}} / M_{\mathrm{NS}}=1$ alternative choice of free data: Kerr-Schild near the BH:
$\tilde{\gamma}_{i j}=f_{i j}+\left(\tilde{\gamma}_{i j}^{\mathrm{KS}}-f_{i j}\right) e^{-\left(r / r_{0}\right)^{4}}$ and $K=K^{\mathrm{KS}} e^{-\left(r / r_{0}\right)^{4}}$

Orbiting BH - NS systems

Computations with excised BH

Illustration: Conformal factor ψ for a configuration with mass ratio $M_{\mathrm{BH}} / M_{\mathrm{NS}}=3$ and NS compactness $\equiv=0.145$

[Taniguchi, Baumgarte, Faber \& Shapiro, PRD 77, 044003 (2008)]

Orbiting BH - NS systems

Computations with punctures

Combination of CTT and XCTS with $\tilde{\gamma}_{i j}=f_{i j}, K=0$ and $\hat{A}_{\mathrm{TT}}^{i j}=0, \dot{K}=0$ Irrotational black hole
Neutron star EOS : polytropic with $\gamma=2$

- [Shibata \& Uryu, PRD 74, 121503 (2006)], [Shibata \& Uryu, CQG 24, S125 (2007)] : corotating NS, mass ratio $2.1 \leq M_{\mathrm{BH}} / M_{\mathrm{NS}} \leq 3.6$
- [Shibata \& Taniguchi, PRD 77, 084015 (2008)] : irrotational NS, mass ratio $2.5 \leq M_{\mathrm{BH}} / M_{\mathrm{NS}} \leq 3.5$

Outline

(1) Helical symmetry for binary systems
(2) Initial data for orbiting binary black holes
(3) Initial data for orbiting binary neutron stars
4. Initial data for orbiting black hole - neutron star systems
(5) References for lectures 1-3

$3+1$ formalism and Cauchy problem

- J.W. York : Kinematics and dynamics of general relativity, in Sources of Gravitational Radiation, edited by L.L. Smarr, Cambridge University Press, Cambridge (1979), p. 83.
- Y. Choquet-Bruhat and J.W. York: The Cauchy Problem, in General Relativity and Gravitation, one hundred Years after the Birth of Albert Einstein, Vol. 1, edited by A. Held, Plenum Press, New York (1980), p. 99.
- T.W. Baumgarte and S.L. Shapiro : Numerical relativity and compact binaries, Phys. Rep. 376, 41 (2003).
- E. Gourgoulhon : 3+1 Formalism and Bases of Numerical Relativity, Lectures at Institut Henri Poincaré (Paris, Sept.-Dec. 2006); http://arxiv.org/abs/gr-qc/0703035
- M. Alcubierre : Introduction to 3+1 Numerical Relativity, Oxford University Press (2008).

Initial data problem

- G.B. Cook: Initial data for numerical relativity, Living Rev. Relativity 3, 5 (2000); http://www.livingreviews.org/lrr-2000-5
- H.P. Pfeiffer: The initial value problem in numerical relativity, in Proceedings Miami Waves Conference 2004; http://arxiv.org/abs/gr-qc/0412002
- R. Bartnik and J. Isenberg : The Constraint Equations, in The Einstein Equations and the Large Scale Behavior of Gravitational Fields - 50 years of the Cauchy Problem in General Relativity, edited by P.T. Chruściel and H. Friedrich, Birkhäuser Verlag, Basel (2004), p. 1.
- E. Gourgoulhon : Construction of initial data for $3+1$ numerical relativity, J. Phys. Conf. Ser. 91, 012001 (2007)

Historical articles

- G. Darmois : Les équations de la gravitation einsteinienne, Mémorial des Sciences Mathématiques 25, Gauthier-Villars, Paris (1927).
- A. Lichnerowicz: L'intégration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl. 23, 37 (1944); reprinted in A. Lichnerowicz: Choix d'œuvres mathématiques, Hermann, Paris (1982), p. 4.
- A. Lichnerowicz: Sur les équations relativistes de la gravitation, Bulletin de la S.M.F. 80, 237 (1952); available at http://www.numdam.org/item?id=BSMF_1952_-80__237_0
- Y. Fourès-Bruhat (Y. Choquet-Bruhat) : Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires, Acta Mathematica 88, 141 (1952); available at http://fanfreluche.math.univ-tours.fr/
- Y. Fourès-Bruhat (Y. Choquet-Bruhat) : Sur l'Intégration des Équations de la Relativité Générale, J. Rational Mech. Anal. 5, 951 (1956).
- R. Arnowitt, S. Deser and C.W Misner : The Dynamics of General Relativity, in Gravitation: an introduction to current research, edited by L. Witten, Wiley, New York (1962), p. 227; available as gr-qc/0405109

