Symbolic computations in general relativity with SageMath

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH)
Observatoire de Paris, CNRS, Université PSL, Université Paris Cité
Meudon, France

https://luth.obspm.fr/~luthier/gourgoulhon

Journée thématique autour de la relativité École Polytechnique, Palaiseau, France 9 May 2023

Outline

- SageMath and its differential geometry capabilities
- SageMath implementation of tensor fields
- 3 Example: Near-horizon geometry of the extremal Kerr black hole
- 4 Other examples
- Conclusions

Outline

- SageMath and its differential geometry capabilities
- 2 SageMath implementation of tensor fields
- Example: Near-horizon geometry of the extremal Kerr black hole
- Other examples
- Conclusions

SageMath (nickname: Sage) is a free open-source computer algebra system started by William Stein in 2005

SageMath (nickname: Sage) is a free open-source computer algebra system started by William Stein in 2005

SageMath is free (GPL v2)

Freedom means

- everybody can use it, by download from https://www.sagemath.org
- everybody can examine the source code and improve it

SageMath (nickname: Sage) is a free open-source computer algebra system started by William Stein in 2005

SageMath is free (GPL v2)

Freedom means

- everybody can use it, by download from https://www.sagemath.org
- everybody can examine the source code and improve it

SageMath is based on Python

- no need to learn any specific syntax to use it
- Python is a powerful object oriented language, with a neat syntax
- SageMath benefits from the Python ecosystem (e.g. Jupyter notebook, NumPy, Matplotlib)

SageMath (nickname: Sage) is a free open-source computer algebra system started by William Stein in 2005

SageMath is free (GPL v2)

Freedom means

- everybody can use it, by download from https://www.sagemath.org
- everybody can examine the source code and improve it

SageMath is based on Python

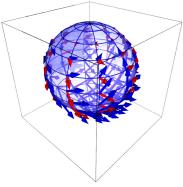
- no need to learn any specific syntax to use it
- Python is a powerful object oriented language, with a neat syntax
- SageMath benefits from the Python ecosystem (e.g. Jupyter notebook, NumPy, Matplotlib)

SageMath is developed by an enthusiastic community

- mostly composed of mathematicians
- welcoming newcomers

Differential geometry with SageMath

SageManifolds project: extends SageMath towards differential geometry and tensor calculus



Stereographic-coordinate frame on \mathbb{S}^2

- https://sagemanifolds.obspm.fr
- ullet \sim 119,000 lines of Python code
- fully included in SageMath (after review process)
- ~ 30 contributors (developers and reviewers) cf. https://sagemanifolds.obspm.fr/ authors.html
- dedicated mailing list
- help: https://ask.sagemath.org

Everybody is welcome to contribute

⇒ visit https://sagemanifolds.obspm.fr/contrib.html

GR computations with SageMath

Current status

Already present (SageMath 9.8):

- differentiable manifolds: tangent spaces, vector frames, tensor fields, curves, pullback and pushforward operators, submanifolds
- vector bundles (tangent bundle, tensor bundles)
- standard tensor calculus (tensor product, contraction, symmetrization, etc.), even on non-parallelizable manifolds, and with all monoterm tensor symmetries taken into account
- Lie derivative along a vector field
- differential forms: exterior and interior products, exterior derivative, Hodge duality
- multivector fields: exterior and interior products, Schouten-Nijenhuis bracket
- affine connections (curvature, torsion)
- pseudo-Riemannian metrics
- computation of geodesics (numerical integration)

Current status

Already present (cont'd):

- some plotting capabilities (charts, points, curves, vector fields)
- parallelization (on tensor components) of CPU demanding computations
- extrinsic geometry of pseudo-Riemannian submanifolds
- series expansions of tensor fields
- symplectic manifolds
- 2 symbolic backends: Pynac/Maxima (SageMath's default) and SymPy

Future prospects:

- more symbolic backends (Giac, FriCAS, ...)
- more graphical outputs
- spinors, integrals on submanifolds, variational calculus, etc.
- connection with numerical relativity: use SageMath to explore numerically-generated spacetimes

Outline

- SageMath and its differential geometry capabilities
- SageMath implementation of tensor fields
- Example: Near-horizon geometry of the extremal Kerr black hole
- Other examples
- Conclusions

Vector fields on a smooth manifold

The set $\mathfrak{X}(M)$ of vector fields on a smooth manifold M over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$ is endowed with two algebraic structures:

 $oldsymbol{\mathfrak{X}}(M)$ is an infinite-dimensional vector space over \mathbb{K} , the scalar multiplication $\mathbb{K} imes \mathfrak{X}(M) o \mathfrak{X}(M)$, $(\lambda, oldsymbol{v}) \mapsto \lambda oldsymbol{v}$ being defined by

$$\forall p \in M, \quad (\lambda \boldsymbol{v})|_p = \lambda \boldsymbol{v}|_p,$$

② $\mathfrak{X}(M)$ is a module over the commutative algebra $C^{\infty}(M)$, the scalar multiplication $C^{\infty}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$, $(f, v) \mapsto fv$ being defined by

$$\forall p \in M, \quad \left. (f \boldsymbol{v}) \right|_p = \left. f(p) \boldsymbol{v} \right|_p,$$

the right-hand side involving the scalar multiplication by $f(p) \in \mathbb{K}$ in the vector space T_pM .

$\mathfrak{X}(M)$ as a $C^{\infty}(M)$ -module

 $\mathfrak{X}(M)$ is a **free module** over $C^{\infty}(M) \iff \mathfrak{X}(M)$ admits a basis

If this occurs, then $\mathfrak{X}(M)$ is actually a **free module of finite rank** over $C^{\infty}(M)$ and $\operatorname{rank} \mathfrak{X}(M) = \dim M = n$.

One says then that M is a **parallelizable** manifold.

A basis $(e_a)_{1 \leq a \leq n}$ of $\mathfrak{X}(M)$ is called a **vector frame**

Basis expansion¹:

$$\forall v \in \mathfrak{X}(M), \quad v = v^a e_a, \quad \text{with } v^a \in C^{\infty}(M)$$
 (1)

At each point $p \in M$, (1) gives birth to an identity in the tangent space T_pM :

$$\left. \boldsymbol{v} \right|_p = v^a(p) \left. \boldsymbol{e}_a \right|_p, \quad \text{with } v^a(p) \in \mathbb{K},$$

which is nothing but the expansion of the tangent vector $v|_p$ on the basis $(e_a|_p)_{1\leq a\leq n}$ of the vector space T_pM .

¹Einstein's convention for summation on repeated indices is assumed.

Parallelizable manifolds

M is parallelizable	\iff	$\mathfrak{X}(M)$ is a free $C^\infty(M)$ -module of rank n
	\iff	M admits a global vector frame
	\iff	the tangent bundle is trivial: $TM \simeq M \times \mathbb{K}^n$

Parallelizable manifolds

```
\begin{array}{ll} M \text{ is parallelizable} & \Longleftrightarrow & \mathfrak{X}(M) \text{ is a free } C^{\infty}(M)\text{-module of rank } n \\ & \Longleftrightarrow & M \text{ admits a global vector frame} \\ & \Longleftrightarrow & \text{the tangent bundle is trivial: } TM \simeq M \times \mathbb{K}^n \end{array}
```

Examples of parallelizable manifolds

- \mathbb{R}^n (global coordinate chart \Rightarrow global vector frame)
- the circle S¹ (rem: no global coordinate chart)
- ullet the torus $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$
- the 3-sphere $\mathbb{S}^3 \simeq \mathrm{SU}(2)$, as any Lie group
- the 7-sphere \$\mathbb{S}^7\$
- any orientable 3-manifold (Steenrod theorem)

Parallelizable manifolds

$$\begin{array}{ll} M \text{ is parallelizable} & \Longleftrightarrow & \mathfrak{X}(M) \text{ is a free } C^{\infty}(M)\text{-module of rank } n \\ & \Longleftrightarrow & M \text{ admits a global vector frame} \\ & \Longleftrightarrow & \text{the tangent bundle is trivial: } TM \simeq M \times \mathbb{K}^n \end{array}$$

Examples of parallelizable manifolds

- \mathbb{R}^n (global coordinate chart \Rightarrow global vector frame)
- the circle S¹ (rem: no global coordinate chart)
- ullet the torus $\mathbb{T}^2=\mathbb{S}^1 imes\mathbb{S}^1$
- the 3-sphere $\mathbb{S}^3 \simeq \mathrm{SU}(2)$, as any Lie group
- the 7-sphere \$\mathbb{S}^7\$
- any orientable 3-manifold (Steenrod theorem)

Examples of non-parallelizable manifolds

- the sphere \mathbb{S}^2 (hairy ball theorem!) and any n-sphere \mathbb{S}^n with $n \notin \{1,3,7\}$
- ullet the real projective plane \mathbb{RP}^2

SageMath implementation of vector fields

Choice of the $C^\infty(M)$ -module point of view for $\mathfrak{X}(M)$, instead of the infinite-dimensional \mathbb{K} -vector space one

⇒ implementation advantages:

- reduction to finite-dimensional structures: free $C^\infty(U)$ -modules of rank n on parallelizable open subsets $U\subset M$
- ullet for tensor calculus on each parallelizable open set U, use of exactly the same ${\tt FiniteRankFreeModule}$ code as for the tangent spaces

SageMath implementation of vector fields

Choice of the $C^\infty(M)$ -module point of view for $\mathfrak{X}(M)$, instead of the infinite-dimensional \mathbb{K} -vector space one

⇒ implementation advantages:

- reduction to finite-dimensional structures: free $C^\infty(U)$ -modules of rank n on parallelizable open subsets $U\subset M$
- ullet for tensor calculus on each parallelizable open set U, use of exactly the same ${\tt FiniteRankFreeModule}$ code as for the tangent spaces

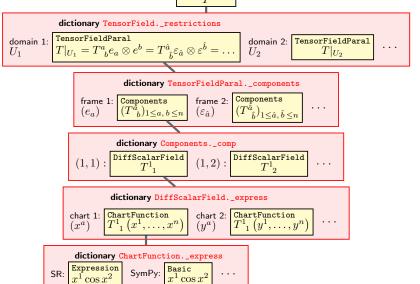
Decomposition of M into parallelizable parts

Assumption: the smooth manifold M can be covered by a finite number m of parallelizable open subsets U_i $(1 \le i \le m)$

Example: this holds if M is compact (finite atlas)

Tensor field storage

TensorField T



Outline

- SageMath and its differential geometry capabilities
- 2 SageMath implementation of tensor fields
- 3 Example: Near-horizon geometry of the extremal Kerr black hole
- Other examples
- Conclusions

Near-horizon geometry of the extremal Kerr black hole

```
Extremal Kerr black hole: a=m \iff \kappa=0 (degenerate horizon) 2-dimensional isometry group: (\mathbb{R},+) \times \mathrm{U}(1)

Near-horizon geometry of extremal Kerr BH is similar to \mathrm{AdS}_2 \times \mathbb{S}^2

\Longrightarrow 4-dimensional isometry group: \mathrm{SL}(2,\mathbb{R}) \times \mathrm{U}(1)

[Carter, Les Houches lecture (1973)] [Bardeen & Horowitz, PRD 60, 104030 (1999)]

Near-horizon geometry of extremal Kerr black hole is at the basis of the
```

Kerr/CFT correspondence (see [Compère, LRR 20, 1 (2017)] for a review)

Near-horizon geometry of the extremal Kerr black hole

```
Extremal Kerr black hole: a=m \iff \kappa=0 (degenerate horizon) 2-dimensional isometry group: (\mathbb{R},+)\times \mathrm{U}(1)
```

```
Near-horizon geometry of extremal Kerr BH is similar to AdS_2 \times \mathbb{S}^2 \Longrightarrow 4-dimensional isometry group: SL(2,\mathbb{R}) \times U(1)
```

```
[Carter, Les Houches lecture (1973)] [Bardeen & Horowitz, PRD 60, 104030 (1999)]
```

Near-horizon geometry of extremal Kerr black hole is at the basis of the Kerr/CFT correspondence (see [Compère, LRR 20, 1 (2017)] for a review)

```
Let us explore this geometry with a SageMath notebook:
```

```
https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/blob/master/Notebooks/SM_extremal_Kerr_near_horizon.ipynb
```

(In the nbviewer menu, click on [®] to run an interactive version on a Binder server)

Outline

- SageMath and its differential geometry capabilities
- SageMath implementation of tensor fields
- Example: Near-horizon geometry of the extremal Kerr black hole
- 4 Other examples
- Conclusions

Other examples

- Schwarzschild spacetime (static black hole): https://nbviewer.org/github/egourgoulhon/SageMathTour/blob/master/Notebooks/demo_pseudo_Riemannian_Schwarzschild.ipynb
- Computation of geodesics in Kerr spacetime (rotating black hole):
 https:
 - //nbviewer.jupyter.org/github/BlackHolePerturbationToolkit/
 kerrgeodesic_gw/blob/master/Notebooks/Kerr_geodesics.ipynb
- The spheres \mathbb{S}^2 and \mathbb{S}^3 :
 - https://nbviewer.org/github/sagemanifolds/SageManifolds/blob/master/Notebooks/SM_sphere_S2.ipynb
 - https://nbviewer.org/github/sagemanifolds/SageManifolds/blob/master/Notebooks/SM_sphere_S3_Hopf.ipynb

Image of an accretion disk surrounding a Schwarzschild BH

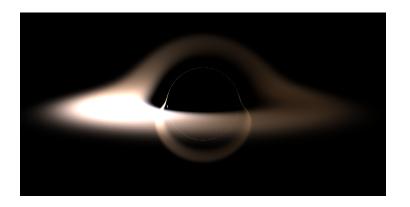


Image computed with SageMath by integrating null geodesics, cf. the notebook
https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Notebooks/SM_black_hole_rendering.ipynb

Outline

- SageMath and its differential geometry capabilities
- SageMath implementation of tensor fields
- Example: Near-horizon geometry of the extremal Kerr black hole
- Other examples
- Conclusions

Symbolic calculus on manifolds in the free Python-based system SageMath

• runs on fully specified smooth manifolds (described by an atlas)

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame
- runs on parallelizable and non-parallelizable manifolds

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame
- runs on parallelizable and non-parallelizable manifolds
- is independent of the symbolic engine (e.g. *Pynac/Maxima*, *SymPy*,...) used to perform calculus at the level of coordinate expressions

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame
- runs on parallelizable and non-parallelizable manifolds
- is independent of the symbolic engine (e.g. *Pynac/Maxima*, *SymPy*,...) used to perform calculus at the level of coordinate expressions

Symbolic calculus on manifolds in the free Python-based system SageMath

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame
- runs on parallelizable and non-parallelizable manifolds
- is independent of the symbolic engine (e.g. *Pynac/Maxima*, *SymPy*,...) used to perform calculus at the level of coordinate expressions

Many examples available at

```
https://sagemanifolds.obspm.fr/examples.html
```

Want to join the SageManifolds project or to simply stay tuned?

```
visit https://sagemanifolds.obspm.fr/
(download, documentation, example notebooks, mailing list)
```