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SageMath and its differential geometry capabilities

SageMath in a few words
SageMath (nickname: Sage) is a free open-source computer algebra system
initiated by William Stein in 2005

SageMath is free (GPL v2)

Freedom means
1 everybody can use it, by download from https://www.sagemath.org
2 everybody can examine the source code and improve it

SageMath is based on Python

no need to learn any specific syntax to use it
Python is a powerful object oriented language, with a neat syntax
SageMath benefits from the Python ecosystem (e.g. Jupyter notebook,
NumPy, Matplotlib)

SageMath is developed by an enthusiastic community

mostly composed of mathematicians
welcoming newcomers
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SageMath and its differential geometry capabilities

Differential geometry with SageMath

SageManifolds project: extends SageMath towards differential geometry and
tensor calculus

Stereographic-coordinate frame on S2

https://sagemanifolds.obspm.fr

∼ 119,000 lines of Python code
fully included in SageMath
(after review process)
∼ 30 contributors (developers and reviewers)
cf. https://sagemanifolds.obspm.fr/
authors.html

dedicated mailing list
help desk: https://ask.sagemath.org

Everybody is welcome to contribute
=⇒ visit https://sagemanifolds.obspm.fr/contrib.html
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SageMath and its differential geometry capabilities

Current status

Already present (SageMath 10.0):
differentiable manifolds: tangent spaces, vector frames, tensor fields, curves,
pullback and pushforward operators, submanifolds
vector bundles (tangent bundle, tensor bundles)
standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds, and with all monoterm tensor
symmetries taken into account
Lie derivative along a vector field
differential forms: exterior and interior products, exterior derivative, Hodge
duality
multivector fields: exterior and interior products, Schouten-Nijenhuis bracket
affine connections (curvature, torsion)
pseudo-Riemannian metrics
computation of geodesics (numerical integration)
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SageMath and its differential geometry capabilities

Current status

Already present (cont’d):
some plotting capabilities (charts, points, curves, vector fields)
parallelization (on tensor components) of CPU demanding computations
extrinsic geometry of pseudo-Riemannian submanifolds
series expansions of tensor fields
symplectic manifolds
2 symbolic backends: Pynac/Maxima (SageMath’s default) and SymPy

Future prospects:
more symbolic backends (Giac, FriCAS, ...)
more graphical outputs
spinors, integrals on submanifolds, variational calculus, etc.
connection with numerical relativity: use SageMath to explore
numerically-generated spacetimes
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SageMath implementation of tensor fields

Vector fields on a smooth manifold

The set X(M) of vector fields on a smooth manifold M over K = R or K = C is
endowed with two algebraic structures:

1 X(M) is an infinite-dimensional vector space over K, the scalar multiplication
K× X(M) → X(M), (λ,v) 7→ λv being defined by

∀p ∈ M, (λv)|p = λv|p ,

2 X(M) is a module over the commutative algebra C∞(M), the scalar
multiplication C∞(M)× X(M) → X(M), (f,v) 7→ fv being defined by

∀p ∈ M, (fv)|p = f(p)v|p ,

the right-hand side involving the scalar multiplication by f(p) ∈ K in the
vector space TpM .
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SageMath implementation of tensor fields

X(M) as a C∞(M)-module

X(M) is a free module over C∞(M) ⇐⇒ X(M) admits a basis

If this occurs, then X(M) is actually a free module of finite rank over C∞(M)
and rankX(M) = dimM = n.
One says then that M is a parallelizable manifold.
A basis (ea)1≤a≤n of X(M) is called a vector frame

Basis expansion1:

∀v ∈ X(M), v = vaea, with va ∈ C∞(M) (1)

At each point p ∈ M , (1) gives birth to an identity in the tangent space TpM :

v|p = va(p) ea|p , with va(p) ∈ K,

which is nothing but the expansion of the tangent vector v|p on the basis
(ea|p)1≤a≤n of the vector space TpM .

1Einstein’s convention for summation on repeated indices is assumed.
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SageMath implementation of tensor fields

Parallelizable manifolds

M is parallelizable ⇐⇒ X(M) is a free C∞(M)-module of rank n
⇐⇒ M admits a global vector frame
⇐⇒ the tangent bundle is trivial: TM ≃ M ×Kn

Examples of parallelizable manifolds

Rn (global coordinate chart ⇒ global vector frame)
the circle S1 (rem: no global coordinate chart)
the torus T2 = S1 × S1

the 3-sphere S3 ≃ SU(2), as any Lie group
the 7-sphere S7

any orientable 3-manifold (Steenrod theorem)

Examples of non-parallelizable manifolds

the sphere S2 (hairy ball theorem!) and any n-sphere Sn with n ̸∈ {1, 3, 7}
the real projective plane RP2
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SageMath implementation of tensor fields

SageMath implementation of vector fields

Choice of the C∞(M)-module point of view for X(M), instead of the
infinite-dimensional K-vector space one

=⇒ implementation advantages:
reduction to finite-dimensional structures: free C∞(U)-modules of rank n on
parallelizable open subsets U ⊂ M

for tensor calculus on each parallelizable open set U , use of exactly the same
FiniteRankFreeModule code as for the tangent spaces

Decomposition of M into parallelizable parts

Assumption: the smooth manifold M can be covered by a finite number m of
parallelizable open subsets Ui (1 ≤ i ≤ m)

Example: this holds if M is compact (finite atlas)

More details on the implementation:
[E. Gourgoulhon & M. Mancini, Les cours du CIRM 6, 1 (2018)]
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SageMath implementation of tensor fields

Tensor field storage
TensorField

T

dictionary TensorField._restrictions

domain 1:
U1

TensorFieldParal
T |U1 = T a

bea ⊗ eb = T â
b̂
εâ ⊗ εb̂ = . . .

domain 2:
U2

TensorFieldParal
T |U2

. . .

dictionary TensorFieldParal._components

frame 1:
(ea)

Components
(T a

b)1≤a, b≤n

frame 2:
(εâ)

Components
(T â

b̂
)1≤â, b̂≤n

. . .

dictionary Components._comp

(1, 1) :
DiffScalarField

T 1
1

(1, 2) :
DiffScalarField

T 1
2

. . .

dictionary DiffScalarField._express

chart 1:
(xa)

ChartFunction
T 1

1

(
x1, . . . , xn

) chart 2:
(ya)

ChartFunction
T 1

1

(
y1, . . . , yn

) . . .

dictionary ChartFunction._express

SR:
Expression
x1 cosx2 SymPy: Basic

x1 cosx2 . . .
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Example: Near-horizon geometry of the extremal Kerr black hole

Near-horizon geometry of the extremal Kerr black hole

Extremal Kerr black hole: a = m ⇐⇒ κ = 0 (degenerate horizon)
2-dimensional isometry group: (R,+)×U(1)

Near-horizon geometry of extremal Kerr BH is similar to AdS2 × S2
=⇒ 4-dimensional isometry group: SL(2,R)×U(1)
[Carter, Les Houches lecture (1973)] [Bardeen & Horowitz, PRD 60, 104030 (1999)]

Near-horizon geometry of extremal Kerr black hole is at the basis of the
Kerr/CFT correspondence (see [Compère, LRR 20, 1 (2017)] for a review)

Let us explore this geometry with a SageMath notebook:
https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Notebooks/SM_extremal_Kerr_near_horizon.ipynb

(In the nbviewer menu, click on to run an interactive version on a Binder server)
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Example: Near-horizon geometry of the extremal Kerr black hole

Carter-Penrose diagrams generated with SageMath
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Extremal Kerr NHEK spacetime
https:
//nbviewer.org/github/egourgoulhon/BHLectures/blob/master/sage/Kerr_extremal_extended.ipynb
https://nbviewer.org/github/egourgoulhon/BHLectures/blob/master/sage/NHEK_spacetime.ipynb
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Other examples

Other examples

Schwarzschild spacetime (static black hole):
https://nbviewer.org/github/egourgoulhon/SageMathTour/blob/
master/Notebooks/demo_pseudo_Riemannian_Schwarzschild.ipynb

Computation of geodesics in Kerr spacetime (rotating black hole):
https:
//nbviewer.jupyter.org/github/BlackHolePerturbationToolkit/
kerrgeodesic_gw/blob/master/Notebooks/Kerr_geodesics.ipynb

The spheres S2 and S3:
https://nbviewer.org/github/sagemanifolds/SageManifolds/blob/
master/Notebooks/SM_sphere_S2.ipynb

https://nbviewer.org/github/sagemanifolds/SageManifolds/blob/
master/Notebooks/SM_sphere_S3_Hopf.ipynb
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Other examples

Image of an accretion disk surrounding a Schwarzschild BH

Image computed with SageMath by integrating null geodesics, cf. the notebook
https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Notebooks/SM_black_hole_rendering.ipynb
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Conclusions

Conclusions

Symbolic calculus on manifolds in the free Python-based system SageMath

runs on fully specified smooth manifolds (described by an atlas)

is not limited to a single coordinate chart or vector frame
runs on parallelizable and non-parallelizable manifolds
is independent of the symbolic engine (e.g. Pynac/Maxima, SymPy,...) used
to perform calculus at the level of coordinate expressions

Many examples available at
https://sagemanifolds.obspm.fr/examples.html

Want to join the SageManifolds project or to simply stay tuned?

visit https://sagemanifolds.obspm.fr/
(download, documentation, example notebooks, mailing list)
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Want to join the SageManifolds project or to simply stay tuned?

visit https://sagemanifolds.obspm.fr/
(download, documentation, example notebooks, mailing list)

Éric Gourgoulhon (LUTH) Computer algebra on manifolds J. Relat. Tours, 31 May 2023 21 / 21

https://sagemanifolds.obspm.fr/examples.html
https://sagemanifolds.obspm.fr/

	SageMath and its differential geometry capabilities
	SageMath implementation of tensor fields
	Example: Near-horizon geometry of the extremal Kerr black hole
	Other examples
	Conclusions

