Computer algebra on manifolds with applications to gravity

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) Observatoire de Paris, CNRS, Université PSL, Université Paris Cité Meudon, France

https://luth.obspm.fr/~luthier/gourgoulhon

Journées Relativistes de Tours

Institut Denis Poisson, Tours, France

31 May 2023

Image: A matrix

- SageMath and its differential geometry capabilities
- 2 SageMath implementation of tensor fields
- 3 Example: Near-horizon geometry of the extremal Kerr black hole
- Other examples
- 5 Conclusions

Outline

SageMath and its differential geometry capabilities

- 2 SageMath implementation of tensor fields
- 3 Example: Near-horizon geometry of the extremal Kerr black hole
- Other examples
- 5 Conclusions

SageMath in a few words

SageMath (*nickname:* Sage) is a **free open-source** computer algebra system initiated by William Stein in 2005

SageMath in a few words

SageMath (*nickname:* Sage) is a **free open-source** computer algebra system initiated by William Stein in 2005

SageMath is free (GPL v2)

Freedom means

- everybody can use it, by download from https://www.sagemath.org
- everybody can examine the source code and improve it

SageMath in a few words

SageMath (*nickname:* Sage) is a **free open-source** computer algebra system initiated by William Stein in 2005

SageMath is free (GPL v2)

Freedom means

- everybody can use it, by download from https://www.sagemath.org
- everybody can examine the source code and improve it

SageMath is based on Python

- no need to learn any specific syntax to use it
- Python is a powerful object oriented language, with a neat syntax
- SageMath benefits from the Python ecosystem (e.g. Jupyter notebook, NumPy, Matplotlib)

Image: A math a math

SageMath in a few words

SageMath (*nickname:* Sage) is a **free open-source** computer algebra system initiated by William Stein in 2005

SageMath is free (GPL v2)

Freedom means

- everybody can use it, by download from https://www.sagemath.org
- everybody can examine the source code and improve it

SageMath is based on Python

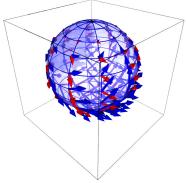
- no need to learn any specific syntax to use it
- Python is a powerful object oriented language, with a neat syntax
- SageMath benefits from the Python ecosystem (e.g. Jupyter notebook, NumPy, Matplotlib)

SageMath is developed by an enthusiastic community

- mostly composed of mathematicians
- welcoming newcomers

Differential geometry with SageMath

SageManifolds project: extends SageMath towards differential geometry and tensor calculus



Stereographic-coordinate frame on \mathbb{S}^2

- https://sagemanifolds.obspm.fr
- ullet \sim 119,000 lines of Python code
- fully included in SageMath (after review process)
- ~ 30 contributors (developers and reviewers) cf. https://sagemanifolds.obspm.fr/ authors.html
- dedicated mailing list
- help desk: https://ask.sagemath.org

Everybody is welcome to contribute

wisit https://sagemanifolds.obspm.fr/contrib.html

Éric Gourgoulhon (LUTH)

Current status

Already present (SageMath 10.0):

- differentiable manifolds: tangent spaces, vector frames, tensor fields, curves, pullback and pushforward operators, submanifolds
- vector bundles (tangent bundle, tensor bundles)
- standard tensor calculus (tensor product, contraction, symmetrization, etc.), even on non-parallelizable manifolds, and with all monoterm tensor symmetries taken into account
- Lie derivative along a vector field
- differential forms: exterior and interior products, exterior derivative, Hodge duality
- multivector fields: exterior and interior products, Schouten-Nijenhuis bracket
- affine connections (curvature, torsion)
- pseudo-Riemannian metrics
- computation of geodesics (numerical integration)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Current status

Already present (cont'd):

- some plotting capabilities (charts, points, curves, vector fields)
- parallelization (on tensor components) of CPU demanding computations
- extrinsic geometry of pseudo-Riemannian submanifolds
- series expansions of tensor fields
- symplectic manifolds
- 2 symbolic backends: Pynac/Maxima (SageMath's default) and SymPy

Future prospects:

- more symbolic backends (Giac, FriCAS, ...)
- more graphical outputs
- spinors, integrals on submanifolds, variational calculus, etc.
- connection with numerical relativity: use SageMath to explore numerically-generated spacetimes

Image: A matrix

Outline

SageMath and its differential geometry capabilities

2 SageMath implementation of tensor fields

3) Example: Near-horizon geometry of the extremal Kerr black hole

Other examples

5 Conclusions

Vector fields on a smooth manifold

The set $\mathfrak{X}(M)$ of vector fields on a smooth manifold M over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$ is endowed with two algebraic structures:

• $\mathfrak{X}(M)$ is an infinite-dimensional vector space over \mathbb{K} , the scalar multiplication $\mathbb{K} \times \mathfrak{X}(M) \to \mathfrak{X}(M)$, $(\lambda, v) \mapsto \lambda v$ being defined by

$$\forall p \in M, \quad (\lambda \boldsymbol{v})|_p = \lambda \boldsymbol{v}|_p,$$

② $\mathfrak{X}(M)$ is a module over the commutative algebra $C^{\infty}(M)$, the scalar multiplication $C^{\infty}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$, $(f, v) \mapsto fv$ being defined by

$$\forall p \in M, \quad (f \boldsymbol{v})|_p = f(p) \boldsymbol{v}|_p,$$

the right-hand side involving the scalar multiplication by $f(p) \in \mathbb{K}$ in the vector space T_pM .

< □ > < 同 > < 回 > < Ξ > < Ξ

$\mathfrak{X}(M)$ as a $C^\infty(M)$ -module

 $\mathfrak{X}(M)$ is a *free module* over $C^{\infty}(M) \iff \mathfrak{X}(M)$ admits a basis

If this occurs, then $\mathfrak{X}(M)$ is actually a *free module of finite rank* over $C^{\infty}(M)$ and rank $\mathfrak{X}(M) = \dim M = n$.

One says then that M is a *parallelizable* manifold.

A basis $(e_a)_{1 \leq a \leq n}$ of $\mathfrak{X}(M)$ is called a *vector frame*

Basis expansion¹:

$$\forall \boldsymbol{v} \in \mathfrak{X}(M), \quad \boldsymbol{v} = v^a \boldsymbol{e}_a, \quad \text{with } v^a \in C^{\infty}(M)$$
(1)

At each point $p \in M$, (1) gives birth to an identity in the tangent space T_pM :

$$oldsymbol{v}|_p = v^a(p) \ oldsymbol{e}_a|_p \,, \quad ext{with} \ v^a(p) \in \mathbb{K},$$

which is nothing but the expansion of the tangent vector $v|_p$ on the basis $(e_a|_p)_{1 \le a \le n}$ of the vector space T_pM .

¹Einstein's convention for summation on repeated indices is assumed $\rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$

Parallelizable manifolds

M is **parallelizable**

Parallelizable manifolds

 $\begin{array}{lll} M \text{ is parallelizable} & \Longleftrightarrow & \mathfrak{X}(M) \text{ is a free } C^{\infty}(M) \text{-module of rank } n \\ & \longleftrightarrow & M \text{ admits a global vector frame} \\ & \Leftrightarrow & \text{the tangent bundle is trivial: } TM \simeq M \times \mathbb{K}^n \end{array}$

Examples of parallelizable manifolds

- \mathbb{R}^n (global coordinate chart \Rightarrow global vector frame)
- the circle S¹ (*rem:* no global coordinate chart)
- the torus $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$
- the 3-sphere $\mathbb{S}^3 \simeq \mathrm{SU}(2)$, as any Lie group
- the 7-sphere \mathbb{S}^7
- any orientable 3-manifold (Steenrod theorem)

A D > <
 A P >
 A

Parallelizable manifolds

 $\begin{array}{lll} M \text{ is parallelizable} & \Longleftrightarrow & \mathfrak{X}(M) \text{ is a free } C^{\infty}(M) \text{-module of rank } n \\ & \longleftrightarrow & M \text{ admits a global vector frame} \\ & \Leftrightarrow & \text{the tangent bundle is trivial: } TM \simeq M \times \mathbb{K}^n \end{array}$

Examples of parallelizable manifolds

- \mathbb{R}^n (global coordinate chart \Rightarrow global vector frame)
- the circle S¹ (*rem:* no global coordinate chart)
- the torus $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$
- the 3-sphere $\mathbb{S}^3 \simeq \mathrm{SU}(2)$, as any Lie group
- the 7-sphere \mathbb{S}^7
- any orientable 3-manifold (Steenrod theorem)

Examples of non-parallelizable manifolds

- the sphere \mathbb{S}^2 (hairy ball theorem!) and any *n*-sphere \mathbb{S}^n with $n \notin \{1, 3, 7\}$
- the real projective plane \mathbb{RP}^2

SageMath implementation of vector fields

Choice of the $C^\infty(M)\text{-module}$ point of view for $\mathfrak{X}(M),$ instead of the infinite-dimensional $\mathbb{K}\text{-vector}$ space one

 \implies implementation advantages:

- $\bullet\,$ reduction to finite-dimensional structures: free $C^\infty(U)$ -modules of rank n on parallelizable open subsets $U\subset M$
- for tensor calculus on each parallelizable open set *U*, use of exactly the same FiniteRankFreeModule code as for the tangent spaces

SageMath implementation of vector fields

Choice of the $C^\infty(M)\text{-module}$ point of view for $\mathfrak{X}(M),$ instead of the infinite-dimensional $\mathbb{K}\text{-vector}$ space one

\implies implementation advantages:

- $\bullet\,$ reduction to finite-dimensional structures: free $C^\infty(U)$ -modules of rank n on parallelizable open subsets $U\subset M$
- for tensor calculus on each parallelizable open set *U*, use of exactly the same FiniteRankFreeModule code as for the tangent spaces

Decomposition of M into parallelizable parts

Assumption: the smooth manifold M can be covered by a finite number m of parallelizable open subsets U_i $(1 \le i \le m)$

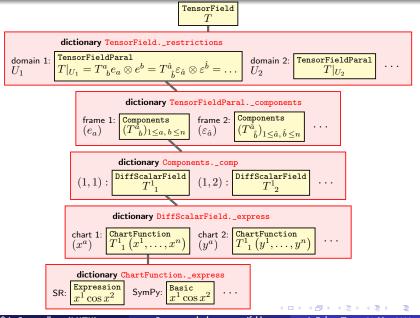
Example: this holds if M is compact (finite atlas)

More details on the implementation:

[E. Gourgoulhon & M. Mancini, Les cours du CIRM 6, 1 (2018)]

< ロ > (何 > (回 > (回))

Tensor field storage



Éric Gourgoulhon (LUTH)

Computer algebra on manifolds

J. Relat. Tours, 31 May 2023 13/21

Outline

- SageMath and its differential geometry capabilities
- 2 SageMath implementation of tensor fields

3 Example: Near-horizon geometry of the extremal Kerr black hole

Other examples

5 Conclusions

Near-horizon geometry of the extremal Kerr black hole

Extremal Kerr black hole: $a = m \iff \kappa = 0$ (degenerate horizon) 2-dimensional isometry group: $(\mathbb{R}, +) \times U(1)$

Near-horizon geometry of extremal Kerr BH is similar to $AdS_2 \times S^2 \implies$ 4-dimensional isometry group: $SL(2,\mathbb{R}) \times U(1)$

[Carter, Les Houches lecture (1973)] [Bardeen & Horowitz, PRD 60, 104030 (1999)]

Near-horizon geometry of extremal Kerr black hole is at the basis of the Kerr/CFT correspondence (see [Compère, LRR 20, 1 (2017)] for a review)

Near-horizon geometry of the extremal Kerr black hole

Extremal Kerr black hole: $a = m \iff \kappa = 0$ (degenerate horizon) 2-dimensional isometry group: $(\mathbb{R}, +) \times U(1)$

- Near-horizon geometry of extremal Kerr BH is similar to $AdS_2 \times S^2 \implies$ 4-dimensional isometry group: $SL(2, \mathbb{R}) \times U(1)$
- [Carter, Les Houches lecture (1973)] [Bardeen & Horowitz, PRD 60, 104030 (1999)]
- Near-horizon geometry of extremal Kerr black hole is at the basis of the Kerr/CFT correspondence (see [Compère, LRR 20, 1 (2017)] for a review)

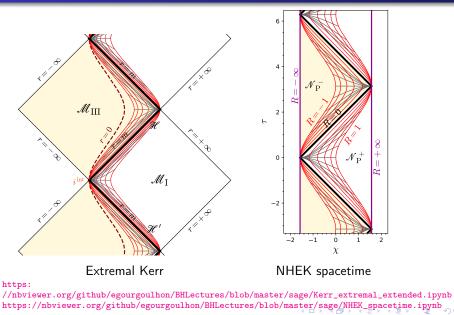
Let us explore this geometry with a SageMath notebook: https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/ blob/master/Notebooks/SM_extremal_Kerr_near_horizon.ipynb

(In the nbviewer menu, click on $^{igodol{8}}$ to run an interactive version on a Binder server)

(日) (同) (日) (日)

Example: Near-horizon geometry of the extremal Kerr black hole

Carter-Penrose diagrams generated with SageMath



Éric Gourgoulhon (LUTH)

Computer algebra on manifolds

J. Relat. Tours, 31 May 2023 16 / 21

- SageMath and its differential geometry capabilities
- 2 SageMath implementation of tensor fields
- 3) Example: Near-horizon geometry of the extremal Kerr black hole
- Other examples
- 5 Conclusions

• Schwarzschild spacetime (static black hole):

https://nbviewer.org/github/egourgoulhon/SageMathTour/blob/ master/Notebooks/demo_pseudo_Riemannian_Schwarzschild.ipynb

• Computation of geodesics in Kerr spacetime (rotating black hole): https:

//nbviewer.jupyter.org/github/BlackHolePerturbationToolkit/
kerrgeodesic_gw/blob/master/Notebooks/Kerr_geodesics.ipynb

• The spheres \mathbb{S}^2 and \mathbb{S}^3 :

https://nbviewer.org/github/sagemanifolds/SageManifolds/blob/ master/Notebooks/SM_sphere_S2.ipynb

https://nbviewer.org/github/sagemanifolds/SageManifolds/blob/ master/Notebooks/SM_sphere_S3_Hopf.ipynb

< □ > < 同 > < 回 > < Ξ > < Ξ

Other examples

Image of an accretion disk surrounding a Schwarzschild BH

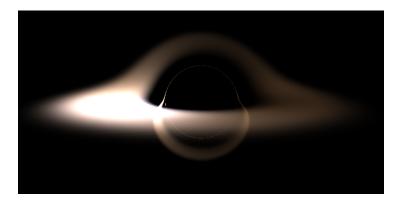


Image computed with SageMath by integrating null geodesics, cf. the notebook
https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Notebooks/SM_black_hole_rendering.ipynb

- SageMath and its differential geometry capabilities
- 2 SageMath implementation of tensor fields
- 3) Example: Near-horizon geometry of the extremal Kerr black hole
- Other examples
- 5 Conclusions

Symbolic calculus on manifolds in the free Python-based system SageMath

runs on fully specified smooth manifolds (described by an atlas)

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame
- runs on parallelizable and non-parallelizable manifolds

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame
- runs on parallelizable and non-parallelizable manifolds
- is independent of the symbolic engine (e.g. *Pynac/Maxima, SymPy,...*) used to perform calculus at the level of coordinate expressions

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame
- runs on parallelizable and non-parallelizable manifolds
- is independent of the symbolic engine (e.g. *Pynac/Maxima, SymPy,...*) used to perform calculus at the level of coordinate expressions

- runs on fully specified smooth manifolds (described by an atlas)
- is not limited to a single coordinate chart or vector frame
- runs on parallelizable and non-parallelizable manifolds
- is independent of the symbolic engine (e.g. *Pynac/Maxima, SymPy,...*) used to perform calculus at the level of coordinate expressions

Many examples available at

https://sagemanifolds.obspm.fr/examples.html

Want to join the SageManifolds project or to simply stay tuned?

visit https://sagemanifolds.obspm.fr/

(download, documentation, example notebooks, mailing list)