SageManifolds

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot 92190 Meudon, France

http://luth.obspm.fr/~luthier/gourgoulhon/

based on a collaboration with Michał Bejger, Marco Mancini, Travis Scrimshaw

> Sage Days 64 Univ. California, Davis, USA 17-20 March 2015

- 2 The SageManifolds project
- 3 A concrete example: \mathbb{S}^2
- 4 Conclusion and perspectives

Outline

1 Introduction

- 2 The SageManifolds project
- 3 A concrete example: \mathbb{S}^2
- 4 Conclusion and perspectives

▶ < ∃ ▶ < ∃</p>

ም.

Differential geometry in Sage

Sage is well developed in many domains of mathematics but not too much in the area of differential geometry:

Already in Sage

- differential forms on an open subset of Euclidean space (with a fixed set of coordinates) (J. Vankerschaver)
- parametrized 2-surfaces in 3-dim. Euclidean space (M. Malakhaltsev, J. Vankerschaver, V. Delecroix)

On Trac

• 2-D hyperbolic geometry (V. Delecroix, M. Raum, G. Laun, trac ticket #9439)

(日) (同) (三) (三)

Outline

2 The SageManifolds project

- 3 A concrete example: \mathbb{S}^2
- 4 Conclusion and perspectives

The SageManifolds project

http://sagemanifolds.obspm.fr/

Aim

Implement real smooth manifolds of arbitrary dimension in Sage and tensor calculus on them, in a coordinate/frame-independent manner

In particular:

- one should be able to introduce an arbitrary number of coordinate charts on a given manifold, with the relevant transition maps
- tensor fields must be manipulated as such and not through their components with respect to a specific (possibly coordinate) vector frame

http://sagemanifolds.obspm.fr/

Aim

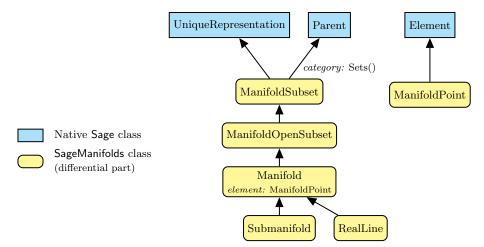
Implement real smooth manifolds of arbitrary dimension in Sage and tensor calculus on them, in a coordinate/frame-independent manner

In particular:

- one should be able to introduce an arbitrary number of coordinate charts on a given manifold, with the relevant transition maps
- tensor fields must be manipulated as such and not through their components with respect to a specific (possibly coordinate) vector frame

Concretely, the project amounts to creating new Python classes, such as Manifold, Chart, TensorField or Metric, within Sage's Parent/Element framework.

Implementating manifolds and their subsets



Implementing coordinate charts

Given a (topological) manifold M of dimension $n \ge 1$, a coordinate chart $\varphi: U \to \mathbb{R}^n$ on an open subset $U \subset M$ is implemented in SageManifolds via the class Chart, whose main data is U and a n-tuple of Sage symbolic variables x, y, ..., each of them representing a coordinate

Implementing coordinate charts

Given a (topological) manifold M of dimension $n \ge 1$, a coordinate chart $\varphi: U \to \mathbb{R}^n$ on an open subset $U \subset M$ is implemented in SageManifolds via the class Chart, whose main data is U and a n-tuple of Sage symbolic variables x, y, ..., each of them representing a coordinate

In general, more than one (regular) chart is required to cover the entire manifold:

Examples:

- at least 2 charts are necessary to cover the n-dimensional sphere Sⁿ (n ≥ 1) and the torus T²
- at least 3 charts are necessary to cover the real projective plane \mathbb{RP}^2

Implementing coordinate charts

Given a (topological) manifold M of dimension $n \ge 1$, a coordinate chart $\varphi: U \to \mathbb{R}^n$ on an open subset $U \subset M$ is implemented in SageManifolds via the class Chart, whose main data is U and a n-tuple of Sage symbolic variables \mathbf{x} , \mathbf{y} , ..., each of them representing a coordinate

In general, more than one (regular) chart is required to cover the entire manifold:

Examples:

- at least 2 charts are necessary to cover the *n*-dimensional sphere \mathbb{S}^n $(n \ge 1)$ and the torus \mathbb{T}^2
- at least 3 charts are necessary to cover the real projective plane \mathbb{RP}^2

In SageManifolds, an arbitrary number of charts can be introduced

To fully specify the manifold, one shall also provide the *transition maps* on overlapping chart domains (SageManifolds class CoordChange)

イロト イヨト イヨト イヨト

Implementing scalar fields

A scalar field on manifold M is a smooth mapping

 $\begin{array}{cccc} f: & U \subset M & \longrightarrow & \mathbb{R} \\ & p & \longmapsto & f(p) \end{array}$

where U is an open subset of M

э

(日) (同) (三) (三)

Implementing scalar fields

A scalar field on manifold M is a smooth mapping

 $\begin{array}{cccc} f: & U \subset M & \longrightarrow & \mathbb{R} \\ & p & \longmapsto & f(p) \end{array}$

where U is an open subset of M

A scalar field maps *points*, not *coordinates*, to real numbers \implies an object f in the ScalarField class has different **coordinate representations** in different charts defined on U.

Implementing scalar fields

A scalar field on manifold M is a smooth mapping

 $\begin{array}{cccc} f: & U \subset M & \longrightarrow & \mathbb{R} \\ & p & \longmapsto & f(p) \end{array}$

where U is an open subset of M

A scalar field maps *points*, not *coordinates*, to real numbers \implies an object f in the ScalarField class has different coordinate representations in different charts defined on U.

The various coordinate representations F, \hat{F} , ... of f are stored as a *Python dictionary* whose keys are the charts C, \hat{C} , ...:

$$f._express = \left\{ C: F, \ \hat{C}: \hat{F}, \ldots \right\}$$
with $f(\underline{p}) = F(\underbrace{x^1, \ldots, x^n}_{\text{in chart } C}) = \hat{F}(\underbrace{\hat{x}^1, \ldots, \hat{x}^n}_{\text{in chart } \hat{C}}) = \ldots$

$$coord. \text{ of } p$$
in chart \hat{C}

$$coord. \text{ of } p$$
in chart \hat{C}

$$coord. \text{ of } p$$
in chart \hat{C}

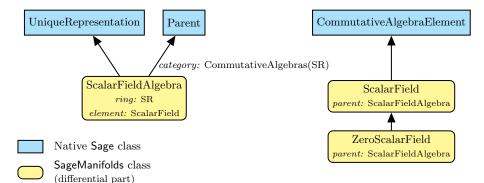
The scalar field algebra

Given an open subset $U \subset M$, the set $C^{\infty}(U)$ of scalar fields defined on U has naturally the structure of a **commutative algebra over** \mathbb{R} : it is clearly a vector space over \mathbb{R} and it is endowed with a commutative ring structure by pointwise multiplication:

 $\forall f,g \in C^\infty(U), \quad \forall p \in U, \quad (f.g)(p) := f(p)g(p)$

The algebra $C^{\infty}(U)$ is implemented in SageManifolds via the class ScalarFieldAlgebra.

Classes for scalar fields



Vector field modules

Given an open subset $U \subset M$, the set $\mathcal{X}(U)$ of smooth vector fields defined on U has naturally the structure of a module over the scalar field algebra $C^{\infty}(U)$.

 $\mathcal{X}(U)$ is a free module $\iff U$ admits a global vector frame $(e_a)_{1 \leq a \leq n}$:

 $\forall \boldsymbol{v} \in \mathcal{X}(U), \quad \boldsymbol{v} = v^a \boldsymbol{e}_a, \quad \text{with } v^a \in C^{\infty}(U)$

At a point $p \in U$, the above translates into an identity in the *tangent vector* space T_pM :

 $\boldsymbol{v}(p) = v^a(p) \; \boldsymbol{e}_a(p), \quad \text{with } v^a(p) \in \mathbb{R}$

Example:

If U is the domain of a coordinate chart $(x^a)_{1 \leq a \leq n}$, $\mathcal{X}(U)$ is a free module of rank n over $C^{\infty}(U)$, a basis of it being the coordinate frame $(\partial/\partial x^a)_{1 \leq a \leq n}$.

・ロト ・回ト ・ヨト ・ヨト

The SageManifolds project		
Parallelizable manifolds		
M is a parallelizable manifold	\iff	M admits a global vector frame $\mathcal{X}(M)$ is a free module M's tangent bundle is trivial: $TM \simeq M \times \mathbb{R}^n$

æ

・ロト ・回ト ・ヨト ・ヨト

Parallelizable manifolds

 $\begin{array}{lll} M \text{ is a parallelizable manifold} & \Longleftrightarrow & M \text{ admits a global vector frame} \\ \Leftrightarrow & \mathcal{X}(M) \text{ is a free module} \\ \Leftrightarrow & M \text{'s tangent bundle is trivial:} \\ & TM \simeq M \times \mathbb{R}^n \end{array}$

Examples of parallelizable manifolds

- \mathbb{R}^n (global coordinate charts \Rightarrow global vector frames)
- the circle \mathbb{S}^1 (NB: no global coordinate chart)
- the torus $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$
- the 3-sphere $\mathbb{S}^3 \simeq \mathrm{SU}(2)$, as any Lie group
- the 7-sphere \mathbb{S}^7
- any orientable 3-manifold (Steenrod theorem)

Parallelizable manifolds

 $\begin{array}{lll} M \text{ is a parallelizable manifold} & \Longleftrightarrow & M \text{ admits a global vector frame} \\ \Leftrightarrow & \mathcal{X}(M) \text{ is a free module} \\ \Leftrightarrow & M \text{'s tangent bundle is trivial:} \\ & TM \simeq M \times \mathbb{R}^n \end{array}$

Examples of parallelizable manifolds

- \mathbb{R}^n (global coordinate charts \Rightarrow global vector frames)
- the circle \mathbb{S}^1 (NB: no global coordinate chart)
- the torus $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$
- the 3-sphere $\mathbb{S}^3 \simeq \mathrm{SU}(2)$, as any Lie group
- the 7-sphere \mathbb{S}^7
- any orientable 3-manifold (Steenrod theorem)

Examples of non-parallelizable manifolds

- the sphere \mathbb{S}^2 (hairy ball theorem!) and any *n*-sphere \mathbb{S}^n with $n \notin \{1, 3, 7\}$
- the real projective plane \mathbb{RP}^2

Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their components w.r.t. various vector frames.

If the manifold M is not parallelizable, we assume that it can be covered by a finite number N of parallelizable open subsets U_i $(1 \le i \le N)$ (OK for M compact). We then consider **restrictions** of vector fields to these domains:

Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their components w.r.t. various vector frames.

If the manifold M is not parallelizable, we assume that it can be covered by a finite number N of parallelizable open subsets U_i $(1 \le i \le N)$ (OK for M compact). We then consider **restrictions** of vector fields to these domains:

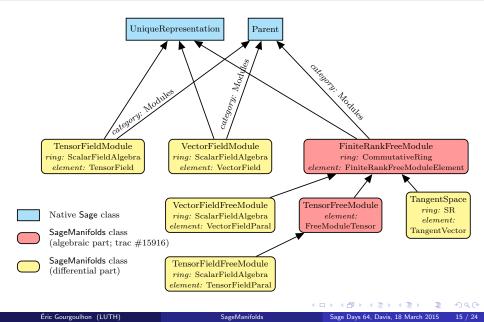
For each i, $\mathcal{X}(U_i)$ is a free module of rank $n = \dim M$ and is implemented in SageManifolds as an instance of VectorFieldFreeModule, which is a subclass of FiniteRankFreeModule.

Each vector field $v \in \mathcal{X}(U_i)$ has different set of components $(v^a)_{1 \leq a \leq n}$ in different vector frames $(e_a)_{1 \leq a \leq n}$ introduced on U_i . They are stored as a *Python dictionary* whose keys are the vector frames:

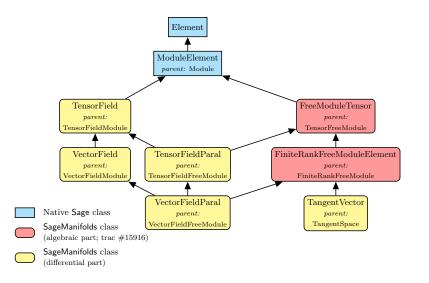
v._components = { $(e) : (v^a), (\hat{e}) : (\hat{v}^a), \ldots$ }

(日) (同) (三) (三)

Module classes in SageManifolds

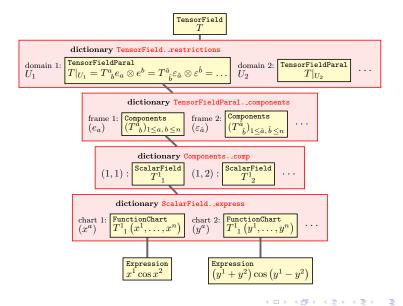


Tensor field classes



(日) (同) (三) (三)

Tensor field storage



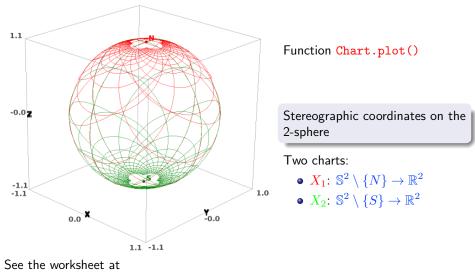
Outline

Introduction

- 2 The SageManifolds project
- 3 A concrete example: \mathbb{S}^2
 - 4 Conclusion and perspectives

(3)

The 2-sphere example



A concrete example: S^2

http://sagemanifolds.obspm.fr/examples/html/SM_sphere_S2_days64.html

Éric Gourgoulhon (LUTH)

Outline

Introduction

- 2 The SageManifolds project
- 3 A concrete example: \mathbb{S}^2
- 4 Conclusion and perspectives

(3)

Conclusion and perspectives

• SageManifolds is a work in progress

 \sim 47,000 lines of Python code up to now (including comments and doctests)

• A preliminary version (v0.7) is freely available (GPL) at http://sagemanifolds.obspm.fr/ and the development version is available from the Git repository https://github.com/sagemanifolds/sage

Conclusion and perspectives

• SageManifolds is a work in progress

 \sim 47,000 lines of Python code up to now (including comments and doctests)

• A preliminary version (v0.7) is freely available (GPL) at http://sagemanifolds.obspm.fr/ and the development version is available from the Git repository https://github.com/sagemanifolds/sage

Example: installing SageManifolds 0.7 in a branch of a Sage 6.5 install

cd <your Sage root directory>
git remote add sm-github https://github.com/sagemanifolds/sage.git
git fetch -t sm-github sm-v0.7
git checkout -b sagemanifolds
git merge FETCH_HEAD
make

More details at http://sagemanifolds.obspm.fr/download.html

→ 《注→ 《注

Already present (v0.7):

- maps between manifolds, pullback operator
- submanifolds, pushforward operator
- curves in manifolds
- standard tensor calculus (tensor product, contraction, symmetrization, etc.), even on non-parallelizable manifolds
- all monoterm tensor symmetries
- exterior calculus (wedge product, exterior derivative, Hodge duality)
- Lie derivatives of tensor fields
- affine connections, curvature, torsion
- pseudo-Riemannian metrics, Weyl tensor
- some plotting capabilities (charts, points, curves)

- In a branch of the development version:
 - parallelization (on tensor components) of CPU demanding computations, via the Python library multiprocessing

∃ ▶ ∢

- In a branch of the development version:
 - parallelization (on tensor components) of CPU demanding computations, via the Python library multiprocessing
- Not implemented yet (but should be soon):
 - extrinsic geometry of pseudo-Riemannian submanifolds
 - computation of geodesics (numerical integration via Sage/GSL or Gyoto)
 - integrals on submanifolds
 - graphical output for vector fields

- In a branch of the development version:
 - parallelization (on tensor components) of CPU demanding computations, via the Python library multiprocessing
- Not implemented yet (but should be soon):
 - extrinsic geometry of pseudo-Riemannian submanifolds
 - computation of geodesics (numerical integration via Sage/GSL or Gyoto)
 - integrals on submanifolds
 - graphical output for vector fields

• Future prospects:

- add more graphical outputs
- add more functionalities: symplectic forms, fibre bundles, spinors, variational calculus, etc.
- connection with numerical relativity: using Sage to explore numerically generated spacetimes

• • = • • = •

- In a branch of the development version:
 - parallelization (on tensor components) of CPU demanding computations, via the Python library multiprocessing
- Not implemented yet (but should be soon):
 - extrinsic geometry of pseudo-Riemannian submanifolds
 - computation of geodesics (numerical integration via Sage/GSL or Gyoto)
 - integrals on submanifolds
 - graphical output for vector fields

• Future prospects:

- add more graphical outputs
- add more functionalities: symplectic forms, fibre bundles, spinors, variational calculus, etc.
- connection with numerical relativity: using Sage to explore numerically generated spacetimes
- Developments within Sage (to be discussed in this workshop):
 - introduce the category of topological spaces
 - introduce Lie groups

イロト イ団ト イヨト イヨト

Integration into Sage

- The algebraic part (tensors on free modules of finite ranks) is submitted to Sage Trac as ticket #15916 and is under review (thank you Travis!)
- The ticket devoted to the differential part (#14865) must be reorganized (split in smaller tickets)

Acknowledgements: the SageManifolds project has benefited from many discussions with Sage developers around the world, and especially in Paris area.