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Introduction

Differential geometry in Sage

Sage is well developed in many domains of mathematics but not too much in the
area of differential geometry:

Already in Sage

differential forms on an open subset of Euclidean space (with a fixed set of
coordinates) (J. Vankerschaver)

parametrized 2-surfaces in 3-dim. Euclidean space (M. Malakhaltsev, J.
Vankerschaver, V. Delecroix)

On Trac

2-D hyperbolic geometry (V. Delecroix, M. Raum, G. Laun, trac ticket
#9439)
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The SageManifolds project

The SageManifolds project

http://sagemanifolds.obspm.fr/

Aim

Implement real smooth manifolds of arbitrary dimension in Sage and tensor
calculus on them, in a coordinate/frame-independent manner

In particular:

one should be able to introduce an arbitrary number of coordinate charts on
a given manifold, with the relevant transition maps

tensor fields must be manipulated as such and not through their components
with respect to a specific (possibly coordinate) vector frame

Concretely, the project amounts to creating new Python classes, such as
Manifold, Chart, TensorField or Metric, within Sage’s Parent/Element
framework.
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The SageManifolds project

Implementating manifolds and their subsets

UniqueRepresentation Parent

ManifoldSubset

category: Sets()

ManifoldOpenSubset

Manifold
element: ManifoldPoint

Submanifold RealLine

Element

ManifoldPoint

Native Sage class

SageManifolds class
(differential part)
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The SageManifolds project

Implementing coordinate charts

Given a (topological) manifold M of dimension n ≥ 1, a coordinate chart
ϕ : U → Rn on an open subset U ⊂M is implemented in SageManifolds via the
class Chart, whose main data is U and a n-tuple of Sage symbolic variables x, y,
..., each of them representing a coordinate

In general, more than one (regular) chart is required to cover the entire manifold:

Examples:

at least 2 charts are necessary to cover the n-dimensional sphere Sn (n ≥ 1)
and the torus T2

at least 3 charts are necessary to cover the real projective plane RP2

In SageManifolds, an arbitrary number of charts can be introduced

To fully specify the manifold, one shall also provide the transition maps on
overlapping chart domains (SageManifolds class CoordChange)
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The SageManifolds project

Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f : U ⊂M −→ R
p 7−→ f(p)

where U is an open subset of M

A scalar field maps points, not coordinates, to real numbers
=⇒ an object f in the ScalarField class has different coordinate
representations in different charts defined on U .

The various coordinate representations F , F̂ , ... of f are stored as a Python
dictionary whose keys are the charts C, Ĉ, ...:

f. express =
{
C : F, Ĉ : F̂ , . . .

}

with f( p︸︷︷︸
point

) = F ( x1, . . . , xn

︸ ︷︷ ︸
coord. of p
in chart C

) = F̂ ( x̂1, . . . , x̂n

︸ ︷︷ ︸
coord. of p
in chart Ĉ

) = . . .
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) = . . .
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) = . . .
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The SageManifolds project

The scalar field algebra

Given an open subset U ⊂M , the set C∞(U) of scalar fields defined on U has
naturally the structure of a commutative algebra over R: it is clearly a vector
space over R and it is endowed with a commutative ring structure by pointwise
multiplication:

∀f, g ∈ C∞(U), ∀p ∈ U, (f.g)(p) := f(p)g(p)

The algebra C∞(U) is implemented in SageManifolds via the class
ScalarFieldAlgebra.
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The SageManifolds project

Classes for scalar fields

UniqueRepresentation Parent

ScalarFieldAlgebra
ring: SR

element: ScalarField

category: CommutativeAlgebras(SR)

CommutativeAlgebraElement

ScalarField
parent: ScalarFieldAlgebra

ZeroScalarField
parent: ScalarFieldAlgebra

Native Sage class

SageManifolds class
(differential part)
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The SageManifolds project

Vector field modules

Given an open subset U ⊂M , the set X (U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C∞(U).

X (U) is a free module ⇐⇒ U admits a global vector frame (ea)1≤a≤n:

∀v ∈ X (U), v = vaea, with va ∈ C∞(U)

At a point p ∈ U , the above translates into an identity in the tangent vector
space TpM :

v(p) = va(p) ea(p), with va(p) ∈ R

Example:

If U is the domain of a coordinate chart (xa)1≤a≤n, X (U) is a free module of
rank n over C∞(U), a basis of it being the coordinate frame (∂/∂xa)1≤a≤n.
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The SageManifolds project

Parallelizable manifolds

M is a parallelizable manifold ⇐⇒ M admits a global vector frame
⇐⇒ X (M) is a free module
⇐⇒ M ’s tangent bundle is trivial:

TM 'M × Rn

Examples of parallelizable manifolds

Rn (global coordinate charts ⇒ global vector frames)

the circle S1 (NB: no global coordinate chart)

the torus T2 = S1 × S1

the 3-sphere S3 ' SU(2), as any Lie group

the 7-sphere S7

any orientable 3-manifold (Steenrod theorem)

Examples of non-parallelizable manifolds

the sphere S2 (hairy ball theorem!) and any n-sphere Sn with n 6∈ {1, 3, 7}
the real projective plane RP2
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The SageManifolds project

Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, we assume that it can be covered by a
finite number N of parallelizable open subsets Ui (1 ≤ i ≤ N) (OK for M
compact). We then consider restrictions of vector fields to these domains:

For each i, X (Ui) is a free module of rank n = dimM and is implemented in
SageManifolds as an instance of VectorFieldFreeModule, which is a subclass of
FiniteRankFreeModule.

Each vector field v ∈ X (Ui) has different set of components (va)1≤a≤n in
different vector frames (ea)1≤a≤n introduced on Ui. They are stored as a Python
dictionary whose keys are the vector frames:

v. components = {(e) : (va), (ê) : (v̂a), . . .}
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The SageManifolds project

Module classes in SageManifolds

UniqueRepresentation Parent

VectorFieldModule
ring: ScalarFieldAlgebra

element: VectorField

ca
te
go
ry
:

M
o
d
u
le

s

TensorFieldModule
ring: ScalarFieldAlgebra

element: TensorField

ca
teg

or
y:

M
odules

VectorFieldFreeModule
ring: ScalarFieldAlgebra

element: VectorFieldParal

TensorFieldFreeModule
ring: ScalarFieldAlgebra

element: TensorFieldParal

FiniteRankFreeModule
ring: CommutativeRing

element: FiniteRankFreeModuleElement

TensorFreeModule
element:

FreeModuleTensor

TangentSpace
ring: SR

element:

TangentVector

category:
M

odules

Native Sage class

SageManifolds class
(algebraic part; trac #15916)

SageManifolds class
(differential part)
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The SageManifolds project

Tensor field classes

TensorField
parent:

TensorFieldModule

VectorField
parent:

VectorFieldModule

TensorFieldParal
parent:

TensorFieldFreeModule

VectorFieldParal
parent:

VectorFieldFreeModule

FreeModuleTensor
parent:

TensorFreeModule

FiniteRankFreeModuleElement
parent:

FiniteRankFreeModule

TangentVector
parent:

TangentSpace

Element

ModuleElement
parent: Module

Native Sage class

SageManifolds class
(algebraic part; trac #15916)

SageManifolds class
(differential part)
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The SageManifolds project

Tensor field storage

TensorField

T

dictionary TensorField. restrictions

domain 1:
U1

TensorFieldParal

T |U1
= T a

bea ⊗ eb = T â
b̂
εâ ⊗ εb̂ = . . .

domain 2:
U2

TensorFieldParal

T |U2

. . .

dictionary TensorFieldParal. components

frame 1:
(ea)

Components

(T a
b)1≤a, b≤n

frame 2:
(εâ)

Components

(T â
b̂
)1≤â, b̂≤n

. . .

dictionary Components. comp

(1, 1) :
ScalarField

T 1
1

(1, 2) :
ScalarField

T 1
2

. . .

dictionary ScalarField. express

chart 1:
(xa)

FunctionChart

T 1
1

(
x1, . . . , xn

) chart 2:
(ya)

FunctionChart

T 1
1

(
y1, . . . , yn

) . . .

Expression

x1 cosx2
Expression(
y1 + y2

)
cos

(
y1 − y2

)
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A concrete example: S2

The 2-sphere example

Function Chart.plot()

Stereographic coordinates on the
2-sphere

Two charts:

X1: S2 \ {N} → R2

X2: S2 \ {S} → R2

See the worksheet at
http://sagemanifolds.obspm.fr/examples/html/SM_sphere_S2_days64.html

Éric Gourgoulhon (LUTH) SageManifolds Sage Days 64, Davis, 18 March 2015 19 / 24

http://sagemanifolds.obspm.fr/examples/html/SM_sphere_S2_days64.html


Conclusion and perspectives

Outline

1 Introduction

2 The SageManifolds project

3 A concrete example: S2

4 Conclusion and perspectives
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Conclusion and perspectives

Conclusion and perspectives

SageManifolds is a work in progress
∼ 47,000 lines of Python code up to now (including comments and doctests)

A preliminary version (v0.7) is freely available (GPL) at
http://sagemanifolds.obspm.fr/

and the development version is available from the Git repository
https://github.com/sagemanifolds/sage

Example: installing SageManifolds 0.7 in a branch of a Sage 6.5 install

cd <your Sage root directory>
git remote add sm-github https://github.com/sagemanifolds/sage.git

git fetch -t sm-github sm-v0.7

git checkout -b sagemanifolds

git merge FETCH HEAD

make

More details at http://sagemanifolds.obspm.fr/download.html
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Conclusion and perspectives

Current status

Already present (v0.7):

maps between manifolds, pullback operator

submanifolds, pushforward operator

curves in manifolds

standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds

all monoterm tensor symmetries

exterior calculus (wedge product, exterior derivative, Hodge duality)

Lie derivatives of tensor fields

affine connections, curvature, torsion

pseudo-Riemannian metrics, Weyl tensor

some plotting capabilities (charts, points, curves)
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Conclusion and perspectives

Current status

In a branch of the development version:

parallelization (on tensor components) of CPU demanding computations, via
the Python library multiprocessing

Not implemented yet (but should be soon):

extrinsic geometry of pseudo-Riemannian submanifolds
computation of geodesics (numerical integration via Sage/GSL or Gyoto)
integrals on submanifolds
graphical output for vector fields

Future prospects:

add more graphical outputs
add more functionalities: symplectic forms, fibre bundles, spinors, variational
calculus, etc.
connection with numerical relativity: using Sage to explore numerically
generated spacetimes

Developments within Sage (to be discussed in this workshop):

introduce the category of topological spaces
introduce Lie groups
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Conclusion and perspectives

Integration into Sage

The algebraic part (tensors on free modules of finite ranks) is submitted to
Sage Trac as ticket #15916 and is under review (thank you Travis!)

The ticket devoted to the differential part (#14865) must be reorganized
(split in smaller tickets)

Acknowledgements: the SageManifolds project has benefited from many
discussions with Sage developers around the world, and especially in Paris area.
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