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1. Introduction

the only detectable radiation which comes directly from a
black hole.

(Hawking radiation negligible)
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Gravitational wave detectors are coming

on line...

VIRGO, Cascina, ltaly
10 Hz < f < 102 Hz
also LIGO, GEO600, TAMA

...or will be launched in the not
too far future (2011)
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Spacecralt #3
Spacecralt #2
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Spacecraft #1

LISA (ESA/NASA)
1074 Hz < f < 10~ Hz



http://www.virgo.infn.it/�
http://www.ligo.caltech.edu�
http://www.geo600.uni-hannover.de/�
http://tamago.mtk.nao.ac.jp/�
http://sci.esa.int/home/lisa�

Binary black holes

the most promising source

Binary BH = the two body problem in General Relativity

Extreme GR = probes the limit of GR (as weak field limit of string theory)

Rate of binary black hole coalescence = massive star evolution
Inspiral GW signal = precise measure of Hubble constant H

GW observations of supermassive BH at high z = large structure formation




Evolution of binary black holes

Contrary to Newtonian 2-body problem, no stationary solution for 2 bodies in GR :
Energy and angular momentum loss due to gravitational radiation = shrink of
the orbits

«— Observed decay of the orbital period P =
7h 45 min) of the binary pulsar PSR B1913+-16 due
to gravitational radiation reaction —> merger in
140 Myr.

General Relativity pred'ct‘om/

Cumulative shift of periastron time (s)
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Another effect of gravitational wave emission:

circularisation of the orbits: e — (
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[from Lorimer (2001)]



http://www.livingreviews.org/Articles/Volume4/2001-5lorimer/�

Inspiraling motion
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2-PN Effective One Body computation
[Buonanno & Damour, PRD 62, 064015 (2000)]
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http://publish.aps.org/abstract/PRD/v62/e064015�

Two types of binary BH coalescence

(1) Coalescence of stellar BH: from massive star evolution

event rate: e up to ~ 20/Myr per galaxy

(Belczynski, Kalogera, Bulik (2002), astro-ph/0111452)

e 1.6 x 10~7 yr—'Mpc? from binary BH formation in globular

clusters ( [Portegies Zwart & McMillan, ApJ 528, L17 (2000))

(2) Coalescence of supermassive BH: from galaxy en-
counters

event rate : possibly large (cf. K. Menou'’s talk)



http://arXiv.org/abs/astro-ph/0111452�
http://www.journals.uchicago.edu/ApJ/journal/issues/ApJL/v528n1/995664/brief/995664.abstract.html�

Gravitational waveform
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[from [Buonanno & Damour, PRD 62, 064015 (2000) ]



http://publish.aps.org/abstract/PRD/v62/e064015�

2. The inspiral

(the most understood phase)




Inspiral waveform

Chirp signal:

AN 3

A
WWUWUUUL hy oc — 213 cos(2m ft)

78 B0
/\/1_5/3]02/3

-0.06

hy o sin(27 ft)

150 200
I I

f — KO M_5/8(tcoal — t)_3/8

with the “chirp mass":
70 50 : M = (M1M2)3/5(M1 i M2)—1/

((t-rg) / Mg) x 104

and the constant:
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53/8 [ 3
[Duez, Baumgarte & Shapiro, PRD 63, 084030 (2001)] Ko = ST (%)



http://publish.aps.org/abstract/PRD/v63/e084030�

More precise formulae:

e More harmonics in h(t) and hy(t) (up to 6 at the 2.5PN level)
e Orbital phase (= number of cycles) at the 3.5PN level:
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http://publish.aps.org/abstract/PRD/v65/e061501�

Chirp time

Characteristic evolution time at the frequency f:
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e for stellar black holes (M; = My =10 My = M = 8.7 My):

10Hz)8/3 (8.7M@>5/3
f M

e for supermassive black holes (M; = My = 10° My = M = 8.7 x 10° My):

104 Hz>8/3 (8.7 X 1O5M@)5/3
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Signal in an interferometric detector

h(t) = Fi(0,¢,9) hy(t) + Fx(0,0,9) hx ()

0, ¢ : direction of the source with respect to the detector arms
1 : polarization angle of the wave with respect to the detector orientation
F, F, : beam-pattern functions

o(t) = h(t) + n(t)

with the noise n(t) in most cases larger than h(t) =




Optimal signal filtering

the r.m.s. noise in a bandwidth [f, f + df] is
Vv (n(t)?) =: \/S(f)df, where S(f) is the noise power spectral density. A

stationary Gaussian noise is fully characterized by S(f).

C = /+OO o(t) F(t)dt (F: filter)
S

S _ {0
N {C?) =0

SNR maximal < F(f) = g((g (optimal or matched filter)

- ‘2 1/2
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Expected noise density S(f)'/? for the VIRGO detector
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Virgo 28-3-2001
http://www.virgo.infn.it/
michele.punturo@pg.infn.it
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Inspiralling binary SNR

S hvV N

Approximately — ~

N S(HY2VE
bandwidth Af ~ f centered around f: N = f2/f = fr oc (M[f)~%/3.

where N is the number of cycles spent within a

Hence
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Sensitivity of Gravitational Wave Interferometers
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[Schutz, CQG 16, A131 (1999)]
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http://stacks.iop.org/0264-9381/16/A131�

Range of detection and expected event rate

Stellar BH (2 x 10 Mg):

e first generation (LIGO-I, VIRGO): dyax ~ 100 Mpc

e second generation: dy.x >~ 1 Gpc

e first generation (LIGO-I, VIRGO): ~ 1 per year
e second generation: daily

Supermassive BH (2 x 10° M):
dmax > Hubble radius for LISA = expected rate: a few per year up to 10° per
year




3. The ISCO problem

(when and how does the inspiral terminate ?)




The last stable orbit

(Schwarzschild spacetime) : there exists an innermost stable
circular orbit (ISCO) :

R§ES = 6M QPSS = 6722~ ~0.068 M !

gravitational radiation dissipation = strictly circular orbits do

not exist | | | |
—— exact evolution: inspiral + plunge The ISCO is then defined in terms of the con-

0.22 + ——— adiabatic limit

servative part in the equation of motions, which
| give rise to circular orbits (adiabatic approxima-
tion). Consider a sequence of circular orbits of
I smaller and smaller radius, mimicking the inspi-

ral. The ISCO is defined as the turning point in
1 the binding energy of this sequence.

-0.28

R T U — Buonanno & Damour, PRD 62, 064015 (2000)



http://publish.aps.org/abstract/PRD/v62/e064015�

Binary BH ISCO computations

at the 3-PN level:

Effective One Body approach (EOB) : Damour, Jaranowski & Schafer,
PRD 62, 084011 (2000)

point masses approach : Blanchet, PRD in press, gr-qc/0112056 (2002)

based on the initial value problem (IVP) :
Cook, PRD 50, 5025 (1994)
Pfeiffer, Teukolsky & Cook, PRD 62, 104018 (2000)
Baumgarte, PRD 62, 024018 (2000)



http://publish.aps.org/abstract/PRD/v62/e084011�
http://publish.aps.org/abstract/PRD/v62/e084011�
http://arXiv.org/abs/gr-qc/0112056�
http://publish.aps.org/abstract/PRD/v62/e104018�
http://publish.aps.org/abstract/PRD/v62/e024018�

Discrepancy between analytical and numerical methods

Binding energy along an evolutionary sequence of equal-mass binary black holes

—-= 3-PN EOB Damour et al. 2000
IVP Cook 1994, Pfeiffer et al. 2000




Discrepancy between analytical and numerical methods

Location of the ISCO

O 3-PN EOB, w=0, corot (Damour et a. 2002)
3-PN EOB, w=0, irrot (Damour et al. 2000)
3-PN EOB, w=-9.34, corot (Damour et al. 2002)
3-PN EOB, w=-9.34, irrot (Damour et al. 2000)
3-PN w_=0, corot (Blanchet 2002)

3-PN w=0, irrot (Blanchet 2002)

O

s
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IVP puncture, irrot (Baumgarte 2000)

IVP conformal imaging, irrot (Pfeiffer et al. 2000)
IVP conformal imaging, S=0.08 (Pfeiffer et al. 2000)
IVP conformal imaging, S=0.17 (Pfeiffer et al. 2000)
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Our new numerical approach

Problem treated:
Binary black holes in the pre-coalescence stage
= the notion of has still some meaning

Basic idea:

Construct an approximate, but full spacetime (i.e. ) representing 2
orbiting black holes

Previous numerical treatments (IVP) : 3-dimensional (initial value problem on a
spacelike 3-surface)

4-dimensional approach = rigorous definition of orbital angular velocity

First results:
Gourgoulhon, Grandclément & Bonazzola, PRD 65, 044020 (2002)
Grandclément, Gourgoulhon & Bonazzola, PRD 65, 044021 (2002)



http://publish.aps.org/abstract/PRD/v65/e044020�
http://publish.aps.org/abstract/PRD/v65/e044021�

Helical symmetry

when the two holes are sufficiently far apart, the radiation
reaction can be neglected
Gravitational radiation reaction circularizes the orbits

there exists a Killing vector field £ such that:

far from the system (asymptotically iner-
tial coordinates (g, 70,00, ¥0)),




Einstein equations
Maximal slicing: K =0
conformally flat spatial metric: v = W*f

Amounts to solve 5 of the 10 Einstein equations ( )

(Hamiltonian constraint)

. 1 —. _ . nNoo _
AB* + §D7’Djﬁ=7 = 2AY (D;N —6ND;In¥) (momentum constraint)

AN = NU*A;; A" —2D;In ¥ D' N (trace of 25ii = ...
with Az’j = \I]_4Kij and Aij — P

Kinematical relation between ~ and K:

" 1 .
AY = 2—N(Lﬁ)” (traceless part)

D;3" = —63"D;ln ¥  (trace part)

with (L3)" = DG + DIG — - Dy £




Determination of (2
O(r—1!) part of the metric (r — oc) same as Schwarzschild

[The only quantity “felt” at the O(r~!) level by a distant observer is the total
mass of the system.]
A priori

M
U~ ] —ADM and N~1-— X

2r r

(virial assumption) <= Mapy = Mk

(virial assumption) <= WU?N




Defining an evolutionary sequence

An evolutionary sequence is defined by:

dMapwm

=
dJ

sequence

This is equivalent to requiring the constancy of the horizon area of each black
hole, by virtue of the First law of thermodynamics for binary black holes :

1
dMADM = QdJ + 8_ (lil dAl + K9 dAg)
™

recently established by Friedman, Uryu & Shibata, PRD in press, gr-qc/0108070.



http://arXiv.org/abs/gr-qc/0108070�
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Lapse in the orbital plane

ISCO configuration

Lapse function




Lapse in the orbital plane

ISCO configuration

Lapgse function
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Comparison with Post-Newtonian computations

Binding energy along an evolutionary sequence of equal-mass binary black holes

2-PN EOB, corot (Damour et a. 2002)

3-PN EOB =0, corot (Damour et al. 2002)
—— HKV 33x21x20, corot (Grandclement et al. 2002)
— — HKV 21x17x16, corot (Grandclement et al. 2002)
— -~ 3-PN EOB w=0, irrot (Damour et a. 2000)

IVPirrot (Cook 1994, Pfeiffer et al. 2000)




Comparison with Post-Newtonian computations

Location of the ISCO

O 3-PN EOB, w=0, corot (Damour et al. 2002)
3-PN EOB, w=0, irrot (Damour et al. 2000)
3-PN EOB, w=-9.34, corot (Damour et al. 2002)
3-PN EOB, w=-9.34, irrot (Damour et al. 2000)
3-PN =0, corot (Blanchet 2002)

3-PN w=0, irrot (Blanchet 2002)

=

IVP puncture, irrot (Baumgarte 2000)

IVP conformal imaging, irrot (Pfeiffer et al. 2000)
IVP conformal imaging, S=0.08 (Pfeiffer et al. 2000)
IVP conformal imaging, S=0.17 (Pfeiffer et al. 2000)
‘ HKV corot (Grandclement et a. 2002)
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4. The final merger

(...for the next “three years after” meeting)




Numerical relativity attempts

Baker, Brigmann, Campanelli, Lousto & Takahashi, PRL 87, 121103 (2001)
But

e crude time evolution: old fashioned ADM 4+ zero-shift =—> code crashes after
only t = 15 M, before a common apparent horizon forms

e bad initial data (Baumgarte ISCO)

work in progress at Albert Einstein Institute (Seidel et al.), in the framework of the
European Union Network “Sources of gravitational waves”
(http://www.eu-network.org/) :

Meudon ISCO data, computed by means of spectral methods (Lorene), exported
on finite-differences grid (Cactus).



http://publish.aps.org/abstract/PRL/v87/e121103�
http://www.eu-network.org/�
http://www.lorene.obspm.fr�
http://www.cactuscode.org�

Recent merger computation by the AEI group

movie

Corotating coordinates + conformal decomposition of Einstein equations —
formation of a common apparent horizon

But still non-astrophysical initial data (Baumgarte ISCO).

Results with new initial data coming soon...



http://www.aei.mpg.de/~werner/ISCO3/AhPsiRedGreen.hq-352x288.mpg�

Energy emitted by gravitational radiation

Absolute upper bounds:

Fra
Hawking (1971) : d

Wi for merger of maximaly rotating Kerr BH,

such that the final BH does not rotate
Erad

i < 0.29 for merger of non-rotating BH

. Erad
/ | stage: ~ 0.017
nspiral stage Vi

E
Plunge + merger phase: ]{;d ~ 0.1 77 Flanagan & Hughes, PRD 57, 4535 (1998)

E
Ringdown phase: Ed ~ 0.03 ?
Brandt & Seidel, PRD 52, 870 (1995), Flanagan & Hughes, PRD 57, 4535 (1998)



http://publish.aps.org/abstract/PRD/v57/e4535�
http://publish.aps.org/abstract/PRD/v57/e4535�

Conclusions

Weakness of expected GW signal = adapted filters = theoretical
prediction of waveforms necessary to detect the signal

Inspiral phase: well described by analytical tools (post-Newtonian expansions)

First agreement between analytical methods and numerical ones about the
termination point of the inspiral (ISCO), resulting in a strong reliability of the

result

Advantage of numerical methods about PN ones in this regime: treat the BH
as extended objects (horizons) and naturally provide initial data (v;;, K;;) for

subsequent time evolution.

The full merger, starting from these realistic initial data, seems now feasible

within three years...
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