Black hole physics: recent developments and observational perspectives

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot 92190 Meudon, France

eric.gourgoulhon@obspm.fr

http://luth.obspm.fr/~luthier/gourgoulhon/

Semaine de l'Astrophysique Française Montpellier, France 5 May 2013

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- What is a black hole ?
- Known black holes in the Universe

2 The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

3 Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The current observational status of black holes

- What is a black hole ?
- Known black holes in the Universe

2 The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The current observational status of black holes

- What is a black hole ?
- Known black holes in the Universe

2 The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The current observational status of black holes What is a black hole ?

What is a black hole ?

... for the layman:

A **black hole** is a region of spacetime from which nothing, not even light, can escape.

The (immaterial) boundary between the black hole interior and the rest of the Universe is called the **event horizon**.

[Alain Riazuelo, 2007]

What is a black hole ?

... for the mathematical physicist:

black hole: $\mathcal{B} := \mathcal{M} - J^{-}(\mathcal{I}^{+})$

i.e. the region of spacetime where light rays cannot escape to infinity

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold
- $\mathscr{I}^+ = future null infinity$

•
$$J^-(\mathscr{I}^+) = \mathsf{causal} \mathsf{ past} \mathsf{ of} \mathscr{I}^+$$

event horizon: $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$)

 $\mathcal{H} \text{ smooth} \Longrightarrow \mathcal{H} \text{ null hypersurface}$

(日) (同) (日) (日)

What is a black hole ?

... for the astrophysicist: a very deep gravitational potential well

Release of potential gravitational energy by **accretion** on a black hole: up to 42% of the mass-energy mc^2 of accreted matter !

NB: thermonuclear reactions release less than 1% mc^2

Matter falling in a black hole forms an **accretion disk** [Lynden-Bell (1969), Shakura & Sunayev (1973)]

[J.-A. Marck (1996)]

The current observational status of black holes What is a black hole ?

• Known black holes in the Universe

2 The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

Astrophysical black holes

Three kinds of black holes are known in the Universe:

• Stellar black holes: supernova remnants: $M \sim 10 - 30 M_{\odot}$ and $R \sim 30 - 90 \text{ km}$ example: Cyg X-1 : $M = 15 M_{\odot}$ and R = 45 km

Image: A matrix and a matrix

Astrophysical black holes

Three kinds of black holes are known in the Universe:

- Stellar black holes: supernova remnants: $M \sim 10 - 30 \ M_{\odot}$ and $R \sim 30 - 90 \ \text{km}$ example: Cyg X-1 : $M = 15 \ M_{\odot}$ and $R = 45 \ \text{km}$
- Supermassive black holes, in galactic nuclei: $M \sim 10^5 - 10^{10} M_{\odot}$ and $R \sim 3 \times 10^5 \text{ km} - 200 \text{ UA}$ example: Sgr A* : $M = 4.3 \times 10^6 M_{\odot}$ and $R = 13 \times 10^6 \text{ km} = 18 R_{\odot} = 0.09 \text{ UA} = \frac{1}{4} \times \text{radius of Mercury's orbit}$

Astrophysical black holes

Three kinds of black holes are known in the Universe:

- Stellar black holes: supernova remnants: $M \sim 10 - 30 \ M_{\odot}$ and $R \sim 30 - 90 \ \text{km}$ example: Cyg X-1 : $M = 15 \ M_{\odot}$ and $R = 45 \ \text{km}$
- Supermassive black holes, in galactic nuclei: $M \sim 10^5 - 10^{10} M_{\odot}$ and $R \sim 3 \times 10^5 \text{ km} - 200 \text{ UA}$ example: Sgr A* : $M = 4.3 \times 10^6 M_{\odot}$ and $R = 13 \times 10^6 \text{ km} = 18 R_{\odot} = 0.09 \text{ UA} = \frac{1}{4} \times \text{radius of Mercury's orbit}$
- Intermediate mass black holes, as ultra-luminous X-ray sources (?): $M \sim 10^2 10^4 M_{\odot}$ and $R \sim 300 \text{ km} 3 \times 10^4 \text{ km}$

example: ESO 243-49 HLX-1 : $M > 500 \; M_{\odot}$ and $R > 1500 \; \rm km$

The current observational status of black holes Known black holes in the Universe

Stellar black holes in X-ray binaries

\sim 20 identified stellar black holes in our galaxy

Stellar black holes in X-ray binaries

The current observational status of black holes Known black holes in the Universe

Supermassive black holes in active galactic nuclei (AGN)

Jet emitted by the nucleus of the giant elliptic galaxy M87, at the centre of Virgo cluster [HST] $M_{\rm BH}=3 imes10^9~M_{\odot}$ $V_{\rm jet}\simeq 0.99\,c$

Éric Gourgoulhon (LUTH)

The current observational status of black holes Known black holes in the Universe

The black hole at the centre of our galaxy: Sgr A*

[ESO (2009)]

Determination of the mass of Sgr A* black hole by stellar dynamics:

 $M_{\rm BH} = 4.3 \times 10^6 \, M_\odot$

- The current observational status of black holes
 - What is a black hole ?
 - Known black holes in the Universe

2 The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

- The current observational status of black holes
 - What is a black hole ?
 - Known black holes in the Universe

The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The near-future observations of black holes Can we "see" a black hole ?

Can we see a black hole from the Earth ?

Image of a thin accretion disk around a Schwarzschild BH [Vincent, Paumard, Gourgoulhon & Perrin, CQG **28**, 225011 (2011)]

Angular diameter of the event horizon of a Schwarzschild BH of mass M seen from a distance d:

$$\Theta = 6\sqrt{3}\,\frac{GM}{c^2d} \simeq 2.60\frac{2R_{\rm S}}{d}$$

Image: A math a math

The near-future observations of black holes Can we "see" a black hole ?

Can we see a black hole from the Earth ?

Image of a thin accretion disk around a Schwarzschild BH [Vincent, Paumard, Gourgoulhon & Perrin, CQG **28**, 225011 (2011)] Angular diameter of the event horizon of a Schwarzschild BH of mass M seen from a distance d:

$$\Theta = 6\sqrt{3}\,\frac{GM}{c^2d} \simeq 2.60\frac{2R_{\rm S}}{d}$$

Largest black holes in the Earth's sky:

Sgr A* : $\Theta = 53 \ \mu as$ M87 : $\Theta = 21 \ \mu as$ M31 : $\Theta = 20 \ \mu as$

A B A B A B A

Remark: black holes in X-ray binaries are $\sim 10^5$ times smaller, for $\Theta \propto M/d$

- The current observational status of black holes
 - What is a black hole ?
 - Known black holes in the Universe

The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The near-future observations of black holes The Event Horizon Telescope

The solution to reach the μ as regime: interferometry !

Existing American VLBI network [Doeleman et al. 2011]

Very Large Baseline Interferometry (VLBI) in (sub)millimeter waves

Éric Gourgoulhon (LUTH)

The near-future observations of black holes The Event Horizon Telescope

The solution to reach the μas regime: interferometry !

Existing American VLBI network [Doeleman et al. 2011]

Very Large Baseline Interferometry (VLBI) in (sub)millimeter waves

The best result so far: VLBI observations at 1.3 mm have shown that the size of the emitting region in Sgr A* is only $37 \ \mu as$ [Doeleman et al., Nature

455, 78 (2008)]

< 口 > < 同

The near future: the Event Horizon Telescope

To go further:

- \bullet shorten the wavelength: $1.3\;mm \rightarrow 0.8\;mm$
- increase the number of stations; in particular add ALMA

Atacama Large Millimeter Array (ALMA) part of the Event Horizon Telescope (EHT) to be completed by 2020 The near-future observations of black holes The Event Horizon Telescope

The near future: the Event Horizon Telescope

Simulations of VLBI observations of Sgr A* at $\lambda = 0.8 \text{ mm}$ left: perfect image, centre: 7 stations (~ 2015), right: 13 stations (~ 2020) $a = 0, i = 30^{\circ}$

[Fish & Doeleman, Proc. IAU Symp 261 (2010)]

The current observational status of black holes

- What is a black hole ?
- Known black holes in the Universe

The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope

GRAVITY instrument at VLTI

- Athena+ X-ray observatory
- Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The near-future observations of black holes GRAVITY instrument at VLTI

Near-infrared optical interferometry: GRAVITY

[Gillessen et al. 2010]

GRAVITY instrument at VLTI (2015)

Beam combiner (the four 8 m telescopes + four auxiliary telescopes) \implies astrometric precision of 10 μ as

cf. P. Kervella's talk in session S04

The current observational status of black holes

- What is a black hole ?
- Known black holes in the Universe

The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI

• Athena+ X-ray observatory

• Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The near-future observations of black holes Athena+ X-ray observatory

X-ray observations (Athena+)

The accretion disk as a spacetime probe

 $\mathbf{K}\alpha$ line: X fluorescence line of Fe atoms in the accretion disk (the Fe atoms are excited by the X-ray emitted from the plasma corona surrounding the disk)

 $\mathsf{Redshift} \Rightarrow \mathsf{time\ dilatation}$

cf. D. Barret's talk about Athena+ in session S15

 $K\alpha$ line in the nucleus of the galaxy MCG-6-30-15 observed by XMM-Newton (red) and Suzaku (black) (adapted from [Miller (2007)])

The current observational status of black holes

- What is a black hole ?
- Known black holes in the Universe

The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The near-future observations of black holes Gravitational wave observations

Another way to "see" BHs: gravitational waves

Link between black holes and gravitational waves: Black holes and gravitational waves are both spacetime distortions:

- extreme distortions (black holes)
- small distortions (gravitational waves)

In particular, black holes and gravitational waves are both vacuum solutions of general relativity equations (Einstein equations)

Advanced VIRGO

Advanced VIRGO: dual recycled (power + signal) interferometer with laser power \sim 125 W

[CNRS/INFN/NIKHEF]

- VIRGO+ decommissioned in Nov. 2011
- Construction of Advanced VIRGO underway
- First lock in 2015

< □ > < ^[] >

- $\bullet~{\rm Sensitivity} \sim$ 10 $\times~{\rm VIRGO}$
- \implies explored Universe volume 10^3 times larger !

eLISA

Gravitational wave detector in space \implies low frequency range: $[10^{-3}, 10^{-1}]$ Hz

[http://www.elisascience.org/]

- Selection in Nov. 2013 ? (ESA L2 mission) \implies launch in 2028
- LISA Pathfinder to be launched in 2015

Éric Gourgoulhon (LUTH)

28 / 45

- The current observational status of black holes • What is a black hole ?
 - Known black holes in the Universe

2 The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

3 Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The current observational status of black holes

 What is a black hole ?
 Known black holes in the Universe

 The near-future observations of black holes

 Can we "see" a black hole ?
 The Event Horizon Telescope
 GRAVITY instrument at VLTI

- Athena+ X-ray observatory
- Gravitational wave observations

3 Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

The "No-Hair" Theorem

Uniqueness theorem

(Dorochkevitch, Novikov & Zeldovitch 1965, Israel 1967, Carter 1971, Hawking 1972)

Within 4-D general relativity, a stationary black hole is necessarily a Kerr-Newmann black hole, which is a vacuum solution of Einstein equation described by only three parameters:

- ullet the total mass M
- \bullet the total angular momentum J
- the total electric charge Q

 \implies "A black hole has no hair" (John A. Wheeler)

- Q = 0 and J = 0: Schwarzschild solution (1916)
- Q = 0 : Kerr solution (1963)

Theoretical alternatives to the Kerr black hole

Within general relativity

- boson stars
- gravastar
- Q-star
- dark stars
- ...

Beyond general relativity

black holes in

- Einstein-Yang-Mills
- Einstein-Gauss-Bonnet with dilaton
- Chern-Simons gravity
- Hořava-Lifshitz gravity
- ...

Image: A math a math

How to test the alternatives ?

Search for

- stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
- accretion disk spectra different from those arising in Kerr metric (X-ray observatories)
- images of the black hole shadow different from that of a Kerr black hole (EHT)

How to test the alternatives ?

Search for

- stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
- accretion disk spectra different from those arising in Kerr metric (X-ray observatories)
- images of the black hole shadow different from that of a Kerr black hole (EHT)

Need for a good and versatile geodesic integrator

to compute timelike geodesics (orbits) and null geodesics (ray-tracing) in any kind of metric

Image: A matrix of the second seco

The current observational status of black holes

 What is a black hole ?
 Known black holes in the Universe

 The near-future observations of black holes

 Can we "see" a black hole ?
 The Event Horizon Telescope
 GRAVITY instrument at VLTI
 Athena+ X-ray observatory
 Gravitational wave observations

3 Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

Gyoto code

- Integration of geodesics in Kerr metric
- Integration of geodesics in any numerically computed 3+1 metric
- Radiative transfer included in optically thin media
- Very modular code (C++)
- Yorick interface

< □ > < ^[] >

 Free software (GPL): http://gyoto.obspm.fr/

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

[Vincent, Gourgoulhon & Novak, CQG 29, 245005 (2012)]

cf. F. Vincent's talk in session S15

Gyoto code

Computed images of a thin accretion disk around a Schwarzschild black hole

Image: A math a math

Tests of general relativity Ongoing work at LUTH / LESIA / CAMK

Measuring the spin from the black hole silhouette

Ray-tracing in the Kerr metric (spin parameter a)

Accretion structure around Sgr A* modelled as a ion torus, derived from the polish doughnut class [Abramowicz, Jaroszynski & Sikora (1978)]

Radiative processes included: thermal synchrotron, bremsstrahlung, inverse Compton

- $\leftarrow \text{ Image of an ion torus} \\ \text{computed with Gyoto for the} \\ \text{inclination angle } i = 80^\circ: \\ \end{cases}$
 - black: a = 0.5M
 - red: a = 0.9M

[Straub, Vincent, Abramowicz, Gourgoulhon & Paumard, A&A 543, A83 (2012)]

Tests of general relativity Ongoing work at LUTH / LESIA / CAMK

Measuring the spin from the accretion disk spectrum

Ray-tracing in the Kerr metric (spin parameter a)

Accretion structure around Sgr A* modelled as a ion torus, derived from the *polish doughnut* class [Abramowicz, Jaroszynski & Sikora (1978)]

Radiative processes included: thermal synchrotron, bremsstrahlung, inverse Compton

 $\leftarrow \text{ Spectrum of an ion torus computed} \\ \text{with Gyoto for the inclination angle} \\ i = 80^{\circ}:$

- blue: a = 0
- red: a = 0.5M

• green:
$$a = 0.9M$$

[Straub, Vincent, Abramowicz, Gourgoulhon & Paumard, A&A 543, A83 (2012)]

Éric Gourgoulhon (LUTH)

An alternative to Kerr BH: boson star

• Scalar field Lagrangian: $\mathcal{L} = -\frac{1}{2} \left[\nabla_{\mu} \bar{\Phi} \nabla^{\mu} \Phi + V(|\Phi|^2) \right]$

• Field equation:
$$abla_{\mu}
abla^{\mu} \Phi = V'(|\Phi|^2) \Phi$$

• Einstein equation:
$$R_{\alpha\beta} - \frac{1}{2}Rg_{\alpha\beta} = 8\pi T_{\alpha\beta}(\Phi)$$

Stationary and axisymmetric solutions computed by means of Kadath [Grandclément, JCP 229, 3334 (2010)]

 $\Phi(t, r, \theta, \varphi) = \Phi_0(r, \theta) e^{i(\omega t + k\varphi)}$

 \implies rotating boson stars have a toroidal topology

Rotating boson star computed by Kadath

Integration of timelike geodesics performed in 3+1 form by Gyoto

 $k=1,\,\omega=0.65\,m/\hbar$ [Somé et al., in preparation] . () \star) , \star)

Éric Gourgoulhon (LUTH)

Black hole physics: new perspectives

SF2A, Montpellier, 5 May 2013 40 / 45

Rotating boson star computed by Kadath

Integration of timelike geodesics performed in 3+1 form by Gyoto

k=1, $\omega=0.65\,m/\hbar$ [Somé et al., in preparation] with with λ

Éric Gourgoulhon (LUTH)

Black hole physics: new perspectives

SF2A, Montpellier, 5 May 2013

41 / 45

Rotating boson star computed by Kadath

Integration of timelike geodesics performed in 3+1 form by Gyoto

k=1, $\omega=0.65\,m/\hbar$ [Somé et al., in preparation] and the set of the matrix of the ma

Éric Gourgoulhon (LUTH)

Black hole physics: new perspectives

SF2A, Montpellier, 5 May 2013 42

Rotating boson star computed by Kadath

Integration of timelike geodesics performed in 3+1 form by Gyoto

$k=2,~\omega=0.70\,m/\hbar,~\ell=0$ [Somé et al., in preparation] 43 / 45

Éric Gourgoulhon (LUTH)

Black hole physics: new perspectives

- The current observational status of black holes
 - What is a black hole ?
 - Known black holes in the Universe

2 The near-future observations of black holes

- Can we "see" a black hole ?
- The Event Horizon Telescope
- GRAVITY instrument at VLTI
- Athena+ X-ray observatory
- Gravitational wave observations

Tests of general relativity

- The theoretical framework
- Ongoing work at LUTH / LESIA / CAMK

Conclusions and perspectives

- Black hole physics is entering into a new observational era: we are going to see/explore the close vicinity of the event horizon
- Observational tests regarding Sgr A* or the core of M 87 will become feasible. These tests address the nature of the central object or the theory of gravity
- To devise the tests, we have developed a ray-tracing code, Gyoto, capable of integrating timelike and null geodesics in any spacetime, either provided in analytical form (e.g. Kerr spacetime) or in 3+1 numerical form
- This code is free and downloadable at http://gyoto.obspm.fr/
- Alternatives to the standard Kerr black hole are currently explored in our group: computations are in progress for boson stars and black holes in Hořava-Lifshitz gravity

< ロ > < 同 > < 三 > < 三