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The current observational status of black holes What is a black hole ?

What is a black hole ?

[Alain Riazuelo, 2007]

... for the layman:

A black hole is a region of
spacetime from which nothing,
not even light, can escape.

The (immaterial) boundary
between the black hole interior
and the rest of the Universe is
called the event horizon.

Éric Gourgoulhon (LUTH) Black hole physics: new perspectives SF2A, Montpellier, 5 May 2013 5 / 45

http://www2.iap.fr/users/riazuelo/bh/


The current observational status of black holes What is a black hole ?

What is a black hole ?

... for the mathematical physicist:

black hole: B := M − J−(I +)

i.e. the region of spacetime where light
rays cannot escape to infinity

(M , g) = asymptotically flat
manifold

I + = future null infinity

J−(I +) = causal past of I +

event horizon: H := ∂J−(I +)
(boundary of J−(I +))

H smooth =⇒ H null hypersurface
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The current observational status of black holes What is a black hole ?

What is a black hole ?

... for the astrophysicist: a very deep gravitational potential well

Release of potential gravitational energy by accretion on a black hole: up to 42%
of the mass-energy mc2 of accreted matter !

NB: thermonuclear reactions release less than 1% mc2

Matter falling in a black hole
forms an accretion disk
[Lynden-Bell (1969),
Shakura & Sunayev (1973)]

[J.-A. Marck (1996)]

Éric Gourgoulhon (LUTH) Black hole physics: new perspectives SF2A, Montpellier, 5 May 2013 7 / 45

http://www.iop.org/EJ/abstract/0264-9381/13/3/007


The current observational status of black holes Known black holes in the Universe

Outline

1 The current observational status of black holes
What is a black hole ?
Known black holes in the Universe

2 The near-future observations of black holes
Can we “see” a black hole ?
The Event Horizon Telescope
GRAVITY instrument at VLTI
Athena+ X-ray observatory
Gravitational wave observations

3 Tests of general relativity
The theoretical framework
Ongoing work at LUTH / LESIA / CAMK

4 Conclusions and perspectives
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The current observational status of black holes Known black holes in the Universe

Astrophysical black holes

Three kinds of black holes are known in the Universe:

Stellar black holes: supernova remnants:
M ∼ 10 – 30 M� and R ∼ 30 – 90 km

example: Cyg X-1 : M = 15 M� and R = 45 km

Supermassive black holes, in galactic nuclei:
M ∼ 105 – 1010 M� and R ∼ 3× 105 km – 200 UA

example: Sgr A* : M = 4.3× 106 M� and
R = 13× 106 km = 18R� = 0.09 UA = 1

4 × radius of Mercury’s orbit

Intermediate mass black holes, as ultra-luminous X-ray sources (?):
M ∼ 102 – 104 M� and R ∼ 300 km – 3× 104 km

example: ESO 243-49 HLX-1 : M > 500 M� and R > 1500 km
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Éric Gourgoulhon (LUTH) Black hole physics: new perspectives SF2A, Montpellier, 5 May 2013 9 / 45



The current observational status of black holes Known black holes in the Universe

Stellar black holes in X-ray binaries

∼ 20 identified stellar black
holes in our galaxy
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The current observational status of black holes Known black holes in the Universe

Stellar black holes in X-ray binaries

[McClintock et al. (2011)]
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The current observational status of black holes Known black holes in the Universe

Supermassive black holes in active galactic nuclei (AGN)

Jet emitted by the nucleus of
the giant elliptic galaxy M87, at
the centre of Virgo cluster [HST]

MBH = 3× 109M�
Vjet ' 0.99 c
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The current observational status of black holes Known black holes in the Universe

The black hole at the centre of our galaxy: Sgr A*

[ESO (2009)]

Determination of the mass of Sgr A* black
hole by stellar dynamics:

MBH = 4.3× 106M�

← Orbit of the star S2 around Sgr A*

P = 16 yr, rper = 120 UA = 1400RS,
Vper = 0.02 c
[Genzel, Einsenhauer & Gillessen,

RMP 82, 3121 (2010)]
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The near-future observations of black holes Can we “see” a black hole ?

Can we see a black hole from the Earth ?

Image of a thin accretion disk around a Schwarzschild BH

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

Angular diameter of the
event horizon of a
Schwarzschild BH of mass
M seen from a distance d:

Θ = 6
√

3
GM

c2d
' 2.60

2RS

d

Largest black holes in the
Earth’s sky:

Sgr A* : Θ = 53 µas
M87 : Θ = 21 µas
M31 : Θ = 20 µas

Remark: black holes in
X-ray binaries are ∼ 105

times smaller, for Θ ∝M/d
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The near-future observations of black holes The Event Horizon Telescope

The solution to reach the µas regime: interferometry !

Existing American VLBI network [Doeleman et al. 2011]

Very Large Baseline
Interferometry
(VLBI) in
(sub)millimeter
waves

The best result so
far: VLBI
observations at
1.3 mm have shown
that the size of the
emitting region in
Sgr A* is only
37 µas
[Doeleman et al., Nature

455, 78 (2008)]
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The near-future observations of black holes The Event Horizon Telescope

The near future: the Event Horizon Telescope

To go further:

shorten the wavelength: 1.3 mm → 0.8 mm

increase the number of stations; in particular add ALMA

Atacama Large Millimeter Array (ALMA)
part of the Event Horizon Telescope (EHT) to be completed by 2020

Éric Gourgoulhon (LUTH) Black hole physics: new perspectives SF2A, Montpellier, 5 May 2013 19 / 45



The near-future observations of black holes The Event Horizon Telescope

The near future: the Event Horizon Telescope

Simulations of VLBI observations of Sgr A* at λ = 0.8 mm
left: perfect image, centre: 7 stations (∼ 2015), right: 13 stations (∼ 2020)

a = 0, i = 30◦

[Fish & Doeleman, Proc. IAU Symp 261 (2010)]
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The near-future observations of black holes GRAVITY instrument at VLTI

Near-infrared optical interferometry: GRAVITY

[Gillessen et al. 2010]

GRAVITY instrument at
VLTI (2015)

Beam combiner (the
four 8 m telescopes +
four auxiliary telescopes)
=⇒ astrometric
precision of 10 µas

cf. P. Kervella’s talk in
session S04
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The near-future observations of black holes Athena+ X-ray observatory

X-ray observations (Athena+)

The accretion disk as a spacetime probe

énergie (keV)

in
te

n
si

té

aile rouge
aile bleue

laboratoire

Kα line in the nucleus of the galaxy MCG-6-30-15

observed by XMM-Newton (red) and Suzaku (black)

(adapted from [Miller (2007)])

Kα line: X fluorescence line
of Fe atoms in the accretion
disk (the Fe atoms are
excited by the X-ray emitted
from the plasma corona
surrounding the disk)

Redshift ⇒ time dilatation

cf. D. Barret’s talk about
Athena+ in session S15
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The near-future observations of black holes Gravitational wave observations

Another way to “see” BHs: gravitational waves

Link between black holes and
gravitational waves:
Black holes and gravitational waves are
both spacetime distortions:

extreme distortions (black holes)

small distortions (gravitational
waves)

In particular, black holes and gravitational waves are both vacuum solutions of
general relativity equations (Einstein equations)
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The near-future observations of black holes Gravitational wave observations

Advanced VIRGO

Advanced VIRGO: dual recycled (power + signal) interferometer with laser power
∼ 125 W

[CNRS/INFN/NIKHEF]

VIRGO+ decommissioned
in Nov. 2011

Construction of Advanced
VIRGO underway

First lock in 2015

Sensitivity ∼ 10 × VIRGO

=⇒ explored Universe
volume 103 times larger !
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The near-future observations of black holes Gravitational wave observations

eLISA

Gravitational wave detector in space =⇒ low frequency range: [10−3, 10−1] Hz

[http://www.elisascience.org/]

Selection in Nov. 2013 ? (ESA L2 mission)
=⇒ launch in 2028

LISA Pathfinder to be launched in 2015
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Tests of general relativity The theoretical framework

The “No-Hair” Theorem

Uniqueness theorem
(Dorochkevitch, Novikov & Zeldovitch 1965, Israel 1967, Carter 1971, Hawking 1972)

Within 4-D general relativity, a stationary black hole is necessarily a
Kerr-Newmann black hole, which is a vacuum solution of Einstein equation
described by only three parameters:

the total mass M

the total angular momentum J

the total electric charge Q

=⇒ “A black hole has no hair” (John A. Wheeler)

Q = 0 and J = 0 : Schwarzschild solution (1916)

Q = 0 : Kerr solution (1963)
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Tests of general relativity The theoretical framework

Theoretical alternatives to the Kerr black hole

Within general relativity

boson stars

gravastar

Q-star

dark stars

...

Beyond general relativity

black holes in

Einstein-Yang-Mills

Einstein-Gauss-Bonnet with dilaton

Chern-Simons gravity

Hǒrava-Lifshitz gravity

...
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Tests of general relativity The theoretical framework

How to test the alternatives ?

Search for

stellar orbits deviating from Kerr timelike geodesics (GRAVITY)

accretion disk spectra different from those arising in Kerr metric (X-ray
observatories)

images of the black hole shadow different from that of a Kerr black hole
(EHT)

Need for a good and versatile geodesic integrator
to compute timelike geodesics (orbits) and null geodesics (ray-tracing) in any kind

of metric
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Tests of general relativity Ongoing work at LUTH / LESIA / CAMK
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Tests of general relativity Ongoing work at LUTH / LESIA / CAMK

Gyoto code

Integration of geodesics in
Kerr metric

Integration of geodesics in
any numerically computed
3+1 metric

Radiative transfer included
in optically thin media

Very modular code (C++)

Yorick interface

Free software (GPL) :
http://gyoto.obspm.fr/

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

[Vincent, Gourgoulhon & Novak, CQG 29, 245005 (2012)]

cf. F. Vincent’s talk in session S15
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Tests of general relativity Ongoing work at LUTH / LESIA / CAMK

Gyoto code

Computed images of a thin accretion disk around a Schwarzschild black hole
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Tests of general relativity Ongoing work at LUTH / LESIA / CAMK

Measuring the spin from the black hole silhouette

Ray-tracing in the Kerr metric (spin parameter a)

Accretion structure around Sgr A* modelled as a ion torus, derived from the
polish doughnut class [Abramowicz, Jaroszynski & Sikora (1978)]

Radiative processes included:
thermal synchrotron,
bremsstrahlung, inverse
Compton

← Image of an ion torus
computed with Gyoto for the
inclination angle i = 80◦:

black: a = 0.5M

red: a = 0.9M

[Straub, Vincent, Abramowicz, Gourgoulhon & Paumard, A&A 543, A83 (2012)]
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Tests of general relativity Ongoing work at LUTH / LESIA / CAMK

Measuring the spin from the accretion disk spectrum

Ray-tracing in the Kerr metric (spin parameter a)

Accretion structure around Sgr A* modelled as a ion torus, derived from the
polish doughnut class [Abramowicz, Jaroszynski & Sikora (1978)]
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Radiative processes included: thermal
synchrotron, bremsstrahlung, inverse
Compton

← Spectrum of an ion torus computed
with Gyoto for the inclination angle
i = 80◦:

blue: a = 0

red: a = 0.5M

green: a = 0.9M

[Straub, Vincent, Abramowicz, Gourgoulhon & Paumard, A&A 543, A83 (2012)]
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Tests of general relativity Ongoing work at LUTH / LESIA / CAMK

An alternative to Kerr BH: boson star

Boson star = localized configurations of a self-gravitating complex scalar field Φ
≡ “Klein-Gordon geons” [Kaup (1968), Ruffini & Bonazzola (1969)]

Scalar field Lagrangian: L = −1

2

[
∇µΦ̄∇µΦ + V (|Φ|2)

]
Field equation: ∇µ∇µΦ = V ′(|Φ|2) Φ

Einstein equation: Rαβ −
1

2
Rgαβ = 8πTαβ(Φ)

Stationary and axisymmetric solutions computed
by means of Kadath [Grandclément, JCP 229, 3334

(2010)]

Φ(t, r, θ, ϕ) = Φ0(r, θ)ei(ωt+kϕ)

=⇒ rotating boson stars have a toroidal topology
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Tests of general relativity Ongoing work at LUTH / LESIA / CAMK

Orbits in a rotating-boson-star spacetime

Rotating boson star computed by Kadath

Integration of timelike geodesics performed in 3+1 form by Gyoto

k = 1, ω = 0.65m/~ [Somé et al., in preparation]
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Éric Gourgoulhon (LUTH) Black hole physics: new perspectives SF2A, Montpellier, 5 May 2013 42 / 45



Tests of general relativity Ongoing work at LUTH / LESIA / CAMK

Orbits in a rotating-boson-star spacetime

Rotating boson star computed by Kadath

Integration of timelike geodesics performed in 3+1 form by Gyoto

k = 2, ω = 0.70m/~, ` = 0 [Somé et al., in preparation]
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Éric Gourgoulhon (LUTH) Black hole physics: new perspectives SF2A, Montpellier, 5 May 2013 44 / 45



Conclusions and perspectives

Conclusions and perspectives

Black hole physics is entering into a new observational era:
we are going to see/explore the close vicinity of the event horizon

Observational tests regarding Sgr A* or the core of M 87 will become feasible.
These tests address the nature of the central object or the theory of gravity

To devise the tests, we have developed a ray-tracing code, Gyoto, capable of
integrating timelike and null geodesics in any spacetime, either provided in
analytical form (e.g. Kerr spacetime) or in 3+1 numerical form

This code is free and downloadable at http://gyoto.obspm.fr/

Alternatives to the standard Kerr black hole are currently explored in our
group: computations are in progress for boson stars and black holes in
Hǒrava-Lifshitz gravity
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