Black holes: from event horizons to trapping horizons

Eric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot 92190 Meudon, France

eric.gourgoulhon@obspm.fr

http://luth.obspm.fr/~luthier/gourgoulhon/

Laboratoire d'Astrophysique de Toulouse-Tarbes

Toulouse, France 10 December 2009

- 1 Concept of black hole and event horizon
- 2 Local approaches to black holes
- Viscous fluid analogy
- 4 Angular momentum and area evolution laws
- 5 Applications to numerical relativity

Outline

1 Concept of black hole and event horizon

- 2 Local approaches to black holes
 - 3 Viscous fluid analogy
 - 4 Angular momentum and area evolution laws
- 5 Applications to numerical relativity

What is a black hole ?

... for the astrophysicist: a very deep gravitational potential well

[J.A. Marck, CQG 13, 393 (1996)]

What is a black hole ?

... for the astrophysicist: a very deep gravitational potential well

Binary BH in galaxy NGC 6240 d = 1.4 kpc

[Komossa et al., ApJ 582, L15 (2003)]

-1.5 -1.0 -0.5 0.5 25 15 80.0 MilliARC SEC log v (GHz) S (mJy) 5.0 -5 -10 MilliARC SEC -15 log v (GHz)

Binary BH in radio galaxy 0402+379 d = 7.3 pc

[Rodriguez et al., ApJ 646, 49 (2006)

Eric Gourgoulhon (LUTH)

4 / 38

What is a black hole ?

... for the mathematical physicist:

$$\mathcal{B} := \mathscr{M} - J^{-}(\mathscr{I}^{+})$$

i.e. the region of spacetime where light rays cannot escape to infinity

• $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold

•
$$\mathscr{I}^+ = \mathsf{future} \mathsf{null} \mathsf{infinity}$$

•
$$J^-(\mathscr{I}^+) = ext{causal past of } \mathscr{I}^+$$

event horizon: $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$) \mathcal{H} smooth $\Longrightarrow \mathcal{H}$ null hypersurface

What is a black hole ?

... for the mathematical physicist:

$$\mathcal{B} := \mathscr{M} - J^{-}(\mathscr{I}^{+})$$

i.e. the region of spacetime where light rays cannot escape to infinity

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold
- $\mathscr{I}^+ = future null infinity$

•
$$J^-(\mathscr{I}^+) = ext{causal past of } \mathscr{I}^+$$

event horizon: $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$)

 $\mathcal{H} \text{ smooth} \Longrightarrow \mathcal{H} \text{ null hypersurface}$

Drawbacks of the classical definition

 $\bullet\,$ not applicable in ${\bf cosmology},$ for in general $(\mathscr{M}, {\boldsymbol g})$ is not asymptotically flat

Drawbacks of the classical definition

- not applicable in **cosmology**, for in general (\mathcal{M}, g) is not asymptotically flat
- even when applicable, this definition is highly non-local:

Drawbacks of the classical definition

not applicable in cosmology, for in general (*M*, *g*) is not asymptotically flat
 even when applicable, this definition is highly non-local:

Determination of $\dot{J}^-(\mathscr{I}^+)$ requires the knowledge of the entire future null infinity. Moreover this is not locally linked with the notion of strong gravitational field:

[Ashtekar & Krishnan, LRR 7, 10 (2004)]

Drawbacks of the classical definition

not applicable in cosmology, for in general (*M*, *g*) is not asymptotically flat
 even when applicable, this definition is highly non-local:

Determination of $\dot{J}^-(\mathscr{I}^+)$ requires the knowledge of the entire future null infinity. Moreover this is not locally linked with the notion of strong gravitational field:

[Ashtekar & Krishnan, LRR 7, 10 (2004)]

Eric Gourgoulhon (LUTH)

6 / 38

Another non-local feature: teleological nature of event horizons

The classical black hole boundary, i.e. the event horizon, responds in advance to what will happen in the future.

Another non-local feature: teleological nature of event horizons

[Booth, Can. J. Phys. 83, 1073 (2005)]

The classical black hole boundary, i.e. the event horizon, responds in advance to what will happen in the future.

To deal with black holes as ordinary physical objects, a **local** definition would be desirable

 \rightarrow quantum gravity, numerical relativity

Outline

Concept of black hole and event horizon

- 2 Local approaches to black holes
 - 3 Viscous fluid analogy
 - 4 Angular momentum and area evolution laws
- 5 Applications to numerical relativity

Local characterizations of black holes

Recently a **new paradigm** has appeared in the theoretical approach of black holes: instead of *event horizons*, black holes are described by

- trapping horizons (Hayward 1994)
- isolated horizons (Ashtekar et al. 1999)
- dynamical horizons (Ashtekar and Krishnan 2002)
- slowly evolving horizons (Booth and Fairhurst 2004)

All these concepts are local and are based on the notion of trapped surfaces

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field

 Consider a spacelike 2-surface S (induced metric: q)

- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point

- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'

- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'
- Do the same for each point in S, keeping the value of ε fixed

- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'
- Do the same for each point in *S*, keeping the value of ε fixed
- This defines a new surface S' (Lie dragging)

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field

- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'
- Do the same for each point in S, keeping the value of ε fixed
- This defines a new surface S' (Lie dragging)

At each point, the expansion of $\mathcal S$ along v is defined from the relative change in

the area element δA :

ent δA : $\theta^{(\boldsymbol{v})} := \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \frac{\delta A' - \delta A}{\delta A} = \mathcal{L}_{\boldsymbol{v}} \ln \sqrt{q} = q^{\mu\nu} \nabla_{\mu} v_{\nu}$

Eric Gourgoulhon (LUTH)

What is a trapped surface ? 2/ The definition

 $\mathcal{S}:$ closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime (\mathscr{M},g)

What is a trapped surface ?

 $\mathcal S$: closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathscr M, g)$

Being spacelike, ${\mathcal S}$ lies outside the light cone

What is a trapped surface ? ^{2/ The definition}

 $\mathcal S$: closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathscr M, g)$

Being spacelike, ${\mathcal S}$ lies outside the light cone

 \exists two future-directed null directions orthogonal to S:

 $\boldsymbol{\ell} =$ outgoing, expansion $\boldsymbol{\theta}^{(\boldsymbol{\ell})}$

$$m{k}=$$
 ingoing, expansion $heta^{(m{k})}$

In flat space, $\theta^{({\boldsymbol k})} < 0$ and $\theta^{({\boldsymbol \ell})} > 0$

What is a trapped surface ? ²/ The definition</sup>

 $\mathcal S$: closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathscr M, g)$

What is a trapped surface ? ²/ The definition</sup>

 $\mathcal S$: closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathscr M, g)$

trapped surface = local concept characterizing very strong gravitational fields

Eric Gourgoulhon (LUTH)

Black holes: trapping horizons

Link with apparent horizons

A closed spacelike 2-surface S is said to be outer trapped (resp. marginally outer trapped (MOTS)) iff [Hawking & Ellis 1973]

- the notions of *interior* and *exterior* of S can be defined (for instance spacetime asymptotically flat) ⇒ ℓ is chosen to be the *outgoing* null normal and k to be the *ingoing* one
- $\theta^{(\ell)} < 0$ (resp. $\theta^{(\ell)} = 0$)

Link with apparent horizons

A closed spacelike 2-surface S is said to be outer trapped (resp. marginally outer trapped (MOTS)) iff [Hawking & Ellis 1973]

the notions of *interior* and *exterior* of S can be defined (for instance spacetime asymptotically flat) ⇒ ℓ is chosen to be the *outgoing* null normal and k to be the *ingoing* one

•
$$\theta^{(\ell)} < 0$$
 (resp. $\theta^{(\ell)} = 0$)

outer trapped region of Σ : Ω = set of points $p \in \Sigma$ through which there is a outer trapped surface S lying in Σ

apparent horizon in Σ : \mathcal{A} = connected component of the boundary of Ω

Proposition [Hawking & Ellis 1973]: \mathcal{A} smooth $\Longrightarrow \mathcal{A}$ is a MOTS

Connection with singularities and black holes

Proposition [Penrose (1965)]:

provided that the weak energy condition holds, \exists a trapped surface $S \implies \exists$ a singularity in (\mathcal{M}, g) (in the form of a future inextendible null geodesic)

Proposition [Hawking & Ellis (1973)]: provided that the cosmic censorship conjecture holds, \exists a trapped surface $S \implies \exists$ a black hole \mathcal{B} and $S \subset \mathcal{B}$

Local definitions of "black holes"

A hypersurface \mathcal{H} of $(\mathscr{M}, \boldsymbol{g})$ is said to be

• a future outer trapping horizon (FOTH) iff

(i) \mathcal{H} foliated by marginally trapped 2-surfaces ($\theta^{(k)} < 0$ and $\theta^{(\ell)} = 0$) (ii) $\mathcal{L}_{k} \theta^{(\ell)} < 0$ (locally outermost trapped surf.)

[Hayward, PRD 49, 6467 (1994)]

Local definitions of "black holes"

A hypersurface \mathcal{H} of $(\mathscr{M}, \boldsymbol{g})$ is said to be

• a future outer trapping horizon (FOTH) iff (i) \mathcal{H} foliated by marginally trapped 2-surfaces $(\theta^{(k)} < 0 \text{ and } \theta^{(\ell)} = 0)$ (ii) $\mathcal{L}_{k} \theta^{(\ell)} < 0$ (locally outermost trapped surf.) [Hayward, PRD 49, 6467 (1994)]

• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol{g})$ is said to be

• a future outer trapping horizon (FOTH) iff (i) \mathcal{H} foliated by marginally trapped 2-surfaces $(\theta^{(k)} < 0 \text{ and } \theta^{(\ell)} = 0)$ (ii) $\mathcal{L}_{k} \theta^{(\ell)} < 0$ (locally outermost trapped surf.) [Hayward, PRD 49, 6467 (1994)]

• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

- a non-expanding horizon (NEH) iff
 - (i) \mathcal{H} is null (null normal ℓ) (ii) $\theta^{(\ell)} = 0$ [Hájiček (1973)]

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol g)$ is said to be

a future outer trapping horizon (FOTH) iff

 (i) *H* foliated by marginally trapped 2-surfaces
 (θ^(k) < 0 and θ^(ℓ) = 0)
 (ii) *L_k* θ^(ℓ) < 0 (locally outermost trapped surf.)

 [Hayward, PRD 49, 6467 (1994)]

• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

- a non-expanding horizon (NEH) iff
 - (i) \mathcal{H} is null (null normal ℓ) (ii) $\theta^{(\ell)} = 0$ [Háíiček (1973)]
 - $(II) \ \theta^{(1)} = 0 \ [Hajiček (1973)]$
- an isolated horizon (IH) iff
 - (i) \mathcal{H} is a non-expanding horizon

(ii) \mathcal{H} 's full geometry is not evolving along the null generators: $[\mathcal{L}_{\ell}, \hat{\nabla}] = 0$

[Ashtekar, Beetle & Fairhurst, CQ@16, L1 (1999)] ► 🗦 🔗

14 / 38

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol{g})$ is said to be

BH in equilibrium = IH (e.g. Kerr) BH out of equilibrium = DH generic BH = FOTH a future outer trapping horizon (FOTH) iff

 (i) *H* foliated by marginally trapped 2-surfaces
 (θ^(k) < 0 and θ^(ℓ) = 0)
 (ii) *L_k* θ^(ℓ) < 0 (locally outermost trapped surf.)

 [Hayward, PRD 49, 6467 (1994)]

• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

- a non-expanding horizon (NEH) iff
 - (i) \mathcal{H} is null (null normal ℓ) (ii) $\theta^{(\ell)} = 0$ [Háíiček (1973)]
- an isolated horizon (IH) iff
 - (i) \mathcal{H} is a non-expanding horizon
 - (ii) \mathcal{H} 's full geometry is not evolving along the null generators: $[\mathcal{L}_{\ell}, \hat{\nabla}] = 0$

[Ashtekar, Beetle & Fairhurst, CQG 16, L1 (1999)] 👘 🗏 👘

14 / 38

Example: Vaidya spacetime

[Ashtekar & Krishnan, LRR 7, 10 (2004)]

- The event horizon crosses the flat region
- The dynamical horizon lies entirely outside the flat region

Dynamics of these new horizons

The *trapping horizons* and *dynamical horizons* have their **own dynamics**, ruled by Einstein equations.

In particular, one can establish for them

• existence and (partial) uniqueness theorems

[Andersson, Mars & Simon, PRL 95, 111102 (2005)],

[Ashtekar & Galloway, Adv. Theor. Math. Phys. 9, 1 (2005)]

- first and second laws of black hole mechanics
 [Ashtekar & Krishnan, PRD 68, 104030 (2003)], [Hayward, PRD 70, 104027 (2004)]
- a viscous fluid bubble analogy ("membrane paradigm", as for the event horizon)

[EG, PRD 72, 104007 (2005)], [EG & Jaramillo, PRD 74, 087502 (2006)]
Foliation of a hypersurface by spacelike 2-surfaces

hypersurface $\mathcal{H} =$ submanifold of spacetime (\mathcal{M}, g) of codimension 1 \mathcal{H} can be $\begin{cases} \text{spacelike} \\ \text{null} \\ \text{timelike} \end{cases}$ $\mathcal{H} = \bigcup_{t \in \mathbb{R}} \mathcal{S}_t$ $\mathcal{S}_t = \text{spacelike 2-surface}$

Foliation of a hypersurface by spacelike 2-surfaces

Foliation of a hypersurface by spacelike 2-surfaces

hypersurface $\mathcal{H} =$ submanifold of spacetime (\mathcal{M}, g) of codimension 1 \mathcal{H} can be $\begin{cases} \text{spacelike} \\ \text{null} \\ \text{timelike} \end{cases}$ $\mathcal{H} = \bigcup_{t \in \mathbb{R}} S_t$ $S_t = \text{spacelike 2-surface}$

intrinsic viewpoint adopted here (i.e. not relying on extra-structure such as a 3+1 foliation)

q : induced metric on S_t (positive definite)

 ${\mathcal D}$: connection associated with q

Evolution vector on the horizon

Vector field h on $\mathcal H$ defined by

- (i) h is tangent to \mathcal{H}
- (ii) h is orthogonal to \mathcal{S}_t

• (iii)
$$\mathcal{L}_{h} t = h^{\mu} \partial_{\mu} t = \langle \mathbf{d} t, \mathbf{h} \rangle = 1$$

NB: (iii) \implies the 2-surfaces S_t are Lie-dragged by h

Evolution vector on the horizon

Vector field h on \mathcal{H} defined by

- (i) h is tangent to \mathcal{H}
- (ii) h is orthogonal to S_t

• (iii)
$$\mathcal{L}_{h} t = h^{\mu} \partial_{\mu} t = \langle \mathbf{d} t, \mathbf{h} \rangle = 1$$

NB: (iii) \implies the 2-surfaces S_t are Lie-dragged by h

Define $C := \frac{1}{2} \mathbf{h} \cdot \mathbf{h}$

 \mathcal{H} is timelike $\iff C < 0 \iff \mathbf{h}$ is timelike.

Normal null frame associated with the evolution vector

Outline

D Concept of black hole and event horizon

2 Local approaches to black holes

Viscous fluid analogy

Angular momentum and area evolution laws

5 Applications to numerical relativity

Concept of black hole viscosity

- Hartle and Hawking (1972, 1973): introduced the concept of **black hole viscosity** when studying the response of the *event horizon* to external perturbations
- Damour (1979): 2-dimensional **Navier-Stokes** like equation for the event horizon \implies shear viscosity and bulk viscosity
- Thorne and Price (1986): membrane paradigm for black holes

Concept of black hole viscosity

- Hartle and Hawking (1972, 1973): introduced the concept of **black hole viscosity** when studying the response of the *event horizon* to external perturbations
- Damour (1979): 2-dimensional **Navier-Stokes** like equation for the event horizon \implies shear viscosity and bulk viscosity
- Thorne and Price (1986): membrane paradigm for black holes

Shall we restrict the analysis to the event horizon ?

Can we extend the concept of viscosity to the local characterizations of black hole recently introduced, i.e. future outer trapping horizons and dynamical horizons ?

NB: *event horizon* = null hypersurface *future outer trapping horizon* = null or spacelike hypersurface *dynamical horizon* = spacelike hypersurface

Navier-Stokes equation in Newtonian fluid dynamics

$$\rho\left(\frac{\partial v^i}{\partial t} + v^j \nabla_j v^i\right) = -\nabla^i P + \mu \Delta v^i + \left(\zeta + \frac{\mu}{3}\right) \nabla^i (\nabla_j v^j) + f^i$$

or, in terms of fluid momentum density $\pi_i := \rho v_i$,

$$\frac{\partial \pi_i}{\partial t} + v^j \nabla_j \pi_i + \theta \pi_i = -\nabla_i P + 2\mu \nabla^j \sigma_{ij} + \zeta \nabla_i \theta + f_i$$

where θ is the fluid expansion:

$$\theta := \nabla_j v^j$$

and σ_{ij} the velocity shear tensor:

$$\sigma_{ij} := \frac{1}{2} \left(\nabla_i v_j + \nabla_j v_i \right) - \frac{1}{3} \theta \, \delta_{ij}$$

P is the pressure, μ the shear viscosity, ζ the bulk viscosity and f_i the density of external forces

Original Damour-Navier-Stokes equation

Hyp: $\mathcal{H} = \text{null hypersurface (particular case: black hole event horizon)}$ Then $h = \ell$ (C = 0)

Damour (1979) has derived from Einstein equation the relation

$$^{S}\mathcal{L}_{\ell} \Omega^{(\ell)} + \theta^{(\ell)} \Omega^{(\ell)} = \mathcal{D}_{\kappa} - \mathcal{D} \cdot \boldsymbol{\sigma}^{(\ell)} + \frac{1}{2} \mathcal{D} \theta^{(\ell)} + 8\pi \boldsymbol{q}^{*} \boldsymbol{T} \cdot \boldsymbol{\ell}$$

or equivalently

$$\left| {}^{\mathcal{S}}\mathcal{L}_{\boldsymbol{\ell}} \boldsymbol{\pi} + \boldsymbol{\theta}^{(\boldsymbol{\ell})} \boldsymbol{\pi} = -\mathcal{D}P + 2\mu \mathcal{D} \cdot \boldsymbol{\sigma}^{(\boldsymbol{\ell})} + \zeta \mathcal{D}\boldsymbol{\theta}^{(\boldsymbol{\ell})} + \boldsymbol{f} \right| (*)$$

with $\pi := -\frac{1}{8\pi} \Omega^{(\ell)}$ momentum surface density $P := \frac{\kappa}{8\pi}$ pressure $\mu := \frac{1}{16\pi}$ shear viscosity $\zeta := -\frac{1}{16\pi}$ bulk viscosity $f := -\vec{q}^* T \cdot \ell$ external force surface density (T = stress-energy tensor)

Original Damour-Navier-Stokes equation

Hyp: $\mathcal{H} = \text{null hypersurface (particular case: black hole event horizon)}$ Then $h = \ell$ (C = 0)

Damour (1979) has derived from Einstein equation the relation

$$^{S}\mathcal{L}_{\ell} \Omega^{(\ell)} + \theta^{(\ell)} \Omega^{(\ell)} = \mathcal{D}_{\kappa} - \mathcal{D} \cdot \boldsymbol{\sigma}^{(\ell)} + \frac{1}{2} \mathcal{D} \theta^{(\ell)} + 8\pi \boldsymbol{q}^{*} \boldsymbol{T} \cdot \boldsymbol{\ell}$$

or equivalently

$$\left| {}^{\mathcal{S}}\mathcal{L}_{\boldsymbol{\ell}} \boldsymbol{\pi} + \boldsymbol{\theta}^{(\boldsymbol{\ell})} \boldsymbol{\pi} = -\boldsymbol{\mathcal{D}} P + 2\mu \boldsymbol{\mathcal{D}} \cdot \boldsymbol{\sigma}^{(\boldsymbol{\ell})} + \zeta \boldsymbol{\mathcal{D}} \boldsymbol{\theta}^{(\boldsymbol{\ell})} + \boldsymbol{f} \right| (*)$$

with $\pi := -\frac{1}{8\pi} \Omega^{(\ell)}$ momentum surface density $P := \frac{\kappa}{8\pi}$ pressure $\mu := \frac{1}{16\pi}$ shear viscosity $\zeta := -\frac{1}{16\pi}$ bulk viscosity $f := -\vec{q}^* T \cdot \ell$ external force surface density (T = stress-energy tensor)

(*) is identical to a 2-dimensional Navier-Stokes equation

Original Damour-Navier-Stokes equation (con't)

Introducing a coordinate system $\left(t,x^{1},x^{2},x^{3}\right)$ such that

• t is compatible with ℓ : $\mathcal{L}_{\ell} t = 1$

• ${\mathcal H}$ is defined by $x^1={\rm const},$ so that $x^a=(x^2,x^3)$ are coordinates spanning ${\mathcal S}_t$ then

$$\ell = rac{\partial}{\partial t} + V$$

with V tangent to S_t : velocity of \mathcal{H} 's null generators with respect to the coordinates x^a [Damour, PRD 18, 3598 (1978)]. Then

$$\begin{aligned} \theta^{(\ell)} &= \mathcal{D}_a V^a + \frac{\partial}{\partial t} \ln \sqrt{q} \qquad q := \det q_{ab} \\ \sigma^{(\ell)}_{ab} &= \frac{1}{2} \left(\mathcal{D}_a V_b + \mathcal{D}_b V_a \right) - \frac{1}{2} \theta^{(\ell)} q_{ab} + \frac{1}{2} \frac{\partial q_a}{\partial t} \end{aligned}$$

Negative bulk viscosity of event horizons

From the Damour-Navier-Stokes equation, $\zeta = -\frac{1}{16\pi} < 0$

This negative value would yield to a *dilation or contraction instability* in an ordinary fluid

It is in agreement with the tendency of a null hypersurface to continually contract or expand

The event horizon is stabilized by the teleological condition imposing its expansion to vanish in the far future (equilibrium state reached)

Viscous fluid analogy

Generalization to the non-null case

Starting remark: in the null case (event horizon), ℓ plays two different roles:

- evolution vector along \mathcal{H} (e.g. term ${}^{\mathcal{S}}\mathcal{L}_{\ell}$)
- ullet normal to \mathcal{H} (e.g. term $ec{q}^*T\cdot \ell)$

When ${\mathcal H}$ is no longer null, these two roles have to be taken by two different vectors:

- evolution vector: obviously h
- vector normal to \mathcal{H} : a natural choice is $egin{array}{c} m{m} := m{\ell} + Cm{k} \end{array}$

Generalized Damour-Navier-Stokes equation

From the contracted Ricci identity applied to the vector m and projected onto S_t : $(\nabla_{\mu}\nabla_{\nu}m^{\mu} - \nabla_{\nu}\nabla_{\mu}m^{\mu}) q^{\nu}{}_{\alpha} = R_{\mu\nu}m^{\mu}q^{\nu}{}_{\alpha}$ and using Einstein equation to express $R_{\mu\nu}$, one gets an evolution equation for $\Omega^{(\ell)}$ along \mathcal{H} :

$${}^{\mathcal{S}}\mathcal{L}_{h}\,\Omega^{(\ell)} + \theta^{(h)}\,\Omega^{(\ell)} = \mathcal{D}\kappa - \mathcal{D}\cdot\boldsymbol{\sigma}^{(m)} + \frac{1}{2}\mathcal{D}\theta^{(m)} - \theta^{(k)}\mathcal{D}C + 8\pi\boldsymbol{q}^{*}\boldsymbol{T}\cdot\boldsymbol{m}$$

- $\Omega^{(\ell)}$: normal fundamental form of \mathcal{S}_t associated with null normal ℓ
- $\theta^{(h)}$, $\theta^{(m)}$ and $\theta^{(k)}$: expansion scalars of S_t along the vectors h, m and k respectively
- \mathcal{D} : covariant derivative within $(\mathcal{S}_t, \boldsymbol{q})$
- κ : component of $abla_h h$ along ℓ
- $\sigma^{(m)}$: shear tensor of \mathcal{S}_t along the vector m
- C : half the scalar square of h

Null limit (event horizon)

If \mathcal{H} is a null hypersurface,

and we recover the original Damour-Navier-Stokes equation:

$${}^{\mathcal{S}}\mathcal{L}_{\boldsymbol{\ell}}\,\boldsymbol{\Omega}^{(\boldsymbol{\ell})} + \theta^{(\boldsymbol{\ell})}\boldsymbol{\Omega}^{(\boldsymbol{\ell})} = \boldsymbol{\mathcal{D}}\boldsymbol{\kappa} - \boldsymbol{\mathcal{D}}\cdot\boldsymbol{\sigma}^{(\boldsymbol{\ell})} + \frac{1}{2}\boldsymbol{\mathcal{D}}\theta^{(\boldsymbol{\ell})} + 8\pi\boldsymbol{\vec{q}}^{*}\boldsymbol{T}\cdot\boldsymbol{\ell}$$

Viscous fluid analogy

Case of future trapping horizons

Definition [Hayward, PRD 49, 6467 (1994)] :

 \mathcal{H} is a future trapping horizon iff $\theta^{(\ell)} = 0$ and $\theta^{(k)} < 0$.

The generalized Damour-Navier-Stokes equation reduces then to

$${}^{\mathcal{S}}\mathcal{L}_{h}\,\Omega^{(\ell)} + \theta^{(h)}\,\Omega^{(\ell)} = \mathcal{D}_{\kappa} - \mathcal{D} \cdot \boldsymbol{\sigma}^{(m)} - \frac{1}{2}\mathcal{D}\theta^{(h)} - \theta^{(k)}\mathcal{D}C + 8\pi \boldsymbol{\bar{q}}^{*}\boldsymbol{T} \cdot \boldsymbol{m}$$

[EG, PRD 72, 104007 (2005)]

NB: Notice the change of sign in the $-\frac{1}{2}\mathcal{D}\theta^{(h)}$ term with respect to the original Damour-Navier-Stokes equation

Case of future trapping horizons

Definition [Hayward, PRD 49, 6467 (1994)] :

 \mathcal{H} is a future trapping horizon iff $\theta^{(\ell)} = 0$ and $\theta^{(k)} < 0$.

The generalized Damour-Navier-Stokes equation reduces then to

$${}^{\mathcal{S}}\mathcal{L}_{h}\,\Omega^{(\ell)} + \theta^{(h)}\,\Omega^{(\ell)} = \mathcal{D}\kappa - \mathcal{D}\cdot\boldsymbol{\sigma}^{(m)} - \frac{1}{2}\mathcal{D}\theta^{(h)} - \theta^{(k)}\mathcal{D}C + 8\pi\bar{q}^{*}\boldsymbol{T}\cdot\boldsymbol{m}$$

[EG, PRD 72, 104007 (2005)]

NB: Notice the change of sign in the $-\frac{1}{2}\mathcal{D}\theta^{(h)}$ term with respect to the original Damour-Navier-Stokes equation

The explanation: it is $\theta^{(m)}$ which appears in the general equation and

 $\theta^{(\boldsymbol{m})} + \theta^{(\boldsymbol{h})} = 2\theta^{(\boldsymbol{\ell})} \Longrightarrow \begin{cases} \text{ event horizon } (\boldsymbol{m} = \boldsymbol{h}) & : \quad \theta^{(\boldsymbol{m})} = \theta^{(\boldsymbol{\ell})} \\ \text{ trapping horizon } (\theta^{(\boldsymbol{\ell})} = 0) & : \quad \theta^{(\boldsymbol{m})} = -\theta^{(\boldsymbol{h})} \end{cases}$

Viscous fluid form

$$\begin{split} \overset{\mathcal{S}\mathcal{L}_{h}}{\pi} &= -\mathcal{D}P + \frac{1}{8\pi}\mathcal{D} \cdot \boldsymbol{\sigma}^{(m)} + \zeta \mathcal{D}\theta^{(h)} + \boldsymbol{f} \\ \text{with} \quad \pi := -\frac{1}{8\pi}\Omega^{(\ell)} \text{ momentum surface density} \\ P := \frac{\kappa}{8\pi} \text{ pressure} \\ &\frac{1}{8\pi}\boldsymbol{\sigma}^{(m)} \text{ shear stress tensor} \\ &\zeta := \frac{1}{16\pi} \text{ bulk viscosity} \\ \boldsymbol{f} := -\boldsymbol{q}^{*}\boldsymbol{T} \cdot \boldsymbol{m} + \frac{\theta^{(k)}}{8\pi}\mathcal{D}C \text{ external force surface density} \\ \text{Similar to the Damour-Navier-Stokes equation for an event horizon, except} \\ \bullet \text{ the Newtonian-fluid relation between stress and strain does not hold:} \end{split}$$

 $\sigma^{(m)}/8\pi \neq 2\mu\sigma^{(h)}$, rather $\sigma^{(m)}/8\pi = [\sigma^{(h)} + 2C\sigma^{(k)}]/8\pi$

Viscous fluid form

$$\begin{split} & {}^{\mathcal{S}}\mathcal{L}_{h} \, \pi + \theta^{(h)} \pi = -\mathcal{D}P + \frac{1}{8\pi} \mathcal{D} \cdot \sigma^{(m)} + \zeta \mathcal{D}\theta^{(h)} + f \\ \text{with} \quad \pi := -\frac{1}{8\pi} \Omega^{(\ell)} \text{ momentum surface density} \\ & P := \frac{\kappa}{8\pi} \text{ pressure} \\ & \frac{1}{8\pi} \sigma^{(m)} \text{ shear stress tensor} \\ & \zeta := \frac{1}{16\pi} \text{ bulk viscosity} \\ & f := -\bar{q}^{*}T \cdot m + \frac{\theta^{(k)}}{8\pi} \mathcal{D}C \text{ external force surface density} \\ \\ \text{Similar to the Damour-Navier-Stokes equation for an event horizon, except} \\ \bullet \text{ the Newtonian-fluid relation between stress and strain does not hold:} \\ & \sigma^{(m)}/8\pi \neq 2\mu\sigma^{(h)}, \text{ rather } \sigma^{(m)}/8\pi = [\sigma^{(h)} + 2C\sigma^{(k)}]/8\pi \end{split}$$

• positive bulk viscosity

This positive value of bulk viscosity shows that FOTHs and DHs behave as "ordinary" physical objects, in perfect agreement with their local nature

Eric Gourgoulhon (LUTH)

Outline

Concept of black hole and event horizon

- 2 Local approaches to black holes
 - 3 Viscous fluid analogy
- 4 Angular momentum and area evolution laws
- 5 Applications to numerical relativity

Angular momentum of trapping horizons

Definition [Booth & Fairhurst, CQG 22, 4545 (2005)]: Let φ be a vector field on $\mathcal H$ which

- is tangent to \mathcal{S}_t
- has closed orbits
- has vanishing divergence with respect to the induced metric: $\mathcal{D} \cdot \varphi = 0$ (weaker than being a Killing vector of (\mathcal{S}_t, q) !)

For dynamical horizons, $\theta^{(h)} \neq 0$ and there is a unique choice of φ as the generator (conveniently normalized) of the curves of constant $\theta^{(h)}$

[Hayward, PRD 74, 104013 (2006)]

The generalized angular momentum associated with arphi is then defined by

$$J(\boldsymbol{\varphi}) := -\frac{1}{8\pi} \oint_{\mathcal{S}_t} \langle \boldsymbol{\Omega}^{(\boldsymbol{\ell})}, \boldsymbol{\varphi} \rangle^{s_{\boldsymbol{\ell}}},$$

Remark 1: does not depend upon the choice of null vector ℓ , thanks to the divergence-free property of φ *Remark 2:*

- coincides with Ashtekar & Krishnan's definition for a dynamical horizon
- \bullet coincides with Brown-York angular momentum if ${\mathcal H}$ is timelike and φ a Killing vector

Eric Gourgoulhon (LUTH)

Angular momentum flux law

Under the supplementary hypothesis that φ is transported along the evolution vector h: $\mathcal{L}_h \varphi = 0$, the generalized Damour-Navier-Stokes equation leads to

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})\,^{s}\boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \left[\boldsymbol{\sigma}^{(\boldsymbol{m})} \colon \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}}\,\boldsymbol{q} - 2\theta^{(\boldsymbol{k})}\boldsymbol{\varphi} \cdot \boldsymbol{\mathcal{D}}C\right]^{s}\boldsymbol{\epsilon}$$

[EG, PRD 72, 104007 (2005)]

Angular momentum flux law

Under the supplementary hypothesis that φ is transported along the evolution vector h: $\mathcal{L}_h \varphi = 0$, the generalized Damour-Navier-Stokes equation leads to

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})\,^{s}\boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \left[\boldsymbol{\sigma}^{(\boldsymbol{m})} \colon \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}}\,\boldsymbol{q} - 2\theta^{(\boldsymbol{k})}\boldsymbol{\varphi} \cdot \boldsymbol{\mathcal{D}}C\right]^{s}\boldsymbol{\epsilon}$$

[EG, PRD 72, 104007 (2005)]

Two interesting limiting cases:

Angular momentum flux law

Under the supplementary hypothesis that φ is transported along the evolution vector h: $\mathcal{L}_h \varphi = 0$, the generalized Damour-Navier-Stokes equation leads to

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})^{s} \boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \left[\boldsymbol{\sigma}^{(\boldsymbol{m})} : \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}} \boldsymbol{q} - 2\theta^{(\boldsymbol{k})} \boldsymbol{\varphi} \cdot \boldsymbol{\mathcal{D}}C\right]^{s} \boldsymbol{\epsilon}$$

[EG, PRD 72, 104007 (2005)]

Two interesting limiting cases:

• $\mathcal{H} =$ null hypersurface : C = 0 and $m = \ell$:

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{\ell},\boldsymbol{\varphi})^{s} \boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \boldsymbol{\sigma}^{(\boldsymbol{\ell})} \colon \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}} \boldsymbol{q}^{s} \boldsymbol{\epsilon}$$

i.e. Eq. (6.134) of the *Membrane Paradigm* book (Thorne, Price & MacDonald 1986)

Angular momentum flux law

Under the supplementary hypothesis that φ is transported along the evolution vector h: $\mathcal{L}_h \varphi = 0$, the generalized Damour-Navier-Stokes equation leads to

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})^{s} \boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \left[\boldsymbol{\sigma}^{(\boldsymbol{m})} : \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}} \boldsymbol{q} - 2\theta^{(\boldsymbol{k})} \boldsymbol{\varphi} \cdot \boldsymbol{\mathcal{D}}C\right]^{s} \boldsymbol{\epsilon}$$

[EG, PRD 72, 104007 (2005)]

Two interesting limiting cases:

• $\mathcal{H} = \mathsf{null}$ hypersurface : C = 0 and $m = \ell$:

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{\ell},\boldsymbol{\varphi})^{\mathcal{S}}\boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \boldsymbol{\sigma}^{(\boldsymbol{\ell})} \colon \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}} \boldsymbol{q}^{\mathcal{S}}\boldsymbol{\epsilon}$$

i.e. Eq. (6.134) of the *Membrane Paradigm* book (Thorne, Price & MacDonald 1986)

• $\mathcal{H} =$ future trapping horizon :

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})^{\mathcal{S}}\boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \boldsymbol{\sigma}^{(\boldsymbol{m})} \colon \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}} \, \boldsymbol{q} \, {}^{\mathcal{S}}\boldsymbol{\epsilon}$$

Area evolution law for an event horizon

A(t): area of the 2-surface S_t ; ${}^{s}\epsilon$: volume element of S_t ; $\bar{\kappa}(t) := \frac{1}{A(t)} \int_{S_t} \kappa {}^{s}\epsilon$

Integrating the null Raychaudhuri equation on \mathcal{S}_t , one gets

$$\frac{d^2A}{dt^2} - \bar{\kappa}\frac{dA}{dt} = -\int_{\mathcal{S}_t} \left[8\pi \boldsymbol{T}(\boldsymbol{\ell},\boldsymbol{\ell}) + \boldsymbol{\sigma}^{(\boldsymbol{\ell})} : \boldsymbol{\sigma}^{(\boldsymbol{\ell})} - \frac{(\theta^{(\boldsymbol{\ell})})^2}{2} + (\bar{\kappa} - \kappa)\theta^{(\boldsymbol{\ell})} \right] {}^{s}\boldsymbol{\epsilon}$$
(1)

[Damour, 1979]

Area evolution law for an event horizon

A(t): area of the 2-surface S_t ; ${}^{s}\epsilon$: volume element of S_t ; $\bar{\kappa}(t) := \frac{1}{A(t)} \int_{S_t} \kappa {}^{s}\epsilon$

Integrating the null Raychaudhuri equation on \mathcal{S}_t , one gets

$$\frac{d^2A}{dt^2} - \bar{\kappa}\frac{dA}{dt} = -\int_{\mathcal{S}_t} \left[8\pi \boldsymbol{T}(\boldsymbol{\ell},\boldsymbol{\ell}) + \boldsymbol{\sigma}^{(\boldsymbol{\ell})} : \boldsymbol{\sigma}^{(\boldsymbol{\ell})} - \frac{(\boldsymbol{\theta}^{(\boldsymbol{\ell})})^2}{2} + (\bar{\kappa} - \kappa)\boldsymbol{\theta}^{(\boldsymbol{\ell})} \right]^s \boldsymbol{\epsilon}$$
(1)

[Damour, 1979]

Simplified analysis : assume $\bar{\kappa} = \text{const} > 0$:

• Cauchy problem \implies diverging solution of the homogeneous equation: $\frac{dA}{dt} = \alpha \exp(\bar{\kappa}t) !$

Area evolution law for an event horizon

A(t): area of the 2-surface S_t ; ${}^{s}\epsilon$: volume element of S_t ; $\bar{\kappa}(t) := \frac{1}{A(t)} \int_{S_t} \kappa {}^{s}\epsilon$

Integrating the null Raychaudhuri equation on \mathcal{S}_t , one gets

$$\frac{d^2A}{dt^2} - \bar{\kappa}\frac{dA}{dt} = -\int_{\mathcal{S}_t} \left[8\pi \boldsymbol{T}(\boldsymbol{\ell},\boldsymbol{\ell}) + \boldsymbol{\sigma}^{(\boldsymbol{\ell})} : \boldsymbol{\sigma}^{(\boldsymbol{\ell})} - \frac{(\boldsymbol{\theta}^{(\boldsymbol{\ell})})^2}{2} + (\bar{\kappa} - \kappa)\boldsymbol{\theta}^{(\boldsymbol{\ell})} \right]^s \boldsymbol{\epsilon}$$
(1)

[Damour, 1979]

Simplified analysis : assume $\bar{\kappa} = \text{const} > 0$:

• Cauchy problem \implies diverging solution of the homogeneous equation: $\frac{dA}{dt} = \alpha \exp(\bar{\kappa}t) !$

• correct treatment: impose $\frac{dA}{dt} = 0$ at $t = +\infty$ (teleological !)

$$\frac{dA}{dt} = \int_t^{+\infty} D(u)e^{\bar{\kappa}(t-u)} du \qquad D(t) : \text{ r.h.s. of Eq. (1)}$$

Non causal evolution

Area evolution law for a dynamical horizon

Dynamical horizon : C > 0; $\kappa' := \kappa - \mathcal{L}_{h} \ln C$; $\bar{\kappa}'(t) := \frac{1}{A(t)} \int_{S_{t}} \kappa' {}^{s} \epsilon$

From the $(\boldsymbol{m},\boldsymbol{h})$ component of Einstein equation, one gets

$$\frac{d^2A}{dt^2} + \bar{\kappa}'\frac{dA}{dt} = \int_{\mathcal{S}_t} \left[8\pi \boldsymbol{T}(\boldsymbol{m}, \boldsymbol{h}) + \boldsymbol{\sigma}^{(\boldsymbol{h})} : \boldsymbol{\sigma}^{(\boldsymbol{m})} + \frac{(\theta^{(\boldsymbol{h})})^2}{2} + (\bar{\kappa}' - \kappa')\theta^{(\boldsymbol{h})} \right] {}^{s}\boldsymbol{\epsilon}$$
(2)

[EG & Jaramillo, PRD 74, 087502 (2006)]

Area evolution law for a dynamical horizon

Dynamical horizon : C > 0; $\kappa' := \kappa - \mathcal{L}_h \ln C$; $\bar{\kappa}'(t) := \frac{1}{A(t)} \int_{S_t} \kappa' \, s \epsilon$

From the $(\boldsymbol{m},\boldsymbol{h})$ component of Einstein equation, one gets

$$\frac{d^2A}{dt^2} + \bar{\kappa}'\frac{dA}{dt} = \int_{\mathcal{S}_t} \left[8\pi \boldsymbol{T}(\boldsymbol{m}, \boldsymbol{h}) + \boldsymbol{\sigma}^{(\boldsymbol{h})} : \boldsymbol{\sigma}^{(\boldsymbol{m})} + \frac{(\theta^{(\boldsymbol{h})})^2}{2} + (\bar{\kappa}' - \kappa')\theta^{(\boldsymbol{h})} \right] {}^{\mathcal{S}}\boldsymbol{\epsilon}$$
(2)

[EG & Jaramillo, PRD 74, 087502 (2006)]

Simplified analysis : assume $\bar{\kappa}' = \text{const} > 0$

(OK for small departure from equilibrium [Booth & Fairhurst, PRL 92, 011102 (2004)]): Standard Cauchy problem :

$$\frac{dA}{dt} = \left. \frac{dA}{dt} \right|_{t=0} + \int_0^t D(u) e^{\bar{\kappa}'(u-t)} \, du \qquad D(t) : \text{ r.h.s. of Eq. (2)}$$

Causal evolution, in agreement with local nature of dynamical horizons

Outline

D Concept of black hole and event horizon

- 2 Local approaches to black holes
 - 3 Viscous fluid analogy
 - 4 Angular momentum and area evolution laws
- 5 Applications to numerical relativity

Applications to numerical relativity

Applications to numerical relativity

• Initial data: isolated horizons (helical symmetry)

[EG, Grandclément & Bonazzola, PRD 65, 044020 (2002)]
 [Grandclément, EG & Bonazzola, PRD 65, 044021 (2002)]
 [Cook & Pfeiffer, PRD 70, 104016 (2004)]

A posteriori analysis: estimating mass, linear and angular momentum of formed black holes
 [Schnetter, Krishnan & Beyer, PRD 74, 024028 (2006)]
 [Cook & Whiting, PRD 76, 041501 (2007)]
 [Krishnan, Lousto & Zlochower, PRD 76, 081501(R) (2007)]

Numerical construction of spacetime: inner boundary conditions for a constrained scheme with "black hole excision"
 [Jaramillo, EG, Cordero-Carrión, & J.M. Ibáñez, PRD 77, 047501 (2008)]
 [Vasset, Novak & Jaramillo, PRD 79, 124010 (2009)]

(1)

References

Review articles

- A. Ashtekar and B. Krishnan : *Isolated and dynamical horizons and their applications*, Living Rev. Relativity **7**, 10 (2004) ; http://www.livingreviews.org/lrr-2004-10
- I. Booth : *Black hole boundaries*, Canadian J. Phys. **83**, 1073 (2005) ; http://arxiv.org/abs/gr-qc/0508107
- E. Gourgoulhon and J.L. Jaramillo: A 3+1 perspective on null hypersurfaces and isolated horizons, Phys. Rep. 423, 159 (2006); http://arxiv.org/abs/gr-qc/0503113
- E. Gourgoulhon and J. L. Jaramillo : New theoretical approaches to black holes, New Astron. Rev. **51**, 791 (2008) ; http://arxiv.org/abs/0803.2944
- S.A. Hayward : Dynamics of black holes, Adv. Sci. Lett. 2, 205 (2009); http://arxiv.org/abs/0810.0923
- B. Krishnan : Fundamental properties and applications of quasi-local black hole horizons, Class. Quantum Grav. **25**, 114005 (2008); http://arxiv.org/abs/0712.1575

< ロ > < 同 > < 三 > < 三