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In the case involving particles, the necessary and sufficient condition for the Penrose process to extract
energy from a rotating black hole is absorption of particles with negative energies and angular momenta.
No torque at the black-hole horizon occurs. In this article we consider the case of arbitrary fields or matter
described by an unspecified, general energy-momentum tensor Tμν and show that the necessary and suf-
ficient condition for extraction of a black hole’s rotational energy is analogous to that in the mechanical
Penrose process: absorption of negative energy and negative angular momentum. We also show that a
necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-
momentum density vector) to be spacelike or past directed (timelike or null) on some part of the horizon.
In the particle case, our general criterion for the occurrence of a Penrose process reproduces the standard
result. In the case of relativistic jet-producing “magnetically arrested disks,” we show that the negative
energy and angular-momentum absorption condition is obeyed when the Blandford-Znajek mechanism
is at work, and hence the high energy extraction efficiency up to ∼300% found in recent numerical sim-
ulations of such accretion flows results from tapping the black hole’s rotational energy through the Penrose
process. We show how black-hole rotational energy extraction works in this case by describing the Penrose
process in terms of the Noether current.
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I. INTRODUCTION

Relativistic jets are often launched from the vicinity of
accreting black holes. They are observed to be produced in
stellar-mass black-hole binary systems and are believed to
be the fundamental part of the gamma-ray burst phenome-
non. Powerful relativistic jets are also ejected by accreting
supermassive black holes in some active galactic nuclei
(AGN). There is no doubt that the jet-launching mechanism
is related to accretion onto black holes, but there has been
no general agreement as to the ultimate source of energy of
these spectacular high energy phenomena. In principle,
relativistic jets can be powered either by the black hole’s
gravitational pull or by its rotation (spin), with large-scale
magnetic fields invoked as energy extractors in both cases.
Black-hole rotational energy extraction due to weakly mag-
netized accretion was considered by Ruffni and Wilson [1]
(see also [2]). In the context of strongly magnetized

jets, Blandford and Znajek [3] (BZ) proposed a model
of electromagnetic extraction of a black hole’s rotational
energy based on the analogy with the classical Faraday disk
(unipolar induction) phenomenon. The difficulty with
applying this analogy to a rotating black hole was a viable
identification of the analogue of the Faraday disk in a setup
where the surface of the rotating body (the black hole’s sur-
face) is causally disconnected from the rest of the Universe.
It seems now that this problem has been clarified and
solved ([4,5] and references therein). Another subject of
discussion about the physical meaning of the BZ mecha-
nism was its relation to the black-hole rotational energy
extraction process proposed by Penrose [6], in which an
infalling particle decays into two in the ergoregion, with
one of the decay products being absorbed by the black hole
and the other one reaching infinity, with energy larger than
that of the initial, infalling parent particle (see [7] for a
review). The energy gain in this (“mechanical”) Penrose
process is explained by the negative (“seen” from infinity)
energy of the ergoregion-trapped particle absorbed by the*lasota@iap.fr
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black hole. In the BZ mechanism, particle inertia can be
neglected; therefore, it clearly is not a mechanical
Penrose process. Komissarov [5] argues that the BZ mecha-
nism is an example of an energy counterflow, a black-hole
extraction phenomenon supposed to be more general than
the Penrose process.
In the present article, we discuss the relation between any

mechanism extracting black-hole rotational energy and the
mechanical Penrose process using a general-relativistic,
covariant description of the energy fluxes in the metric
of a stationary and axisymmetric rotating black hole
(this framework encompasses the Kerr metric as the special
case of a black hole surrounded by non-self-gravitating
matter). In particular, using energy and angular-momentum
conservation laws, we prove that for any matter or field,
tapping the black-hole rotational energy is possible if
and only if negative energy and angular momentum are
absorbed by the black hole and no torque at the black-hole
horizon is necessary (or possible). The conditions on
energy and angular-momentum fluxes through the horizon
are analogous to those on particle energy and angular
momentum in the mechanical Penrose process. From these
conditions, we deduce a necessary condition for a general
(passive) electromagnetic field configuration to allow
black-hole energy extraction through the Penrose process.
In the case of stationary, axisymmetric, and force-free
fields, we obtain the well-known condition [3] on the angu-
lar speed of the field lines. We also describe the Penrose
process in terms of the Noether current. This description
is particularly useful in the description of results of numeri-
cal simulations.
Finally, we use our generalized Penrose process frame-

work to interpret the results of recent numerical studies of
accretion onto black holes by [8–10], which indicate that
the BZ mechanism can tap the black-hole rotational energy
very efficiently (efficiency η > 100%). These simulations
are based on large-scale numerical simulations involving
a particular state of accretion around rotating black holes:
“magnetically arrested disks” (MADs), first in Newtonian
gravity (see, e.g., [11,12]), and later in GR (e.g., [8,9]).
MADs were also called “magnetically choked accretion
flows” in [10]. We show that the resulting configurations
satisfy the Penrose-process conditions for black-hole
energy extraction.
Our results agree, in most respects, with those obtained

by Komissarov [5]. The difference between the two
approaches worth noticing is that we derive our generalized
Penrose condition from the fundamental, and universally
accepted, null energy condition, while Komissarov introdu-
ces a new concept of the energy counterflow. This differ-
ence will be investigated in a future paper.
More than 30 years ago, Carter [4], analyzing the BZ

mechanism in a covariant framework, obtained several
results similar to ours. Using energy and angular-momentum
rates (integrated fluxes, while we use energy and angular

momentum) he showed the necessity of a negative energy
absorption rate at the horizon for this mechanism to operate.
Strangely, his paper has almost never been cited in the con-
text of the discussion of the Penrose-BZ process. Our treat-
ment is more general than that of Carter, since we use a
general energy-momentum tensor, while Carter considered
fields that are time periodic (cf. Sec. 6.4.2 of Ref. [13]).
Moreover, we obtain a new condition on a general electro-
magnetic field configuration [Eq. (7.7) below], and we apply
it to interpret recent numerical simulation of relativistic jet
production.
In a recent paper [14], the MAD simulations have been

described in the framework of the so-called “membrane
paradigm” [15]. This picture of the interaction of electro-
magnetic fields with the black-hole surface has the advan-
tage of using the analogues of the usual electric and
magnetic fields in a 3-D flat space. Penna et al. [14] showed
that the results of MAD simulations can be consistently
described in the membrane framework.

II. THE MECHANICAL PENROSE PROCESS

Penrose [6] considered1 a free-falling particle that enters
the ergosphere of a rotating black hole with energy
E1 ¼ −η⃗ · p⃗1, where η⃗ is the Killing vector associated with
stationarity [see also Eq. (3.1) below], p⃗1 the particle
4-momentum vector, and the dot denotes the spacetime
scalar product: η⃗ · p⃗1 ¼ gðη⃗; p⃗1Þ ¼ gμνημpν

1 ¼ ημp
μ
1. Here

g is the metric tensor, whose signature is chosen to be
ð−;þ;þ;þÞ. Note that although E1 is called an energy,
it is not the particle’s energy measured by any observer
since η⃗ is not a unit vector (i.e., it cannot be considered
as the 4-velocity of any observer), except in the asymptoti-
cally flat region infinitely far from the black hole. For this
reason E1 is often called the energy at infinity. The virtue of
E1 is to remain constant along the particle’s worldline, as
long as the latter is a geodesic, i.e., as long as the particle is
free falling. In the ergoregion, the particle disintegrates into
two particles with, say, 4-momenta p⃗2 and p⃗�. Their con-
served energies are, respectively, E2 ¼ −η⃗ · p⃗2 and ΔEH ¼−η⃗ · p⃗� (the notation ΔEH is for future convenience). The
first particle escapes to infinity, which implies E2 > 0,
while the second one falls into the black hole. Since in
the ergoregion η⃗ is a spacelike vector (from the very def-
inition of an ergoregion), it is possible to have ΔEH < 0 on
certain geodesics. The falling particle is then called a neg-
ative energy particle, although its energy measured by any
observer, such as for instance a zero-angular-momentum
observer (ZAMO), remains always positive. At the disinte-
gration point, the conservation of 4-momentum implies
p⃗1 ¼ p⃗2 þ p⃗�; taking the scalar product with η⃗, we deduce
that E1 ¼ E2 þ ΔEH. Then, as a result of ΔEH < 0, we get
E2 > E1. At infinity, where the constants E1 and E2 can be

1See also [17].
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interpreted as the energies measured by an inertial observer
at rest with respect to the black hole (thanks to the asymp-
totic behavior of η⃗), one has clearly some energy gain: the
outgoing particle is more energetic than the ingoing one.
This is the so-called mechanical Penrose process of energy
extraction from a rotating black hole. In other words, the
sufficient and necessary condition for energy extraction
from a rotating black hole is

ΔEH < 0: (2.1)

From the condition that energy measured locally by a
ZAMO must be non-negative, one obtains (see, e.g., [16])

ωHΔJH ≤ ΔEH; (2.2)

where ωH is the angular velocity of the black hole
(defined below) and ΔJH is the angular momentum of
the negative-energy particle absorbed by the black hole,

defined by ΔJH ¼ ξ⃗ · p⃗�, where ξ⃗ is the Killing vector
associated with axisymmetry. Without loss of generality,
we take ωH ≥ 0. Equations (2.1)–(2.2) imply that
ωH ≠ 0 and

ΔJH < 0: (2.3)

It worth stressing that in the mechanical Penrose
process, particles move on geodesics along which (by con-
struction) energy is conserved. Therefore, the negative
energy particle must originate in the ergoregion, the only
domain of spacetime where such a particle can exist. In
the general case of interacting matter or fields, negative
energy at the horizon does not imply negative energy
elsewhere.
Soon after Penrose’s discovery that rotating black holes

may be energy sources, it was suggested that the mechani-
cal Penrose process may power relativistic jets observed in
quasars. However, a careful analysis by [18–21] (see also
[7]), showed that it is unlikely that negative energy states,
necessary for the Penrose process to work, may be achieved
through the particles’ disintegration and/or collision inside
the ergosphere. This conclusion has been confirmed more
recently by [22–24] for high energy particle collisions.
The reason is that in the case of collisions, the particles with
positive energies cannot escape because they must have
large but negative radial momenta. Thus, they are captured
(together with the negative energy particles) by the black
hole. Note that for charged particles evolving in the
electromagnetic field of a Kerr-Newman black hole, the
efficiency of the mechanical Penrose process can be very
large [7,25].
Attempts to describe the BZ mechanism as a mechanical

Penrose process have been unsuccessful ([5] and references
therein). This leaves electromagnetic processes as the only
astrophysically realistic way to extract rotational energy
from a rotating black hole.

III. GENERAL RELATIVISTIC PRELIMINARIES

A. The spacetime symmetries

The spacetime is modeled by a four-dimensional smooth
manifold M equipped with a metric g of signature
ð−;þ;þ;þÞ. We are considering a rotating uncharged black
hole that is stationary and axisymmetric. If the black hole is
isolated, i.e., not surrounded by self-gravitating matter or
electromagnetic fields, the spacetime ðM; gÞ is described
by the Kerr metric (see Appendix A). Here and in
Secs. IV to VII, we do not restrict to this case and consider
a generic stationary and axisymmetric metric g. As already
mentioned in Sec. II, we denote by η⃗ the Killing vector asso-

ciated with stationarity and by ξ⃗ that associated with axisym-
metry. In a coordinate system ðxαÞ ¼ ðt; x1; x2; x3Þ adapted
to stationarity, i.e., such that

∂
∂t ¼ η⃗; (3.1)

the components gαβ of the metric tensor are independent
of the coordinate t. In a similar way, if the coordinate x3,
say, corresponds to the axial symmetry, the components
gαβ will be independent of this coordinate.

B. The black-hole horizon

The event horizon H is a null hypersurface; if it is
stationary and axisymmetric, the symmetry generators η⃗
and ξ⃗ have to be tangent to it (cf. Fig. 1). Moreover, any
null normal l⃗ to H has to be a linear combination of η⃗
and ξ⃗: up to some rescaling by a constant factor, we
may write

l⃗ ¼ η⃗þ ωH ξ⃗; (3.2)

where ωH ≥ 0 is constant over H (rigidity theorem,
cf. [13]) and is called the black-hole angular velocity.
Since ωH is constant, l⃗ is itself a Killing vector and H
is called a Killing horizon. For a Kerr black hole of mass
m and angular momentum am, we have ωH ¼ a=½2mrH�,
where rH ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2
p

is the radius of the black-hole
horizon. Since H is a null hypersurface, the normal l⃗ is
null, l⃗ · l⃗ ¼ 0. For this reason, l⃗ is both normal and tan-
gent toH. The field lines of l⃗ are null geodesics tangent to
H; they are called the null generators ofH. One of them is
drawn in Fig. 1.
Let ðxαÞ ¼ ðt; x1; x2; x3Þ be a coordinate system on M

that is adapted to the stationarity, in the sense of (3.1),
and regular on H. In the case of a Kerr black hole, this
means that ðxαÞ are not the standard Boyer-Lindquist coor-
dinates, which are well known to be singular onH. Regular
coordinates on H are the Kerr coordinates, either in
their original version [26] or in the 3þ 1 one, and the
Kerr-Schild coordinates, which are used in the numerical
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computations by Tchekhovskoy et al. [8,27] and
McKinney et al. [10], discussed in Sec. VIII. See
Appendix A for more details on the coordinate system
and the coordinate representation of l⃗.
Then from (3.1) and (3.2), t is the parameter along the

null geodesics generating H for which l⃗ is the tangent
vector:

lα ¼ dxα

dt
: (3.3)

(Note that in general t is not an affine parameter along these
geodesics.) Since the coordinates ðt; xiÞ are assumed regular
onH, the 2-surfaces St of constant t onH provide a regular
slicing ofH by a family of spacelike 2-spheres. Let us denote
by k⃗ the future-directed null vector field defined onH by the
following requirements (cf. Fig. 1):
(1) k⃗ is orthogonal to St,
(2) k⃗ obeys

k⃗ · l⃗ ¼ −1: (3.4)

Then, at each point of St, Spanðk⃗; l⃗Þ is the timelike 2-plane
orthogonal to St. Note that k⃗ is transverse to H (i.e., is not
tangent to it) and that, contrary to l⃗, the vector k⃗ depends
on the choice of the coordinates ðt; xiÞ (more precisely on
the slicing ðStÞt∈R of H; see, e.g., [28]).
The 2-surfaces St of constant t on H are spacelike

2-spheres corresponding to what is commonly understood
as the “black-hole surface,” in analogy to the “stellar
surface.”

C. Energy condition

Let T be the energy-momentum tensor of matter and
nongravitational fields surrounding the black hole. We shall
assume that it fulfills the so-called null energy condition at
the event horizon:

TμνlμlνjH ≥ 0: (3.5)

This is a very mild condition, which is satisfied by any ordi-
nary matter and any electromagnetic field. In particular, it
follows (by some continuity argument timelike → null)
from the standard weak energy condition [29], according
to which energy measured locally by observers is always
non-negative.

IV. ENERGY AND ANGULAR-MOMENTUM
CONSERVATION LAWS

In the mechanical Penrose process, particles move on
geodesics along which the energy E and the angular
momentum J, as defined in Sec. II, are conserved quan-
tities. Therefore, they can be evaluated anywhere along
the particle trajectories, in particular at the black-hole sur-
face where an energy flux can be calculated. In the general
case of matter with nongravitational interactions (e.g., a
perfect fluid) or a field (e.g., electromagnetic), the energy
and angular momentum must be evaluated using the con-
servation equations, and in such a case the fluxes of the
conserved quantities play the role equivalent to that of
energy and angular momentum in the case of particles.2

A. Energy conservation

Let us consider the “energy-momentum density” vector
P⃗ defined by

Pα ¼ −Tα
μη

μ: (4.1)

If matter and nongravitational fields obey the standard
dominant energy condition [29], then P⃗ must be a
future-directed timelike or null vector as long as η⃗ is

FIG. 1 (color online). Spacetime diagram showing the event
horizon of a Kerr black hole of angular-momentum parameter
a=m ¼ 0.9. This three-dimensional diagram is cut at θ ¼ π=2
of the four-dimensional spacetime. The diagram is based on
the 3þ 1 Kerr coordinates ðt; r;ϕÞ described in Appendix A
and the axes are labeled in units of m. The event horizon H is
the blue cylinder of radius r ¼ rH ¼ 1.435m [this value results
from a ¼ 0.9 m via (A3)] and the green cone is the future light
cone at the point (t ¼ 0, θ ¼ π=2, φ ¼ 0) on H. The null vectors

l⃗ and k⃗ (drawn in green) are tangent to this light cone, but not η⃗
which, although tangent to H, being spacelike lies outside of the
light cone. Note that relation (3.2) holds with ωH ¼ 0.313 m−1

(cf. Appendix A). The green line, to which l⃗ is tangent, is a null
geodesic tangent to H; if the figure was extended upward, it
would show up as a helix. n⃗ is the (timelike) unit normal to
the hypersurface t ¼ 0. s⃗ is the (spacelike) unit normal to the
2-sphere S0 defined by t ¼ 0 and r ¼ rH . Note that this 2-sphere
is drawn here as a circle (the basis of the cylinder) because the

dimension along θ has been suppressed. The vector b⃗ is the unit

vector along ξ⃗ ¼ ∂=∂φ. The vectors ðn⃗; s⃗; b⃗Þ form an orthonormal
basis (drawn in red) for the metric g.

2In Abramowicz et al. [30] where generalizing the Penrose
process was attempted, Eqs. (B3) and (B4) are not correct be-
cause the “energy at infinity” and “angular momentum at infin-
ity” that are used there are not conserved quantities.

J.-P. LASOTA et al. PHYSICAL REVIEW D 89, 024041 (2014)

024041-4



timelike, i.e., outside the ergoregion. In the ergoregion,
where η⃗ is spacelike, there is no guarantee that P⃗ is timelike
or null, and even when it is timelike, P⃗ can be past directed
(an example is provided in Fig. 5 below). Therefore, P⃗ can-
not be interpreted as a physical energy-momentum density,
hence the quotes in the above denomination. Moreover,
even outside the ergoregion, P⃗ does not correspond to
the energy-momentum density measured by any physical
observer, since η⃗ fails to be some observer’s 4-velocity,
not being a unit vector, except at infinity (cf. the discussion
in Sec. II). The vector P⃗ is known as the Noether current
associated with the symmetry generator η⃗ [31,32]. It is con-
served in the sense that

∇μPμ ¼ 0: (4.2)

This is easily proved from the definition (4.1) by means of
(i) the energy-momentum conservation law ∇μTμν ¼ 0,
(ii) the Killing equation obeyed by η⃗, and (iii) the symmetry
of the tensor T. By Stokes’s theorem, it follows from (4.2)
that the flux of P⃗ through any closed3 oriented hypersurface
V vanishes:

I
V
ϵðP⃗Þ ¼ 0; (4.3)

where ϵðP⃗Þ stands for the 3-form obtained by setting P⃗ as
the first argument of the Levi-Civita tensor ϵ (or volume
4-form) associated with the spacetime metric g:

ϵðP⃗Þ ≔ ϵðP⃗; :; :; :Þ: (4.4)

In terms of components in a right-handed basis,

ϵðP⃗Þαβγ ¼ Pμϵμαβγ ¼
ffiffiffiffiffiffi−gp

Pμ½μ; α; β; γ�; (4.5)

where g ≔ detðgαβÞ and ½μ; α; β; γ� is the alternating symbol
of four indices; i.e., ½μ; α; β; γ� ¼ 1 (−1) if ðμ;α; β; γÞ is an
even (odd) permutation of (0, 1, 2, 3), and ½μ; α; β; γ� ¼ 0
otherwise. Note that the integral (4.3) is intrinsically well
defined, as the integral of a 3-form over a three-dimensional
oriented manifold. The proof of (4.3) relies on Stokes’s
theorem according to which the integral over V is equal
to the integral over the interior of V of the exterior deriva-
tive of the 3-form ϵðP⃗Þ; the latter being d½ϵðP⃗Þ� ¼ ð∇μPμÞϵ,
it vanishes identically as a consequence of (4.2).
Let us apply (4.3) to the hypersurface V defined as the

following union:

V ≔ Σ1∪ΔH∪Σ2∪Σext; (4.6)

where (cf. Fig. 2)

(i) Σ1 (Σ2) is a compact spacelike hypersurface delimited
by two 2-spheres, S1 and Sext

1 (S2 and Sext
2 ), such that

S1 (S2) lies onH and Sext
1 (Sext

2 ) is located far from the
black hole;

(ii) Σ2 is assumed to lie entirely in the future of Σ1;
(iii)ΔH is the portion of the event horizonH delimited by

S1 and S2;
(iv) Σext is a timelike hypersurface having Sext

1 and Sext
2 for

boundaries.
We may choose (but this is not mandatory) the 2-spheres S1

and S2 to coincide with some slices of the foliation ðStÞt∈R
of H mentioned in Sec. IIIB: S1 ¼ St1 and S2 ¼ St2 .
We choose the orientation of V to be towards its exterior,

but the final results do not depend upon this choice. The
orientation of V is depicted by the vector m⃗ in Fig. 2.
Note that this vector does not have to be normal to the vari-
ous parts of V (in particular, it is not normal toΔH). Its role
is only to indicate that the orientation of V is given by the
3-form ϵðm⃗Þ restricted to vectors tangent to V. More
precisely, m⃗ is defined as follows:
(i) on Σ1, m⃗ ¼ −n⃗1, the vector n⃗1 being the future-

directed unit timelike normal to Σ1;
(ii) on Σ2, m⃗ ¼ n⃗2, the future-directed unit timelike

normal to Σ2;
(iii) on Σext, m⃗ ¼ s⃗, the unit spacelike normal to Σext

oriented towards the exterior of V;
(iv) on ΔH, m⃗ ¼ k⃗, the future-directed null vector intro-

duced above [cf. (3.4)].
In view of (4.6), the property (4.3) gives

Z
Σ1↓

ϵðP⃗Þþ
Z
ΔH 

ϵðP⃗Þþ
Z
Σ2↑

ϵðP⃗Þþ
Z

→
Σext

ϵðP⃗Þ ¼ 0; (4.7)

where the arrows indicate the orientation (cf. Fig. 2). Let us
then define the energy contained in Σ1 by

E1 ≔
Z
Σ1↑

ϵðP⃗Þ ¼ −
Z
Σ1

Pμn
μ
1dV

¼
Z
Σ1

Tμνη
μnν1

ffiffiffi
γ
p

dx1dx2dx3; (4.8)

FIG. 2 (color online). Closed hypersurface V ¼
Σ1∪ΔH∪Σ2∪Σext. The green arrows depict the orientation of
V, which is given by ϵðm⃗Þ.

3In other words, it is compact without boundary.
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the energy contained in Σ2 by

E2 ≔
Z
Σ2↑

ϵðP⃗Þ ¼ −
Z
Σ2

Pμn
μ
2dV

¼
Z
Σ2

Tμνη
μnν2

ffiffiffi
γ
p

dx1dx2dx3; (4.9)

the energy captured by the black hole between Σ1

and Σ2 by

ΔEH ≔
Z
←
ΔH
ϵðP⃗Þ ¼ −

Z
ΔH

Pμlμd

¼
Z
ΔH

Tμνη
μlν ffiffiffi

q
p

dtdy1dy2; (4.10)

and the energy evacuated from the system between Σ1

and Σ2 by

ΔEext ≔
Z

→
Σext

ϵðP⃗Þ ¼
Z
Σext

PμsμdV

¼ −
Z
Σext

Tμνη
μsν

ffiffiffiffiffiffiffi−hp
dtdy1dy2: (4.11)

In the above formulas,
(i) dV is the volume element induced on each hypersur-

face by the spacetime Levi-Civita tensor ϵ;
(ii) ðx1; x2; x3Þ are generic coordinates on Σ1 and Σ2 that

are right handed with respect to the hypersurface
orientation;

(iii) γ is the determinant of the components with respect to
the coordinates ðx1; x2; x3Þ of the 3-metric γ induced
by g on Σ1 or Σ2;

(iv) ðt; y1; y2Þ are generic right-handed coordinates on Σext;
(v) h is the determinant of the components with respect to

the coordinates ðt; y1; y2Þ of the 3-metric h induced by
g on Σext (h < 0 since Σext is timelike);

(vi) ðt; y1; y2Þ are right-handed coordinates on ΔH
such that t is the parameter along the null geodesics
generating H associated with the null normal
l⃗ [cf. (3.3)];

(vii) q is the determinant with respect to the coordinates
ðy1; y2Þ of the 2-metric induced by g on the 2-surfaces
t ¼ const in ΔH.

The second and third equalities in each of Eqs. (4.8)–(4.11)
are established in Appendix B.
With the above definitions, (4.7) can be written as the

energy conservation law

E2 þ ΔEext − E1 ¼ −ΔEH: (4.12)

Notice that the minus sign in front of E1 arises from the
change of orientation of Σ1 between (4.7) and the definition
(4.8) of E1.

B. Angular-momentum conservation

In a way similar to (4.1), we define the angular-
momentum density vector by

Mα ¼ Tα
μξ

μ: (4.13)

Since ξ⃗ is a Killing vector, M⃗ obeys the conservation law

∇μMμ ¼ 0: (4.14)

Let us introduce the angular momentum contained in Σ1

and that contained in Σ2 by

J1 ≔
Z
Σ1↑

ϵðM⃗Þ ¼ −
Z
Σ1

Mμn
μ
1dV

¼ −
Z
Σ1

Tμνξ
μnν1

ffiffiffi
γ
p

dx1dx2dx3 (4.15)

and

J2 ≔
Z
Σ2↑

ϵðM⃗Þ ¼ −
Z
Σ2

Mμn
μ
2dV

¼ −
Z
Σ2

Tμνξ
μnν2

ffiffiffi
γ
p

dx1dx2dx3; (4.16)

the angular momentum captured by the black hole between
Σ1 and Σ2 by

ΔJH ≔
Z
←
ΔH
ϵðM⃗Þ ¼ −

Z
ΔH

MμlμdV

¼ −
Z
ΔH

Tμνξ
μlν ffiffiffi

q
p

dtdy1dy2; (4.17)

and the angular momentum evacuated from the system
between Σ1 and Σ2 by

Jext ≔
Z

→
Σext

ϵðM⃗Þ ¼
Z
Σext

MμsμdV

¼
Z
Σext

Tμνξ
μsν

ffiffiffiffiffiffiffi−hp
dtdy1dy2: (4.18)

We deduce then from (4.14) that, similarly to (4.12),

J2 þ Jext − J1 ¼ −ΔJH: (4.19)

C. Explicit expressions in adapted coordinates

Let us call adapted coordinates any right-handed
spherical-type coordinate system ðxαÞ ¼ ðt; r; θ;φÞ such
that (i) t and φ are associated with the two spacetime
symmetries, so that the two independent Killing vectors
are η⃗ ¼ ∂=∂t and ξ⃗ ¼ ∂=∂φ; (ii) the event horizon H is
the hypersurface defined by r ¼ const ¼ rH; (iii) the time-
like hypersurface Σext is defined by r ¼ const ¼ rext and
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t ∈ ½t1; t2�, where t1 and t2 are two constants such that
t1 < t2; and (iv) the spacelike hypersurface Σ1 (Σ2) is
defined by t ¼ t1 and r ∈ ½rH; rext� (t ¼ t2 and
r ∈ ½rH; rext�). Then ΔH is the hypersurface defined by r ¼
rH and t ∈ ½t1; t2�. In the case of Kerr spacetime, an exam-
ple of adapted coordinates is the 3þ 1 Kerr coordinates
described in Appendix A.
On Σ1 or Σ2, ðr; θ;φÞ are coordinates that are right

handed with respect to the “up” orientation of these hyper-
surfaces used in the definitions (4.8)–(4.9) of E1 and E2.
Consequently,

E1;2 ¼
Z
Σ1;2

ϵðPÞrθφdrdθdφ

¼
Z
Σ1;2

ffiffiffiffiffiffi−gp
Pt½t; r; θ;φ�|fflfflfflfflffl{zfflfflfflfflffl}

1

drdθdφ;

where the second equality results from (4.5). Now, (4.1)
yields Pt ¼ −Tt

tη
μ ¼ −Tt

t since ηα ¼ ð1; 0; 0; 0Þ in
adapted coordinates. We conclude that

E1 ¼ −
Z
Σ1

Tt
t

ffiffiffiffiffiffi−gp
drdθdφ and

E2 ¼ −
Z
Σ2

Tt
t

ffiffiffiffiffiffi−gp
drdθdφ: (4.20)

As a check, we note that the above formulas can also be
recovered from the expressions involving Tμνη

μnν1;2 in
(4.8)–(4.9). Indeed, the unit timelike normal n⃗ to Σ1 or
Σ2 obeys nα ¼ ð−N; 0; 0; 0Þ, where N is the lapse function
of the spacetime foliation by t ¼ const hypersurfaces (see,
e.g., [33]). Accordingly Tμνη

μnν ¼ Tν
μη

μnν ¼ Tt
tð−NÞ.

Since N
ffiffiffi
γ
p ¼ ffiffiffiffiffiffi−gp

, we get (4.20).
On ΔH, ðt; θ;φÞ are coordinates that are right handed

with respect to the “inward” orientation used in the defini-
tion (4.10) of ΔEH. Indeed

ϵðm⃗; ∂⃗t; ∂⃗θ; ∂⃗φÞ ¼ ϵðk⃗; ∂⃗t; ∂⃗θ; ∂⃗φÞ
¼ krϵrtθφ ¼ − kr|{z}

<0

ϵtrθφ|ffl{zffl}
>0

> 0: (4.21)

Accordingly,

ΔEH ¼
Z
ΔH

ϵðPÞtθφdtdθdφ

¼
Z
ΔH

ffiffiffiffiffiffi−gp
Pr½r; t; θ;φ�|fflfflfflfflffl{zfflfflfflfflffl}

−1
dtdθdφ; (4.22)

where the second equality results from (4.5). Since Pr ¼
−Tr

t from (4.1), we get

ΔEH ¼
Z
ΔH

Tr
t

ffiffiffiffiffiffi−gp
dtdθdφ: (4.23)

On Σext, it is ðt;φ; θÞ, and not ðt; θ;φÞ, that constitutes a
right-handed coordinate system with respect to the orienta-
tion used in the definition (4.11) of ΔEext. Indeed

ϵðm⃗; ∂⃗t; ∂⃗φ; ∂⃗θÞ ¼ ϵðs⃗; ∂⃗t; ∂⃗φ; ∂⃗θÞ
¼ srϵrtφθ ¼ sr|{z}

>0

ϵtrθφ|ffl{zffl}
>0

> 0: (4.24)

We have, therefore,

ΔEext ¼
Z
Σext

ϵðPÞtφθdtdθdφ

¼
Z
Σext

ffiffiffiffiffiffi−gp
Pr½r; t;φ; θ�|fflfflfflfflffl{zfflfflfflfflffl}

1

dtdθdφ: (4.25)

Substituting −Tr
t for Pr, we get

ΔEext ¼ −
Z
Σext

Tr
t

ffiffiffiffiffiffi−gp
dtdθdφ: (4.26)

The formulas for the angular momentum are similar to
the above ones, with Tt

t replaced by −Tt
φ and Tr

t replaced
by −Tr

φ:

J1 ¼
Z
Σ1

Tt
φ

ffiffiffiffiffiffi−gp
drdθdφ and

J2 ¼
Z
Σ2

Tt
φ

ffiffiffiffiffiffi−gp
drdθdφ; (4.27)

ΔJH ¼ −
Z
ΔH

Tr
φ

ffiffiffiffiffiffi−gp
dtdθdφ; (4.28)

ΔJext ¼
Z
Σext

Tr
φ

ffiffiffiffiffiffi−gp
dtdθdφ: (4.29)

Expressions (4.20)–(4.26) and (4.27)–(4.29), as well
as the energy conservation law (4.12) and the angular-
momentum conservation law (4.19), are rederived in
Appendix D, via a pure coordinate-based calculation.

V. GENERAL CONDITIONS FOR BLACK-HOLE
ROTATIONAL ENERGY EXTRACTION

A. General case

For definiteness, let us consider that Σ1 and Σ2 are parts
of a foliation of spacetime by a family of spacelike hyper-
surfaces ðΣtÞt∈R:
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Σ1 ¼ Σt1 and Σ2 ¼ Σt2 with t2 > t1: (5.1)

For instance, in the case of a Kerr black hole, the hyper-
surface label t can be chosen to be the Kerr-Schild time
coordinate introduced in Appendix A.
In (4.12), we may then interpret E1 as the “initial

energy,” i.e., the energy “at the time t1”; E2 as the “final
energy,” i.e., the energy “at the time t2”; and ΔEext as
the energy evacuated from the system between the times
t1 and t2. Accordingly, the “energy gained by the
world outside of the black hole” between t1 and t2 is
defined as

ΔE ≔ E2 þ ΔEext − E1: (5.2)

Then, energy will be extracted from the black hole if and
only if ΔE > 0. In view of the conservation law (4.12), we
conclude that energy is extracted from a black hole if and
only if

ΔEH < 0: (5.3)

We refer to any process that accomplishes this as a Penrose
process.
Let us assume that the energy-momentum tensor obeys

the null energy condition (cf. Sec. IIIC) on the event hori-
zon: TμνlμlνjH ≥ 0 [Eq. (3.5)]. As mentioned above, this
is a rather mild condition, implied by the standard weak
energy condition. From (3.2), (4.1), and (4.13), it follows
that

Tμνlμlν ¼ Tμνðην þ ωHξ
νÞlμ ¼ −Pμlμ þ ωHMμlμ:

Integrating (3.5) over ΔH yields then

−
Z
ΔH

PμlμdV þ ωH

Z
ΔH

MμlμdV ≥ 0; (5.4)

where we have used the fact that ωH is constant. Using
(4.10) and (4.17), the above relation can be rewritten as
ΔEH − ωHΔJH ≥ 0, i.e.,

ωHΔJH ≤ ΔEH: (5.5)

In view of (5.5) and ωH ≥ 0, the black-hole energy extrac-
tion condition (5.3) implies

ΔJH < 0: (5.6)

We conclude the following:

For a matter distribution or a nongravitational field
obeying the null energy condition, a necessary and suf-
ficient condition for energy extraction from a rotating
black hole is that it absorbs negative energy ΔEH
and negative angular momentum ΔJH.

Equations (5.3), (5.5), and (5.6) are identical with
Eqs. (2.1), (2.2), and (2.3), describing the condition for
the Penrose process. They describe the same physics: in
order to extract energy from a rotating black hole, one must
feed it negative energy and angular momentum.
Any extraction of a black hole’s rotational energy by

interaction with matter and/or (nongravitational) fields is
a Penrose process.

B. Penrose process in terms of the Noether current P⃗

Given the expression (4.10) of ΔEH, we note that the
Penrose-process condition (5.3) implies Pμlμ > 0 on some
part of ΔH. Since l⃗ is a future-directed null vector, Pμlμ >
0 if and only if P⃗ is either (i) spacelike or (ii) past directed
timelike or past directed null. Therefore, we conclude that

A necessary condition for a Penrose process to occur is
to have the Noether current P⃗ be spacelike or past
directed (timelike or null) on some part of ΔH.

As we already noticed in Sec. IVA, if the matter or fields
fulfil the standard dominant energy condition, the vector P⃗
is always future directed timelike or null outside the ergo-
region; therefore, it can be spacelike or past directed only in
the ergoregion.

FIG. 3 (color online). Two views of the energy balance in a
Penrose process. Top: Global (GL) with E2 > E1 and
ΔEext ¼ 0. Bottom: local (LC) stationary view with E2 ¼ E1

butΔEext ¼ −ΔEH > 0. The region of spacetime concerned with
this view is marked “LC” on the top figure.
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C. Applications of the Penrose-process energy balance

The energy balance equations derived above can be
applied to basically two views of energy extraction from
a black hole. First, one can use the global (GL) spacetime
view applied to theoretically described “real” astrophysical
systems (Fig. 3, top). Matter and/or fields have limited
space extent, and the timelike hypersurface Σext is placed
sufficiently far so that ΔEext ¼ 0. When there is energy
extraction, i.e., when ΔE > 0, then E2 > E1. This is the
view we will have in mind in Secs. VI and VII.
When dealing with numerical simulations, however,

such global view is usually unpractical. The simulation
is performed in a box of limited size and the system is
brought to a stationary state. The view presented in the
bottom part of Fig. 3 is then more adapted to the energy
balance. Because of stationarity, one has E2 ¼ E1 but
ΔEext > 0. When the numerical code conserves energy
very well, the energy balance implies ΔEH < 0. This is
the view applied in Sec. VIII.

VI. VARIOUS EXAMPLES OF THE
PENROSE PROCESS

In what follows we will apply Eqs. (4.8) to (4.12) and
(4.15) to (4.19) to various black-hole plus matter (or fields)
configurations. We first show that in the case of particles,
one recovers the standard Penrose-process formulas. Then
we shall apply our formalism to the cases of a scalar field
and a perfect fluid. The case of the electromagnetic field is
treated in Sec. VII.

A. Mechanical Penrose-process test

Let us show that the formalism developed above repro-
duces the mechanical Penrose process for a single particle
that breaks up into two fragments in the ergoregion.
The energy-momentum tensor of a massive particle of

mass m and 4-velocity u⃗ is (cf. e.g., [34])

TαβðMÞ ¼ m
Z þ∞

−∞
δAðτÞðMÞgαμðM;AðτÞÞuμðτÞ

× gβνðM;AðτÞÞuνðτÞdτ; (6.1)

whereM ∈ M is the spacetime point at which Tαβ is evalu-
ated, τ stands for the particle’s proper time, AðτÞ ∈ M is
the spacetime point occupied by the particle at the proper
time τ, gαμðM;AÞ is the parallel propagator from the point
A to the point M along the unique geodesic4 connecting A
toM (cf. Sec. 5 of [34] or Appendix I of [35]), and δAðMÞ is
the Dirac distribution on ðM; gÞ centered at the point A: it
is defined by the identity

Z
U
δAðMÞfðMÞ

ffiffiffiffiffiffi−gp
d4x ¼ fðAÞ; (6.2)

for any four-dimensional domain U around A and any sca-
lar field f∶ U → R. In terms of a coordinate system ðxαÞ
around A,

δAðMÞ ¼
1ffiffiffiffiffiffi−gp δðx0 − z0Þδðx1 − z1Þδðx2 − z2Þδðx3 − z3Þ;

(6.3)

where δ is the standard Dirac distribution on R, ðxαÞ are the
coordinates of M, ðzαÞ those of A, and g is the determinant
of the components of the metric tensor with respect to the
coordinates ðxαÞ.
The Noether current corresponding to (6.1) is formed

via (4.1):

PαðMÞ ¼ m
Z þ∞

−∞
δAðτÞðMÞ½−gσνðM;AðτÞÞuνðτÞησðMÞ�

× gαμðM;AðτÞÞuμðτÞdτ: (6.4)

This means that P⃗ is a distribution vector whose support is
the particle’s worldline and that is collinear to the particle’s
4-velocity.
Let us choose Σ1 and Σ2 such that Σ1 encounters the

original particle P1 (mass m1, 4-velocity u⃗1) at the event
A1, Σ2 encounters the escaping fragment P2 (mass m2,
4-velocity u⃗2) at the event A2, and the infalling fragment
P� (mass m�, 4-velocity u⃗�) crosses the horizon on ΔH,
at the event AH (cf. Fig. 4). By plugging (6.1) into
(4.8), we get

E1 ¼ m1

Z
Σ1

Z þ∞

−∞
δAðτÞðMÞgμρðM;AðτÞÞðu1ÞρðτÞ

× gνσðM;AðτÞÞðu1ÞσðτÞημðMÞnν1ðMÞ
×

ffiffiffi
γ
p

dx1dx2dx3dτ: (6.5)

This formula (see Appendix C1) can be reduced to

E1 ¼ −m1 ðημuμ1ÞjA1
¼ −m1ημu

μ
1; (6.6)

FIG. 4 (color online). Penrose process for a particle. The dashed
line E marks the ergosphere.

4Thanks to the Dirac distribution in (6.1), only the limit M →
A matters, so that we can assume that there is a unique geodesic
connecting A to M.
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where the second equality stems from the fact that ημu
μ
1 is

constant along P1’s worldline, since the latter is a geodesic
and η⃗ is a Killing vector. That P1’s worldline is a geodesic
follows from the energy-momentum conservation law
∇μTαμ ¼ 0 with the form (6.1) for the energy-momentum
tensor (see Sec. 19.1 of [34] for details). We recover in
(6.6) the standard expression of the energy involved in text-
book discussions of the Penrose process (see [16,35,36]
and Sec. II).
Similarly, for the outgoing particle one gets

E2 ¼ −m2ημu
μ
2: (6.7)

For the particle crossing the horizon, by plugging (6.1)
with the characteristics of the infalling fragment P� into
(4.10), we get

ΔEH ¼ m�

Z
ΔH

Z
∞

−∞
δAðτÞðMÞðu�ÞμðτÞημðMÞðu�ÞνðτÞ

× lνðMÞ ffiffiffi
q
p

dtdy1dy2dτ: (6.8)

As shown in Appendix C2, this can be reduced to

ΔEH ¼ −m� ðημuμ�ÞjAH
¼ −m�ημuμ�: (6.9)

As for P1 and P2, the independence of ημu
μ
� from the spe-

cific point of P� ’s worldline where it is evaluated results
from the fact that P�’s worldline is a geodesic.
Finally, in the present case, we have clearly ΔEext ¼ 0.

Therefore, the energy gain formula (5.2) reduces to
ΔE ¼ E2 − E1, and we recover the standard Penrose proc-
ess discussed in Sec. II: E2 > E1 if and only if ΔEH < 0,
i.e., if and only if ημu

μ
� > 0. This is possible only in the

ergoregion, where the Killing vector η⃗ is spacelike. Note
that ημu

μ
� > 0 implies that the term in square brackets in

(6.4) is negative, so that the Noether current P⃗� of P� is
a timelike vector (being collinear to u⃗�) that is past directed.
This is in agreement with the statement made in Sec. VB
and is illustrated in Fig. 5.

B. Scalar field (super-radiance)

Let us consider a complex scalar field Φ ruled by the
standard Lagrangian

L ¼ − 1

2
½∇μΦ̄∇μΦþ VðjΦj2Þ�; (6.10)

where Φ̄ stands for Φ’s complex conjugate and VðjΦj2Þ
is some potential [VðjΦj2Þ ¼ ðm=ℏÞ2jΦj2 for a free
field of mass m]. The corresponding energy-momentum
tensor is

Tαβ ¼ ∇ðαΦ̄∇βÞΦ − 1

2
½∇μΦ̄∇μΦþ VðjΦj2Þ�gαβ: (6.11)

Let us plug the above expression into (4.10); using adapted
coordinates ðt; r; θ;φÞ (cf. Sec. IVC), we have ημ∇μΦ ¼∂Φ=∂t and lμ∇μΦ ¼ ∂Φ=∂tþ ωH∂Φ=∂φ. In addition,
gμνημlν ¼ 0, since η⃗ is tangent to H and l⃗ is the normal
to H (cf. Sec. IIIB). Therefore, we get

ΔEH ¼
Z
ΔH

�∂Φ
∂t

∂Φ̄
∂t þ

ωH

2

�∂Φ
∂t

∂Φ̄
∂φ þ

∂Φ̄
∂t

∂Φ
∂φ

��

×
ffiffiffi
q
p

dtdθdφ: (6.12)

Let us consider a rotating scalar field of the form

Φðt; r; θ;φÞ ¼ Φ0ðr; θÞeiðωt−mφÞ; (6.13)

where Φ0ðr; θÞ is a real-valued function, ω is a constant,
and m some integer. Then, (6.12) becomes

ΔEH ¼
Z
ΔH

Φ2
0ωðω −mωHÞ ffiffiffi

q
p

dtdθdφ: (6.14)

In view of (5.3), we deduce immediately that a necessary
and sufficient condition for a Penrose process to occur is

0 < ω < mωH: (6.15)

FIG. 5 (color online). Spacetime diagram showing the 4-
velocity u⃗� and the energy-momentum density vector P⃗� of a
negative energy particle P� entering the event horizon of a Kerr
black hole of angular-momentum parameter a=m ¼ 0.9 (see
Figs. 1 and 4). At the horizon, the particle is characterized by
the following coordinate velocity: dr=dt ¼ −0.32, dθ=dt ¼ 0;
and dφ=dt ¼ −0.18ωH , resulting in the 4-velocity uα� ¼
ð2.38;−0.76; 0;−0.13Þ and in the positive scalar product
ημu

μ
� ¼ 0.042. The “vector” P⃗�, which is actually a distribution,

is drawn with an arbitrary scale.
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In this context, the Penrose process is called super-
radiance (see, e.g., [36] and [37]). Condition (6.15) was
obtained by Carter [13] in the more general case of a
(not necessarily scalar) tensor field that is periodic in t with
period 2π=ω.

C. Perfect fluid

Let us now consider a perfect fluid of 4-velocity u⃗,
proper energy density ε and pressure p. The corresponding
energy-momentum tensor is

Tαβ ¼ ðεþ pÞuαuβ þ pgαβ: (6.16)

Accordingly, and using gμνημlν ¼ 0 as in Sec. VIB,
formula (4.10) becomes

ΔEH ¼
Z
ΔH
ðεþ pÞημuμlνuν

ffiffiffi
q
p

dtdy1dy2: (6.17)

l⃗ being a future-directed null vector and u⃗ a future-directed
timelike vector, we have necessarily

lνuν < 0: (6.18)

According to (5.3), the Penrose process takes place if and
only if ΔEH < 0. From (6.17), (6.18), and the assumption
εþ p ≥ 0 (the weak energy condition), we conclude that
for a perfect fluid, a necessary condition for the Penrose
process to occur is

ημuμ > 0 in some part of ΔH: (6.19)

We may have ημuμ > 0 in some part of ΔH only because
η⃗ is there a spacelike vector (forH is inside the ergoregion).
Note that (6.18) and (3.2) imply

ωHξμuμ < −ημuμ: (6.20)

Hence, in the parts of ΔH where ημuμ > 0, we have
ξμuμ < 0. Therefore for a perfect fluid, a necessary condi-
tion for the Penrose process to occur is

ξμuμ < 0 in some part of ΔH: (6.21)

In other words, the fluid flow must have some azimuthal
component counterrotating with respect to the black hole
in some part of ΔH. However, no physical process
extracting black-hole rotational energy through interaction
with a perfect fluid is known.
In the special case of dust (fluid with p ¼ 0), the

fluid lines are geodesics and we recover from (6.19) the
single-particle condition ΔEH < 0; with ΔEH given
by (6.9).

VII. ELECTROMAGNETIC FIELDS

A. General electromagnetic field

Let us consider some electromagnetic field, described by
the field 2-form F. For the moment we will deal with the
most general case, i.e., that F is not necessarily stationary
or axisymmetric. Of course this is possible only if F is a
passive field, i.e., does not contribute as a source to the
Einstein equation, so that the spacetime metric remains sta-
tionary and axisymmetric.
The electromagnetic energy-momentum tensor is given

by the standard formula:

Tαβ ¼
1

μ0

�
FμαFμ

β − 1

4
FμνFμνgαβ

�
: (7.1)

Accordingly, the integrand in formula (4.10) for ΔEH is

Tðη⃗; l⃗Þ ¼ 1

μ0

�
Fμρη

ρFμ
σlσ − 1

4
FμνFμνη⃗ · l⃗

�
:

Now, since η⃗ is tangent to H and l⃗ normal to H, one has
η⃗ · l⃗ ¼ 0. There remains then

μ0Tðη⃗; l⃗Þ ¼ Fμρη
ρFμ

σlσ: (7.2)

Let us introduce on H the “pseudoelectric field” 1-form
[13,38–40]

E ≔ Fð:; l⃗Þ: (7.3)

If l⃗ were a unit timelike vector, E would be a genuine elec-
tric field, namely, the electric field measured by the
observer whose 4-velocity is l⃗. But in the present case,
l⃗ is a null vector, so that such a physical interpretation does
not hold. E is called a corotating electric field in [13,38]
because l⃗ is the corotating Killing vector onH. Note that,5

thanks to the antisymmetry of F,

hE; l⃗i ¼ 0: (7.4)

This implies that the vector E⃗ deduced from the 1-form E
by metric duality (i.e., the vector of components
Eα ¼ gαμEμ ¼ Fα

μlμ) is tangent to H. Equation (7.2)
can be written as

μ0Tðη⃗; l⃗Þ ¼ FðE⃗; η⃗Þ: (7.5)

Thanks to (3.2) and (7.3), this expression can be recast as

5In this section, we are using index-free notations. In particu-
lar, the action of a 1-form on a vector is denoted by brackets,
hE; l⃗i ¼ Eμlμ, and the scalar product of two vectors is denoted
with a dot, u⃗ · v⃗ ¼ gμνuμvν ¼ uνvν.
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μ0Tðη⃗; l⃗Þ ¼ FðE⃗; l⃗ − ωH ξ⃗Þ ¼ FðE⃗; l⃗Þ − ωHFðE⃗; ξ⃗Þ
¼ hE; E⃗i − ωHFðE⃗; ξ⃗Þ;

i.e.,

μ0Tðη⃗; l⃗Þ ¼ E⃗ · E⃗ − ωHFðE⃗; ξ⃗Þ: (7.6)

Given expression (4.10) forΔEH, we conclude that the nec-
essary condition for the Penrose process to occur is

ωHFðE⃗; ξ⃗Þ > E⃗ · E⃗ in some part of ΔH: (7.7)

Note that since E⃗ is tangent to H [cf. (7.4)] and H is a null
hypersurface, E⃗ is either a null vector or a spacelike one, so
that in (7.7) one has always

E⃗ · E⃗ ≥ 0: (7.8)

Equation (7.7) is the most general condition on any electro-
magnetic field configuration allowing black-hole energy
extraction through a Penrose process. Obviously, for
ωH ¼ 0 there is no energy extraction.

B. Stationary and axisymmetric electromagnetic field

In this section, we assume that the electromagnetic field
obeys the spacetime symmetries, which are expressed by

Lη⃗F ¼ 0 and L
ξ⃗
F ¼ 0; (7.9)

where Lv⃗ stands for the Lie derivative along the vector field
v⃗. Then it can be shown (see, e.g., [41] for details) that F is
entirely determined by three scalar fields Φ, Ψ, and I, such
that

Fð:; η⃗Þ ¼ dΦ (7.10)

Fð:; ξ⃗Þ ¼ dΨ (7.11)

⋆Fðη⃗; ξ⃗Þ ¼ I; (7.12)

where d is the exterior derivative operator (reducing to
the gradient for a scalar field such as Φ or Ψ) and ⋆F stands
for the Hodge dual of F. Note that, being defined solely
from F and the Killing fields η⃗ and ξ⃗, Φ, Ψ, and I are
gauge-independent quantities. Introducing an electromag-
netic potential 1-form A such that F ¼ dA, one may use
the standard electromagnetic gauge freedom to choose A
so that

Φ ¼ hA; η⃗i ¼ At and Ψ ¼ hA; ξ⃗i ¼ Aϕ: (7.13)

In addition to (7.10)–(7.12), one has (see, e.g., [41])
Fðη⃗; ξ⃗Þ ¼ 0 and

Lη⃗Φ ¼ L
ξ⃗
Φ ¼ 0 and Lη⃗Ψ ¼ L

ξ⃗
Ψ ¼ 0; (7.14)

which means that the scalar fields Φ and Ψ obey the two
spacetime symmetries.
From the definition (7.3) and expression (3.2) of l⃗, the

corotating pseudoelectric field E is

E ¼ Fð:; l⃗Þ ¼ Fð:; η⃗Þ þ ωHFð:; ξ⃗Þ ¼ dΦþ ωHdΨ;

where the last equality follows from (7.10) and (7.11).
Since ωH is constant, we conclude that the 1-form E is
a pure gradient:

E ¼ dðΦþ ωHΨÞ: (7.15)

Remark: If the electromagnetic field is not passive, i.e., if it
contributes significantly to the spacetime metric via the
Einstein equation, then Tðl⃗; l⃗Þ must vanish in order for
the black hole to be in equilibrium (otherwise it
would generate some horizon expansion, via the
Raychaudhuri equation; see, e.g., [38]). Since by (7.1),
Tðl⃗; l⃗Þ ¼ μ−10 E⃗ · E⃗, this implies that E⃗ is a null vector.
Being tangent to H, the only possibility is to have E⃗
collinear to l⃗: E⃗ ¼ fl⃗. Then for any vector v⃗ tangent to
H, one has v⃗ · E⃗ ¼ 0. In view of (7.15), we get the remark-
able result that [38]

Φþ ωHΨ is constant over H: (7.16)

Returning to the case of passive fields we notice that
thanks to (7.10), the ΔEH integrand (7.5) becomes

μ0Tðη⃗; l⃗Þ ¼ E⃗ · ∇⃗Φ: (7.17)

In a similar way, from (7.11) one deduces that the ΔJH
integrand μ0Tðξ⃗; l⃗Þ ¼ FðE⃗; ξ⃗Þ takes the form of

μ0Tðξ⃗; l⃗Þ ¼ E⃗ · ∇⃗Ψ: (7.18)

In view of (7.15), we get

μ0Tðη⃗; l⃗Þ ¼ ∇⃗Φ · ∇⃗ðΦþ ωHΨÞ: (7.19)

C. Force-free stationary and axisymmetric
field (Blandford-Znajek)

Let us assume that the electromagnetic field is force free,
in addition to being stationary and axisymmetric:
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Fðj⃗; :Þ ¼ 0; (7.20)

where j⃗ is the electric 4-current. In particular, Fðj⃗; η⃗Þ ¼ 0

and Fðj⃗; ξ⃗Þ ¼ 0. From (7.10) and (7.11), it follows immedi-
ately that

j⃗ · ∇⃗Φ ¼ 0 and j⃗ · ∇⃗Ψ ¼ 0: (7.21)

Taking into account that Φ and Ψ are stationary and axi-
symmetric [cf. (7.14)], we may rewrite (7.21) in a coordi-
nate system ðt; r; θ;ϕÞ adapted to stationarity and
axisymmetry as

jr
∂Φ
∂r þ jθ

∂Φ
∂θ ¼ 0 and jr

∂Ψ
∂r þ jθ

∂Ψ
∂θ ¼ 0:

We deduce that, generically, there exists a function ω ¼
ωðΨÞ such that

dΦ ¼ −ωðΨÞdΨ: (7.22)

Equation (7.19) becomes then

μ0Tðη⃗; l⃗Þ ¼ ωðΨÞðωðΨÞ − ωHÞ∇⃗Ψ · ∇⃗Ψ: (7.23)

Notice also that from (7.17), (7.18), and (7.22), it follows
that for an axisymmetric, stationary, and force-free field,

ΔEH ¼ ωðΨÞΔJH: (7.24)

Now, we have

l⃗ · ∇⃗Ψ ¼ η⃗ · ∇⃗Ψþ ωH ξ⃗ · ∇⃗Ψ ¼ Lη⃗Ψ|ffl{zffl}
0

þ ωH L
ξ⃗
Ψ|ffl{zffl}
0

¼ 0:

This means that the vector ∇⃗Ψ is tangent to H. Since the

latter is a null hypersurface, it follows that ∇⃗Ψ is either null
or spacelike. Therefore, on H,

∇⃗Ψ · ∇⃗Ψ ≥ 0: (7.25)

Accordingly, (7.23) yields

Tðη⃗; l⃗Þ < 0⇔

�
ωðΨÞðωðΨÞ − ωHÞ < 0

∇⃗Ψ · ∇⃗Ψ ≠ 0
;

i.e.,

Tðη⃗; l⃗Þ < 0⇔

�
0 < ωðΨÞ < ωH

∇⃗Ψ · ∇⃗Ψ ≠ 0
: (7.26)

We recover the result (4.6) of Blandford and Znajek’s
article [3]. In view of (4.10) and (5.3), we may conclude
the following:

For a stationary and axisymmetric force-free electro-
magnetic field, a necessary condition for the Penrose
process to occur is

0 < ωðΨÞ < ωH in some part of ΔH: (7.27)

In particular, for a nonrotating black hole (ωH ¼ 0), no
Penrose process can occur. The condition (7.27) can be
compared to the condition (6.15) for a scalar field.

VIII. SIMULATIONS OF ELECTROMAGNETIC
EXTRACTION OF BLACK-HOLE

ROTATIONAL ENERGY

Until recently, the relevance of the Blanford-Znajek
process to observed high energy phenomena such as rela-
tivistic jets has been hotly debated and the efficiency of this
mechanism put in doubt (see, e.g., [42,43]). Providing jet
production efficiencies of less than ∼20%, general relativ-
istic magnetohydrodynamics (GRMHD) simulations were
not of much help in ending the controversy. Only recently a
new physical setup of GRMHD simulations [8,10] pro-
duced the first clear evidence of net energy extraction by
magnetized accretion onto a spinning black hole. These
simulations were carried out with general relativistic
MHD code HARM [44] with recent improvements [8,45].

A. The framework

The BZ efficiency can be defined as BZ power normal-
ized by M

:
c2:

ηBZ ¼
½PBZ�t
½M: �tc2

¼ κ

4πc
½φ2

BH�t
�
ωHrg
c

�
2

fðωHÞ; (8.1)

whereM
:
is the accretion rate; ½:::�t designates the time aver-

age; κ ≈ 0.05 depends weakly on the magnetic field geom-
etry, φ2

BH ¼ Φ2
BH=M

:
r2gc, ΦBH being the magnetic flux

through the black-hole surface; fðωHÞ ≈ 0.77 for a� ¼ 1,
where a� ¼ J=m2 [9]; and rg ¼ Gm=c2 is the black-hole
gravitational radius.
The efficiency ηBZ depends on spin and the magnetic

flux on the black hole. The spin is limited by a� < 1.0
(ωH < c=rS, where rS ¼ 2Gm=c2). The magnetic flux is
limited by two factors: (1) How much of it can be pushed
on to the black hole, (2) How much of it can be accumu-
lated by diffusion through the accretion flow. In an MHD
turbulent disk, accumulation of dynamically important
magnetic field is possible only if it is not geometrically
thin, i.e., only if h=r ∼ 1 [46]. Tchekhovskoy et al. [8]
considered “slim” disks (h=r ∼ 0.3) in which initially
poloidal magnetic fields are accumulated at the black hole
until they obstruct the accretion and lead to the formation
of a so-called magnetically arrested disk [11,12]. In such
a configuration φBH ∼ 40 for a� ¼ 0.99, leading to
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ηBZ > 100%, i.e., to net energy extraction from a rotating
black hole.
This result, as well as subsequent simulations of various

MAD6 configurations [10], leaves little doubt that the
Blandford-Znajek mechanism can play a fundamental role
in the launching of (at least some) relativistic jets from the
vicinity of black-hole surfaces. This conclusion is sup-
ported by observational evidence of the role of spin and
accumulated magnetic flux in the launching of relativistic
jets both in microquasars and AGNs (see, e.g., [47–51]).
In the previous section, we obtained several conditions

for the occurrence of a Penrose process in the presence of
electromagnetic fields. All these criteria follow from the
fundamental requirement ΔEH < 0. The most general cri-
terion applies to any electromagnetic field configuration:
from the definition (4.10) and the general condition
(5.3), we deduced a specific (necessary) condition (7.7)
for the electromagnetic fields on the horizon. We then
showed that in the case of stationary and axisymmetric
force-free fields, the condition (5.3) is equivalent to the
Blandford and Znajek [3] condition on the angular velocity
of the magnetic field lines. In this section we will apply
these conditions to the results of GRMHD simulations
of magnetized jets we have discussed above. The aim of
this exercise is twofold. First, using rigorous general-
relativistic criteria we will confirm that the MAD BZ
mechanism is indeed a Penrose process, as surmised by
Tchekhovskoy et al. [8]. Second, our Penrose-process
conditions can be used as a diagnostic tool to test the
physical and mathematical consistency of numerical calcu-
lations reputed to represent the Blandford-Znajek/Penrose
process.
In dealing with results of numerical simulations, we

will adopt the 3þ 1 Kerr coordinates ðt; r; θ;φÞ described
in Appendix A, which are adapted coordinates in the
sense defined in Sec. IVC. The energy captured by
the black hole over ΔH is given by (4.23). Since
for the 3þ 1 Kerr coordinates,

ffiffiffiffiffiffi−gp ¼ ðr2 þ
a2cos2 θÞ sin θ [cf. (A4)], we get

ΔEH ¼
Z
ΔH

e
:
Hðr2H þ a2cos2 θÞ sin θdtdθdφ; (8.2)

where we have defined

e
:
H ≔ −PrjH ¼ Tr

tjH: (8.3)

As a check of (8.2), we may recover it from the last
integral in Eq. (4.10), noticing that ημ ¼ ð1; 0; 0; 0Þ,
lr ¼ ðr2H þ a2cos2 θÞ=ð2mrHÞ; and

ffiffiffi
q
p ¼ 2mrH sin θ

[cf. (A11) in Appendix A].

A formula analogous to (8.2), with e
:
H replaced by −Tr

φ,
gives ΔJH [cf. (4.28)]; accordingly, we define

|
:
H ≔ −MrjH ¼ −Tr

φjH: (8.4)

Since, as discussed in Sec. VC, in numerical simulations
one assumes stationarity, and Σ2 is deduced from Σ1 by
time translation, one must have E2 ¼ E1 (see Fig. 3).
Therefore, to test the Penrose-process condition (5.3)
and (5.5) and show the details of the BZ mechanism, we
found it convenient to use the energy and angular-momen-
tum flux densities e

:
Hðt; θ;φÞ and |

:
Hðt; θ;φÞ defined by

(8.3) and (8.4), and plot their (t- and φ-averaged) longi-
tudinal distribution on the t-constant 2-surface St (the black
hole’s surface; see Sec. IIIB) on H.
In the MAD simulations, the energy-momentum tensor

is the sum of the perfect fluid (6.16) and the electromag-
netic (7.1) tensors:

Tμν ¼ TðMAÞ
μν þ TðEMÞμν :

Consequently we define e
:
MA ≔ TðMAÞr

t and
|
:
MA ≔ −TðMAÞr

φ; e
:
EM and |

:
EM are defined in an analogous

way through the electromagnetic energy-momentum ten-
sor. In the simulation of force-free fields, e

:
MA ¼ 0.

The pseudoelectric field (7.3) is Eα ¼ Fαμlμ. Therefore,
in the index notation, the general necessary condition (7.7)
for the Penrose process to occur takes the form

ωHFμνEμξν − EμEμjH > 0: (8.5)

In the case of MAD simulations, which are intrinsically
time variable, we run the simulations long enough to
achieve a quasisteady state in which all quantities fluctuate
about their mean values, so we use the time average of the
left-hand side in (8.5).

B. Force-free stationary electromagnetic field

As a warm-up, we present the results of simulations of
black-hole rotational energy extraction by a force-free
electromagnetic field. As illustration, we consider the sim-
ple case of a paraboloidal magnetic field for an a� ¼ 0.99
black hole. The field configuration corresponds to the ν ¼
1 case of Tchekhovskoy et al. [27], where additional infor-
mation about the setup of the problem can be found. We
have chosen a paraboloidal field in preference to a monop-
ole because of the similarity of results with those of MAD
simulations discussed later.
First, in Fig. 6 we present the results of testing the gen-

eral condition (8.5). It is satisfied on the whole of the black-
hole surface St. Also (7.8) is satisfied, which confirms that
the simulations correctly reproduce the spacetime structure
near and at the horizon. Since condition (8.5) follows from
the requirement of negative energy on the horizon, we
checked the consistency of the numerical scheme by

6These were also called magnetically choked accretion flows
by McKinney et al. [10].
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comparing the expression −ωHFμνEμξν − EμEμ with two
forms of the integrand in (8.2). As expected, the values
of the two expressions are identical (see Fig. 7).
The force-free BZ condition (7.27) is satisfied every-

where on the black hole’s surface (Fig. 8). Since in a
force-free field e

:
H ¼ ωH|

:
H [cf. (7.24)], the Penrose-

process condition (5.6) follows directly from ΔEH < 0
[Eq. (5.3)]; see Fig. 9.
Since it satisfies the required conditions on the horizon,

the BZ mechanism described by numerical simulations of
the interaction of a force-free field with a spinning black
hole is a Penrose process.

C. Magnetically arrested disks

Before discussing the results of GRMHD MAD simula-
tions in the context of the BZ/Penrose mechanism, we have
first to present the underlying assumptions in more detail.
The simulations are performed in a “box” of finite size

delimited by ΔH and Σext in space and Σ1 and Σ2 in time.
It is supposed that Σext is located at some reasonably

large radius (≳30rg), which is far from the horizon but still
well inside the converged volume of the simulation. One
also assumes that the times t1 and t2 corresponding, respec-
tively, to Σ1 and Σ2 are sufficiently far apart so that time
averages are well defined and the system is in a steady state
during this time. In a steady state, E2 ¼ E1; i.e., the energy
contained inside the volume defined by the boundaries ΔH
and Σext is independent of time.
Simulation shows that ΔEext > 0; i.e., there is a net flow

of energy out of the system. From energy conservation
(4.12), one should therefore have ΔEH < 0 on some part
of ΔH. Below we will show that stationary MAD models
of energy extraction from a spinning black hole satisfy this

FIG. 6 (color online). Values of ωHFμνEμξν − EμEμ and EμEμ

plotted as a function of θ for a stationary, axisymmetric, and
force-free field with a� ¼ 0.99. The necessary condition (8.5)
for the occurrence of a Penrose process is satisfied over all St
(except the poles).

FIG. 7 (color online). Comparison of −ωHFμνEμξν þ EμEμ

with the integrands of (8.2) for the same field configuration
and black-hole spin as in Fig. 6.

FIG. 8. ωF=ωH plotted as a function of θ for a stationary, ax-
isymmetric, force-free paraboloidal magnetic field; a� ¼ 0.99.
The condition (7.27) for the occurrence of a Penrose process
is satisfied over the entire black-hole 2-surface St.

FIG. 9 (color online). Values of energy and angular-momentum
density fluxes on the black-hole surface as a function of θ for a
force-free field and a� ¼ 0.99. In this case, e

: ¼ e
:
EM. e

:
is every-

where negative on St, in agreement with the Penrose-process con-
dition (5.3); the same is true by construction of |

:
and (5.6) is

obviously satisfied.
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condition and are an electromagnetic realization of a
Penrose process.
We will use the results of the model A0.99N100 of

McKinney et al. [10]. In this model, the initial magnetic
field is poloidal, a� ¼ 0.99, and the disk is moderately
thick: the half-thickness h satisfies h=r ∼ 0.3 at Rext ¼
30rg and h=r≲ 0.1 at the black-hole surface.
We will first examine if the MAD simulations satisfy the

Penrose-process conditions (8.5), (5.3), and (5.6). As for
the force-free fields, we start with checking condition
(8.5) for the electromagnetic fields on the black-hole sur-
face. As shown in Fig. 10, ωHhFμνEμiξν − hEμEμi > 0
everywhere on the black-hole surface, which implies that
the electromagnetic energy is negative everywhere on
ΔH. Indeed, as shown in Fig. 11, the electromagnetic

energy density TEM
μν ημlν is everywhere negative on the

black-hole surface. In the GRMHD MAD simulations,
accretion of matter plays an essential role in accumulating
magnetic field lines on the black hole, and contrary to the
force-free case, the energy-momentum of matter is not neg-
ligible. In Fig. 12, in addition to the electromagnetic and
matter energy density fluxes, we plot the sum of the
two, representing the total energy flux. One can see that
_e is negative on the black-hole surface St except near
the equator where energy absorption is dominated by mat-
ter accretion. Therefore, the simulations of rotational
energy extraction from a a� ¼ 0.99 spinning black hole
by a MAD field configuration satisfy the condition (5.3)
on part of the black-hole surface and therefore describe
a Penrose process involving electromagnetic fields. This
is confirmed by the angular-momentum density flux being
negative on the whole of the black-hole surface. We see that
the angular-momentum flux is negative over the entire hori-
zon, while the energy flux is negative only over the part of
the surface exterior to the equatorial accretion flow. This is
a characteristic property of the MAD configuration because
the rest-mass energy flux due to the accreted mass over-
whelms the energy flux into the black hole and makes it
positive, while this matter carries in very little angular
momentum. Its angular momentum is sub-Keplerian due
to the action of strong magnetic fields that extract its
angular momentum and carry it away in the form of
magnetized winds.
To get more insight into the workings of the simulated

black-hole rotational energy extraction process, one has to
leave the horizon and see what is happening in the bulk
above the black-hole surface.

FIG. 10 (color online). Same as in Fig. 6 but for a MAD sim-
ulation with a� ¼ 0.99. Here the time- and φ-averaged quantities
are used: ωHhFμνEμiξν − hEμEμi and hEμEμi. The necessary
condition (8.5) for the occurrence of a Penrose process is satisfied
over all St.

FIG. 11 (color online). Comparison of −ωHhFμνEμiξν þ
hEμEμi with the integrands of (8.2) for the same field configu-
ration and black-hole spin as in Fig. 10.

FIG. 12 (color online). Same as in Fig. 9 for a MAD configu-
ration. The black-hole spin is a� ¼ 0.99. The electromagnetic
energy density flux is everywhere negative on St. The total en-
ergy density e

:
is negative everywhere except in the equatorial

belt, where matter accretion dominates the energy balance.
The condition |

:
< 0 is satisfied everywhere on St (see the text

for details).
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We have shown that GRMHD MAD simulations of
black-hole rotational energy extraction describe a
Penrose process, but because of the approximations made
we have not learned how this process works in detail. In the
case of free particles, we know what is happening: a particle
decays in the ergoregion into one with negative and another
one with positive energies. The one with negative energy
cannot leave the ergoregion and must be created there
because negative energies exist only in the ergoregion
and energy along the trajectories is conserved. This cannot
be the case for a perfect fluid (with nonzero pressure) or an
electromagnetic field. However, the mechanical case can
serve as a guide to what is happening in a more general
case. For MAD simulations, one cannot expect to see neg-
ative energies in the “bulk,” since by stationarity energy is
constant. However, the workings of the Penrose process
should be apparent through the behavior of the Noether cur-
rent P⃗. Far from the black hole, the Noether current P⃗ is
future directed timelike or null and is such that positive
energy flows outwards. Near the black hole, in the ergore-
gion, P⃗ should become spacelike or past directed. This is
indeed what is happening in our simulations.
Figures 13 and 14 show the behavior of P⃗ in numerical

results for the force-free and the MAD cases, respectively.
We see that for a force-free configuration P2 ¼ 0 at the sur-
face of the ergosphere, whereas in the MAD simulations the
P2 ¼ 0 surface is very close to the surface of the ergosphere
in the polar jet regions, but lies inside of it elsewhere. These
patterns are in full agreement with Figs. 9 and 12. They
demonstrate the fundamental role played by the ergoregion
in extracting the black-hole energy of rotation. This can be
explained analytically as follows.
In the relativistic MHD code HARM, it is assumed that

the Lorentz force on a charged particle vanishes in the fluid
frame:

uμFμν ¼ 0: (8.6)

Then a magnetic four-vector bμ is defined as

bμ ≔
1

2
ϵμναβuνFαβ; (8.7)

with

bμuμ ¼ 0; (8.8)

following from F antisymmetry. This allows the electro-
magnetic energy-momentum tensor (7.1) to be written in
the form of [44]:

TðEMÞμν ¼ b2uμuν þ
1

2
b2gμν − bμbν: (8.9)

Therefore for the electromagnetic Noether current
PðEMÞμ ¼ TðEMÞμν ην, one has

Pμ
ðEMÞP

ðEMÞ
μ ¼ P2

ðEMÞ ¼
1

4
b4gtt: (8.10)

Since gtt > 0 inside the ergosphere and < 0 outside, this
fully explains the numerical results seen in Fig. 13:

P2
ðEMÞ > 0 inside ergosphere; (8.11)

P2
ðEMÞ < 0 outside ergosphere; (8.12)

Notice that this result applies not only to stationary axisym-
metric electromagnetic force-free field but also to time-
dependent fully 3D (nonaxisymmetric) configurations.
However, the above property of P⃗ applies only to the
electromagnetic force-free case.
To see this, let us use the general energy-momentum

tensor

Tμν ¼ TðMAÞ
μν þ TðEMÞμν ;

FIG. 13 (color online). Color maps of P2 in monopolar force-
free spin a� ¼ 0.99. The surface of the ergosphere is shown with
cyan lines, and the stagnation surface with orange lines. The re-
gion in which P⃗ is spacelike is shown in orange, and the region in
which P⃗ is timelike is shown in blue (see color bar). Black-and-
white striped lines represent the magnetic field lines. As dis-
cussed in the main text, in a force-free configuration P⃗ becomes
null at the surface of the ergosphere.

FIG. 14 (color online). Color maps of P2 in the MAD simula-
tions for a black hole with spin a� ¼ 0.99. Color codes and lines
as in Fig. 13. In this case the surface P2 ¼ 0 nearly coincides with
the surface of the ergosphere in magnetically dominated polar
jets, but lies inside of the surface of the ergosphere otherwise.
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with TðMAÞ and TðEMÞ given by (6.16) and (8.9), respec-
tively. One obtains then

P2 ¼
�
1

2
b2 þ p

�
2

gtt − A; (8.13)

with

A ¼ 2ðΓ − 1Þub2t þ u2t ðρþ uþ pþ b2Þ½ð2 − ΓÞuþ ρ�;
(8.14)

where u ¼ ϵ − ρ is the internal energy and the adiabatic
index Γ [p ¼ ðΓ − 1Þu] satisfies 1 ≤ Γ ≤ 2 (in the MAD
simulations Γ ¼ 4=3). For dust (p ¼ 0) one gets

P2 ¼ −ðρutÞ2;
i.e., the Noether current is always timelike (but past
directed for negative energy worldlines; see Sec. VI A).
For the force-free case (b2 ≫ ρ, p ≪ ρ), one recovers

(8.10) but in general (e.g., for Γ ¼ 4=3) A > 0.
Since P2

EM ¼ 0 precisely at the surface of the ergosphere,
the same applies to the full Noether current in the highly
magnetized regions: there, P2 ≈ P2

EM ¼ 0 approximately
at the ergosphere. In the weakly magnetized disk-corona
region, however, P2 ¼ 0 will deviate from the ergosphere
by at least order unity. The first term on the right-hand
side of Eq. (8.13) is positive inside the ergosphere. Since
the second term is nonpositive for 1 ≤ Γ ≤ 2, the
surface P2 ¼ 0 lies inside the ergosphere, as seen in Fig. 14.
Also shown in Figs. 13 and 14 is the stagnation limit at

which the field drift velocity changes sign (ur ¼ 0; inside
this limit the velocity is pointing inwards). Inside the stag-
nation surface, an energy counterflow [5] is present: while
the fields drift inwards, the energy flows outwards. The stag-
nation limit is always outside the ergoregion; for a� ¼ 0.99
it is very close to the ergosphere but for, e.g., a� ¼ 0.9999,
the two surfaces are still well separated. The shapes and loca-
tion of our stagnation limits are different from those found by
Okamoto [52] and Komissarov [5]. The reasons for these
differences will be addressed in a future paper.

IX. DISCUSSION AND CONCLUSIONS

We proved that for any type of matter or (nongravita-
tional) fields satisfying the weak energy condition, the
black hole’s rotational energy can be extracted if and only
if negative energy and angular momentum are absorbed by
the black hole. Applied to the case of a single particle, the
general criterion (5.3) leads to the standard condition for a
mechanical Penrose process. For a general electromagnetic
field, the criterion (5.3) leads to the condition (7.7) on the
electromagnetic field at the horizon, which does not seem
to have been expressed before.
In a sense our findings are obvious (which does not

mean they are trivial). They follow from the fact that the

black-hole surface is a stationary null hypersurface.
Hence, it can only absorb matter or fields; it cannot emit
anything, cannot emit energy. No torque can be applied
to the horizon, since a torque results from a difference
of material/field fluxes coming from the opposite sides of
a surface [30]. The only way to lose energy, independent of
the nature of the medium the hole is interacting with,
is by absorbing a negative value of it. And, since the energy
in question must be rotational, it must absorb negative
angular momentum to slow it down.
Our results do not specify how the effect of net negative

energy absorption by a black hole is achieved. The condi-
tions for black-hole energy extraction do not guarantee
the existence of such a process in the real world. As is well
known, the mechanical Penrose process requires splitting of
particles in the ergoregion, but no realistic way of achieving
black-hole energy extraction has been found. Using fluids
(perfect or not) does not seem very promising in this context.
The only known black-hole energy extraction process that
might be at work in the Universe is the BZ mechanism.
We showed that the process of energy extraction described
by GRMHD simulations of magnetically arrested disk flows
around rapidly spinning black holes is a Penrose process.
This has been deduced before from energy conservation
and efficiencies well in excess of 100%, but we showed that
the solutions found by these simulations satisfy the rigorous
and general conditions required by general relativity.
Considering that black holes are purely general-relativistic
objects, this is a reassuring conclusion.
It is worth stressing that when in the GRMHD simula-

tions the Noether current has a positive flux in the outward
direction everywhere (including at the black-hole horizon),
it does not correspond to the flow of any physical energy
out of the black hole, since the “energy” associated with the
Noether current is not a measurable quantity: no physical
observer can measure it, except at infinity, where the
Killing vector η becomes a unit timelike vector and there-
fore is eligible as the 4-velocity of a physical observer: an
inertial observer at rest with respect to the black-hole
location.
As mentioned above, the main (and only important) differ-

ence between the mechanical and other versions of the
Penrose process is that in the first version, particles move
alonggeodesics and therefore energy is conservedon their tra-
jectories. Therefore, themotion of a particle crossing the hori-
zon with negative energy is from its start restricted to the
ergoregion. This does not have to be the case of interacting
matter and fields. It is still true that the “outgoing flow of
energy at infinity in the Penrose process is inseparable from
the negative energy at infinity of an infalling ‘object’” (to
quote [5]), but this inseparability concerns the negative energy
of the object when it is absorbed by the black hole. On its way
to the final jump into the hole, the object’s energy may vary
depending on its interactions with the medium it is part of.
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A detailed description of these processes in the frame-
work of the GRMHD simulations will be the subject of
a future work.
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APPENDIX A: KERR SOLUTION IN
3þ 1 KERR COORDINATES

The Kerr solution is described by two parameters: the
mass m and the specific angular momentum a ≔ J=m, J
being the total angular momentum. The metric components
with respect to the “3þ 1” Kerr coordinates ðt; r; θ;ϕÞ are
given by (see, e.g., [28])

gμνdxμdxν¼−
�
1−2mr

ρ2

�
dt2þ4mr

ρ2
dtdr

−4amr
ρ2

sin2θdtdϕþ
�
1þ2mr

ρ2

�
dr2

−2asin2θ
�
1þ2mr

ρ2

�
drdϕþρ2dθ2

þ
�
r2þa2þ2a2mrsin2θ

ρ2

�
sin2θdϕ2; (A1)

with

ρ2 ≔ r2 þ a2 cos2 θ: (A2)

The coordinates ðt; r; θ;ϕÞ are a 3þ 1 version of the origi-
nal Kerr coordinates [26] and can be viewed as a spheroidal
version of the well-known “Cartesian” Kerr-Schild coordi-
nates. The event horizon H is located at

r ¼ rH ≔ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
; (A3)

and the black-hole angular velocity ωH defined by (3.2)
takes the value ωH ¼ a=ð2mrHÞ. Since rH does not depend
upon θ nor ϕ, the Kerr coordinates are adapted to H, in the
sense defined in Sec. IV C.
Note that the metric components given by Eq. (A1) are

all regular at r ¼ rH.
7 Note also that in the limit a → 0, then

ρ → r and the line element (A1) reduces to the
Schwarzschild metric in 3þ 1 Eddington-Finkelstein
coordinates.
From (A1), one can compute the determinant g of the

metric with respect to the 3þ 1 Kerr coordinates and
get the relatively simple expression

ffiffiffiffiffiffi−gp ¼ ðr2 þ a2 cos2 θÞ sin θ: (A4)

The metric (A1) is clearly stationary and axisymmetric,
and the two vectors

η⃗ ≔
� ∂
∂t
�

r;θ;ϕ
and ξ⃗ ≔

� ∂
∂ϕ

�
t;r;θ

(A5)

are the two Killing vectors, η⃗ being associated with the sta-
tionarity and ξ⃗ with the axial symmetry of the Kerr space-
time. These two Killing vectors are identical to the
“standard” Killing vectors which are formed using the
Boyer-Lindquist coordinates ðtBL; r; θ;ϕBLÞ:

η⃗ ¼
� ∂
∂tBL

�
r;θ;ϕBL

and ξ⃗ ¼
� ∂
∂ϕBL

�
tBL;r;θ

: (A6)

The Killing vector η⃗ ceases to be timelike at the boun-
dary of the ergoregion (the ergosphere),

rerg ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 cos2 θ

p
; (A7)

below which it is spacelike (gtt ¼ η⃗ · η⃗ > 0).
The angular speed of the dragging of inertial frames can

be written as

ω ¼ η⃗ · ξ⃗

ξ⃗ · ξ⃗
¼ gtφ

gφφ
¼ 2Jr

A
¼ 2amr

A
; (A8)

where A ¼ ðr2 þ a2Þ − Δa2 sin2 θ with Δ ¼ r2 − 2mrþ
a2. At the horizon Δ ¼ 0 and ω ¼ ωH.
Setting dr ¼ 0 and r ¼ rH in the line element (A1)

yields the metric γH induced on H:

7On the contrary, most of them are singular at ρ ¼ 0, which,
via (A2), corresponds to r ¼ 0 and θ ¼ π=2. In Kerr-Schild co-
ordinates, this corresponds to the ring x2 þ y2 ¼ a2 in the plane
z ¼ 0. This is the ring singularity of Kerr spacetime.
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ðγHÞABdxAdxB ¼ 2mrH

�
ð1 − aωH sin2 θÞdθ2 þ sin2 θ

1 − aωH sin2 θ
ðdφ − ωHdtÞ2

�
; (A9)

where (xA) stands for the coordinates spanning H: ðxAÞ ¼ ðt; θ;φÞ. This metric is clearly degenerate, with the degeneracy
direction along lA ¼ ð1; 0;ωHÞ. We thus recover the fact that H is a null hypersurface.
Setting dt ¼ 0 in the line element (A9), we get the induced metric q in the 2-surfaces St that foliate H:

qabdxadxb ¼ 2mrH

�
ð1 − aωH sin2 θÞdθ2 þ sin2 θ

1 − aωH sin2 θ
dφ2

�
; (A10)

where (xa) stands for the coordinates spanning St:
ðxaÞ ¼ ðθ;φÞ. The metric q is clearly positive definite;
hence, the 2-surfaces are spacelike. From (A10), we read
immediately the determinant of q with respect to the
coordinates ðθ;φÞ:

ffiffiffi
q
p ¼ 2mrH sin θ: (A11)

APPENDIX B: FLUX INTEGRALS
ON A HYPERSURFACE

Let Σ be an oriented hypersurface in the spacetime
ðM; gÞ. From the very definition of the integral of a 3-form
over a three-dimensional manifold, we have

Z
Σ
ϵðP⃗Þ ¼

Z
Σ
ϵðP⃗Þðdx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ

¼
Z
Σ
ϵðP⃗; dx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ; (B1)

where the last equality follows from the definition (4.4) of
ϵðP⃗Þ and ðdx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ are infinitesimal vectors form-
ing an elementary right-handed parallelepiped on Σ.

1. Case of a spacelike or timelike hypersurface

If Σ is spacelike or timelike, we may introduce the unit
normal m⃗ that is compatible with Σ’s orientation
[i.e., such that the orientation is given by the 3-form
ϵðm⃗Þ ¼ ϵðm⃗; :; :; :Þ; cf. Sec. IVA]. The orthogonal decom-
position of P⃗ with respect to Σ is then

P⃗ ¼ �ðPμmμÞm⃗þ P⃗∥; (B2)

where � is þ (−) if Σ is timelike (spacelike) and P⃗∥ is tan-
gent to Σ. The four vectors P⃗∥, dx⃗ð1Þ, dx⃗ð2Þ, and dx⃗ð3Þ cannot
be linearly independent, being all tangent to Σ, so that
ϵðP⃗∥; dx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ ¼ 0. Hence,

ϵðP⃗; dx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ ¼ �ðPμmμÞϵðm⃗; dx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ:
(B3)

Now, since m⃗ is a unit vector,

dV ≔ ϵðm⃗; dx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ (B4)

is nothing but the volume of the elementary parallelepiped
formed by ðdx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ with respect to the 3-metric γ
induced by g on Σ [for Σext, γ is denoted by h in (4.11)]. By
combining (B1), (B3), and (B4), we get

Z
Σ
ϵðP⃗Þ ¼ �

Z
Σ
PμmμdV: (B5)

This establishes the second equalities in (4.8), (4.9),
and (4.11).
Let ðx1; x2; x3Þ be a coordinate system on Σ and let us

choose the dx⃗ðiÞ’s as the corresponding elementary dis-
placements:

dx⃗ð1Þ ¼ dx1
∂
∂x1 ; dx⃗ð2Þ ¼ dx2

∂
∂x2 ;

dx⃗ð3Þ ¼ dx3
∂
∂x3 :

Then

dV ¼
ffiffiffiffiffi
jγj

p
dx1dx2dx3; (B6)

where γ ¼ detðγijÞ, the γij’s being the components of the
induced 3-metric on Σ. This established the third equalities
in (4.8), (4.9), and (4.11).

2. Case of null hypersurface

Here we consider that Σ ¼ ΔH, but the results are valid
for any null hypersurface. Since ΔH is null, there is no
orthogonal decomposition of P⃗ of the type (B2). Let us con-
sider instead the slicing of ΔH by the 2-spheres St of con-
stant t (cf. Sec. III B). Then we have the following unique
decomposition of P⃗:

P⃗ ¼ −ðPμlμÞk⃗ − ðPμkμÞl⃗þ P⃗∥; (B7)
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where P⃗∥ is tangent to St. This decomposition follows from
the fact that k⃗ and l⃗ generate the 2-plane orthogonal to St
and from the normalization relation (3.4).
Let us choose the elementary parallelepiped
ðdx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ on ΔH such that

dx⃗ð1Þ ¼ dtl⃗

and dx⃗ð2Þ and dx⃗ð3Þ are tangent to St. The integrand in (B1)
is then

ϵðP⃗; dx⃗ð1Þ; dx⃗ð2Þ; dx⃗ð3ÞÞ ¼ dtϵðP⃗; l⃗; dx⃗ð2Þ; dx⃗ð3ÞÞ: (B8)

Now, from (B7),

ϵðP⃗; l⃗; dx⃗ð2Þ; dx⃗ð3ÞÞ ¼ −ðPμlμÞϵðk⃗; l⃗; dx⃗ð2Þ; dx⃗ð3ÞÞ
− ðPμkμÞϵðl⃗; l⃗; dx⃗ð2Þ; dx⃗ð3ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

þ ϵðP⃗∥; l⃗; dx⃗ð2Þ; dx⃗ð3ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

¼ −ðPμlμÞϵðk⃗; l⃗; dx⃗ð2Þ; dx⃗ð3ÞÞ:

Therefore, we may rewrite (B1) as

Z
ΔH

ϵðP⃗Þ ¼ −
Z
ΔH

PμlμdV; (B9)

with

dV ¼ ϵðk⃗; l⃗; dx⃗ð2Þ; dx⃗ð3ÞÞdt: (B10)

This establishes the second equality in (4.10).
Let ðy1; y2Þ be a coordinate system on St and let us

choose the dx⃗ð2Þ and dx⃗ð3Þ as the corresponding elementary
displacements:

dx⃗ð2Þ ¼ dy1
∂
∂y1 ; dx⃗ð3Þ ¼ dy2

∂
∂y2 :

We have then

dV ¼ ϵðk⃗; l⃗; dx⃗ð2Þ; dx⃗ð3ÞÞdt
¼ ϵðk⃗; l⃗; ∂=∂y1; ∂=∂y2Þdtdy1dy2
¼

ffiffiffiffiffiffi−~g
p

dtdy1dy2; (B11)

where ~g is the determinant of the components of g in the

basis ðk⃗; l⃗; ∂=∂y1; ∂=∂y2Þ. Given the definitions of k⃗ and
q, these components are

~gαβ ¼

0
BB@

0 −1 0 0

−1 0 0 0

0 0 q11 q12
0 0 q12 q22

1
CCA: (B12)

Hence ~g ¼ −q, with q ≔ detðqabÞ; and (B11) becomes

dV ¼ ffiffiffi
q
p

dtdy1dy2: (B13)

This establishes the third equality in (4.10).

APPENDIX C: CALCULATION OF PARTICLE
ENERGY AS A FLUX THROUGH SOME

HYPERSURFACE

1. Case of a spacelike hypersurface

As shown in Sec. VI A, the particle energy at the event
A1 on Σ1 is

E1 ¼ m1

Z
Σ1

Z þ∞

−∞
δAðτÞðMÞgμρðM;AðτÞÞðu1ÞρðτÞgνσ

× ðM;AðτÞÞðu1ÞσðτÞημðMÞnν1ðMÞ
ffiffiffi
γ
p

dx1dx2dx3dτ:

(C1)

Thanks to the Dirac distribution, only the terms for which
M ¼ AðτÞ contribute to the above integral. We may then
drop the parallel propagators and write

E1 ¼ m1

Z
Σ1

Z þ∞

−∞
δAðτÞðMÞðu1ÞμðτÞημðMÞðu1ÞνðτÞnν1

× ðMÞ ffiffiffi
γ
p

dx1dx2dx3dτ:

Let us introduce in the vicinity of A1 a coordinate system
ðt; x1; x2; x3Þ such that Σ1 is the hypersurface t ¼ 0 and t
increases towards the future. Then the normal n⃗1 is collin-
ear to the gradient of t: ðn1Þα ¼ −N∇αt, the coefficient
N > 0 being called the lapse function. We have then
ðn1Þα ¼ ð−N; 0; 0; 0Þ and

ðu1Þνnν1 ¼ ðn1Þνuν1 ¼ −Nu01:

Hence,

E1 ¼ −m1

Z
Σ1

Z þ∞

−∞
δAðτÞðMÞημðMÞuμ1ðτÞ

× N
ffiffiffi
γ
p

dx1dx2dx3u01dτ:

Since the particle’s worldline is timelike and therefore
never tangent to Σ1, we may use t as a regular parameter
along it and perform the change of variable τ → t in the
above integral. Taking into account that u01 ¼ dt=dτ (from
the very definition of a 4-velocity), we get
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E1 ¼ −m1

Z
Σ1

Z þ∞

−∞
δAðtÞðMÞημðMÞuμ1ðtÞ

× N
ffiffiffi
γ
p

dx1dx2dx3dt: (C2)

Within the coordinate system ðt; x1; x2; x3Þ, the coordinates
of AðtÞ are ðt; z1ðtÞ; z2ðtÞ; z3ðtÞÞ and those of M are
ð0; x1; x2; x3Þ (for M ∈ Σ1). Therefore, using (6.3) along
with the identity

ffiffiffiffiffiffi−gp ¼ N
ffiffiffi
γ
p

[see, e.g., Eq. (5.55) in
[33]], we obtain

E1 ¼ −m1

Z
Σ1

Z þ∞

−∞
δð−tÞδðx1 − z1ðtÞÞδðx2 − z2ðtÞÞ

× δðx3 − z3ðtÞÞημðMÞuμ1ðtÞdx1dx2dx3dt:

Since δð−tÞ ¼ δðtÞ, performing the integration on t leads to

E1 ¼ −m1

Z
Σ1

δðx1 − z1ð0ÞÞδðx2 − z2ð0ÞÞδðx3

− z3ð0ÞÞημðMÞuμ1ð0Þdx1dx2dx3
¼ −m1ημð0; z1ð0Þ; z2ð0Þ; z3ð0ÞÞuμ1ð0Þ:

Since ð0; z1ð0Þ; z2ð0Þ; z3ð0ÞÞ are the coordinates of A1 and
uμ1ð0Þ are the components of u⃗1 at A1, we conclude that

E1 ¼ −m1 ðημuμ1ÞjA1
¼ −m1ημu

μ
1: (C3)

2. Case of a null hypersurface

In Sec. VI A we obtained for the energy of the particle
crossing the event horizon

ΔEH ¼ m�

Z
ΔH

Z
∞

−∞
δAðτÞðMÞðu�ÞμðτÞημðMÞðu�ÞνðτÞlν

× ðMÞ ffiffiffi
q
p

dtdy1dy2dτ: (C4)

Note that, for the same reasons as above, we have
dropped the parallel propagators. Let us introduce in
the vicinity of AH a coordinate system ðw; t; y1; y2Þ such
that H is the hypersurface w ¼ 0, k⃗ ¼ ∂=∂w on H and
l⃗ ¼ ∂=∂t on H. Let us expand u⃗� in the associated coor-
dinate basis:

u⃗� ¼ u0�k⃗þ u1�l⃗þ u2�
∂
∂y1 þ u3�

∂
∂y2 :

We have then, given (3.4) and the orthogonality of l⃗ to
itself and to ∂=∂y1 and ∂=∂y2,

ðu�Þνlν ¼ uν�lν ¼ −u0� ¼ − dw
dτ

: (C5)

Since the worldline of P� is crossing H, we may use w
as a regular parameter on it and perform the change of

variable τ → w in the integral (C4), taking advantage of
(C5). Therefore

ΔEH¼−m�
Z
ΔH

Z þ∞

−∞
δAðwÞðMÞημðMÞuμ�ðwÞ ffiffiffi

q
p

dtdy1dy2dw:

Within the coordinate system ðw; t; y1; y2Þ, the coordi-
nates of AðwÞ are ðw; z1ðwÞ; z2ðwÞ; z3ðwÞÞ and those of
M are ð0; t; y1; y2Þ (for M ∈ ΔH). Therefore, using
(6.3), we obtain

ΔEH ¼ −m�
Z
ΔH

Z þ∞

−∞
δð−wÞδðt − z1ðwÞÞδðy1 − z2ðwÞÞ

× δðy2 − z3ðwÞÞημðMÞuμ�ðwÞ
ffiffiffi
q
p
ffiffiffiffiffiffi−gp dtdy1dy2dw:

Performing the integration on w, we get

ΔEH ¼ −m�
Z
ΔH

δðt − z1ð0ÞÞδðy1 − z2ð0ÞÞδðy2 − z3ð0ÞÞ

× ημðMÞuμ�ð0Þ
ffiffiffi
q
p
ffiffiffiffiffiffi−gp dtdy1dy2:

On ΔH, the components of the metric tensor with respect
to the coordinates ðw; t; y1; y2Þ are given by (B12), from
which we deduce that

ffiffiffiffiffiffi−gp ¼ ffiffiffi
q
p

. Noticing that
ð0; z1ð0Þ; z2ð0Þ; z3ð0ÞÞ are the coordinates of AH, we con-
clude that

ΔEH ¼ −m� ðημuμ�ÞjAH
¼ −m�ημuμ�: (C6)

APPENDIX D: ENERGY AND
ANGULAR-MOMENTUM CONSERVATION

LAWS IN ADAPTED COORDINATES

In this appendix, we derive the energy conservation law
(4.12), as well as the angular-momentum one (4.19), by
a direct calculation within adapted coordinates
ðxαÞ ¼ ðt; r; θ;φÞ, as defined in Sec. IV C. The starting
point is the covariant energy-momentum conservation
law ∇μTμ

α ¼ 0, which can be expressed in terms of partial
derivatives thanks to a standard formula for the covariant
divergence of a symmetric tensor tensor field:

1ffiffiffiffiffiffi−gp ∂
∂xμ ð

ffiffiffiffiffiffi−gp
Tμ

αÞ − 1

2

∂gμν
∂xα Tμν ¼ 0: (D1)

For α ¼ 0 and α ¼ 3, the second term in the left-hand side
vanishes, due to the spacetime symmetries (∂gμν=∂t ¼ 0
and ∂gμν=∂φ ¼ 0). We are thus left with

∂
∂xμ ð

ffiffiffiffiffiffi−gp
Tμ

αÞ ¼ 0 ðα ¼ 0; 3Þ: (D2)
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Let us integrate this equation over the coordinate 4-volume
formed by the Cartesian product ½t1; t2� × ½rH; rext�×
½0; π� × ½0; 2π�. This corresponds to the coordinate ranges
of the spacetime 4-volume enclosed in the hypersurface
V ≔ Σ1∪ΔH∪Σ2∪Σext considered in Sec. IV and to which
the coordinates ðt; r; θ;φÞ are adapted. We get

Z
t¼t2

t¼t1

Z
r¼rext

r¼rH

Z
θ¼π

θ¼0

Z
φ¼2π

φ¼0

∂
∂xμ ð

ffiffiffiffiffiffi−gp
Tμ

αÞ

× dtdrdθdφ ¼ 0ðα ¼ 0; 3Þ: (D3)

Since the integral bounds are independent from one
another, we may permute the various integrals and use
the identities

Z
t¼t2

t¼t1

∂
∂t ð

ffiffiffiffiffiffi−gp
Tt

αÞdt ¼ ð
ffiffiffiffiffiffi−gp

Tt
αÞt¼t2 − ð

ffiffiffiffiffiffi−gp
Tt

αÞt¼t1
(D4)

Z
r¼rext

r¼rH

∂
∂r ð

ffiffiffiffiffiffi−gp
Tr

αÞdr ¼ ð
ffiffiffiffiffiffi−gp

Tr
αÞr¼rext

− ð ffiffiffiffiffiffi−gp
Tr

αÞr¼rH (D5)

Z
θ¼π

θ¼0

∂
∂θ ð

ffiffiffiffiffiffi−gp
Tθ

αÞdθ ¼ ð
ffiffiffiffiffiffi−gp

Tθ
αÞθ¼π − ð ffiffiffiffiffiffi−gp

Tθ
αÞθ¼0

¼ 0 (D6)

Z
φ¼2π

φ¼0

∂
∂φ ð

ffiffiffiffiffiffi−gp
Tφ

αÞdφ ¼ ð
ffiffiffiffiffiffi−gp

Tφ
αÞφ¼2π

− ð ffiffiffiffiffiffi−gp
Tφ

αÞφ¼0
¼ 0: (D7)

The “¼ 0” in (D6) results from
ffiffiffiffiffiffi−gp ¼ 0 at θ ¼ 0 and

θ ¼ π, as a consequence of regularity properties of spheri-
cal coordinates, while the “¼ 0” of (D7) results from the
2π-periodicity associated with the coordinate φ. Taking
into account ((D4)–(D7), Eq. (D3) becomes

Z
Σ2

Tt
α

ffiffiffiffiffiffi−gp
drdθdφ−

Z
Σ1

Tt
α

ffiffiffiffiffiffi−gp
drdθdφ

þ
Z
Σext

Tr
α

ffiffiffiffiffiffi−gp
dtdθdφ−

Z
ΔH

Tr
α

ffiffiffiffiffiffi−gp
dtdθdφ¼ 0

ðα¼ 0;3Þ: (D8)

For α ¼ 0, we recognize the energy conservation law
(4.12), the four integrals being, respectively, −E2, E1,−ΔEext, and −ΔEH as given by (4.20)–(4.26). For
α ¼ 3, we get the angular-momentum conservation law
(4.19), the four integrals being, respectively, J2, −J1,
ΔJext, and ΔJH as given by (4.27)–(4.29).
Note that in the above derivation, as in the geometrical

derivation of Sec. IV, we have not assumed that the energy-
momentum tensor T obeys the spacetime symmetries.
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