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Abstract

Thermal-dominated X-ray spectra of neutron stars in quiescent, transient X-ray binaries and neutron stars that
undergo thermonuclear bursts are sensitive to mass and radius. The mass–radius relation of neutron stars depends
on the equation of state (EoS) that governs their interior. Constraining this relation accurately is therefore of
fundamental importance to understand the nature of dense matter. In this context, we introduce a pipeline to
calculate realistic model spectra of rotating neutron stars with hydrogen and helium atmospheres. An arbitrarily
fast-rotating neutron star with a given EoS generates the spacetime in which the atmosphere emits radiation. We
use the LORENE/NROTSTAR code to compute the spacetime numerically and the ATM24 code to solve the radiative
transfer equations self-consistently. Emerging specific intensity spectra are then ray-traced through the neutron
star’s spacetime from the atmosphere to a distant observer with the GYOTO code. Here, we present and test our
fully relativistic numerical pipeline. To discuss and illustrate the importance of realistic atmosphere models, we
compare our model spectra to simpler models like the commonly used isotropic color-corrected blackbody
emission. We highlight the importance of considering realistic model-atmosphere spectra together with relativistic
ray-tracing to obtain accurate predictions. We also insist upon the crucial impact of the star’s rotation on the
observables. Finally, we close a controversy that has been ongoing in the literature in the recent years, regarding
the validity of the ATM24 code.
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1. Introduction

Neutron stars create extreme environments that harbor forms
of ultra-dense matter that cannot be reproduced on Earth. The
very complex properties of the stellar matter are encapsulated
in the equation of state (EoS) that allows the system of
equations describing the star’s equilibrium to be closed. This
EoS is the link between the nuclear physics in the interior of the
neutron star and astrophysical observables. In particular, a
specific EoS will only allow certain pairs of values of neutron
star mass M and radius R(see, e.g., Haensel et al. 2007).
Constraining the pair (M, R) for a particular neutron star thus
gives access to the nature of the EoS(for a recent review, see
Özel & Freire 2016). We note that the star’s rotation has an
impact on theM-R relation and that the relation that is generally
represented in typical figures is obtained for non-rotating stars.

Neutron star masses and radii may be constrained by various
methods, such as:

1. The modeling of pulse profiles for sources that show an
oscillating light curve most probably due to a rotating hot
spot on the neutron star’s surface.

2. The analysis of kHz quasi-periodic oscillations seen in
the neutron star’s power density spectrum.

3. The spectroscopic study of neutron stars in low-mass
X-ray binaries (LMXB) that show so-called type I X-ray
bursts, i.e., a sudden burning of the fuel accreted from the
secondary star;

4. The modeling of thermal spectra from cooling, isolated
neutron stars or thermal-dominated spectra of neutron
stars in quiescent LMXB (qLMXB).

For reviews of these methods and of their limitations, see, e.g.,
Miller (2013), Miller & Lamb (2016), Özel & Freire (2016),
Haensel et al. (2016). In this article, we focus on the spectral
methods, and more specifically on type-I bursters. This choice
is particularly motivated by the fact that LMXB tend to have
magnetic fields on the order of 108–9 G, which is weak for a
neutron star. Thus, it is fair to assume that the magnetic field
does not influence the radiative properties of the atmo-
sphere(Miller 2013), which greatly simplifies the problem.
We note that the numerical methods we present here can be
adapted just as well for qLMXB, and could be easily developed
in future works to model pulse profiles (in a scarcely
magnetized environment).
Type I bursters, particularly when they show photospheric

radius expansion (PRE, see e.g., Fujimoto & Taam 1986;
van Paradijs & Lewin 1987), have been used to constrain
masses and radii of neutron stars ever since the method was
proposed by van Paradijs (1979). The interpretation of
observational data in the framework of this method may
suffer from a series of limitations, which can be divided into
two main issues:

1. The correct modeling of the emitted spectra.
2. How the effects of strong gravity are taken into account.
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We will now review recent progress that has been made in
these two directions.

Regarding the modeling of the emitted spectra, it is first
possible that not all the emission comes from the surface of
the star (but rather, for instance, from residual accretion), and
that the surface of the star is not emitting radiation as a
whole(Miller & Lamb 2016). We will assume in the
remaining of the article that the full surface of the star,
and it alone, emits radiation. The main source of difficulty is
then to model the emission arising from the star’s
atmosphere.

The best constraints obtained from spectral methods use data
recorded by the Rossi X-ray Timing Explorer (RXTE), using
color-corrected blackbody emission at the surface of the
star(Özel et al. 2009, 2016). Having a huge effective area,
RXTE was able to collect a sufficient number of counts within
milliseconds, allowing proper spectral analysis to be made.
Nevertheless, using a color-correction factor is always a
simplified treatment that boils down to only shifting the
blackbody radiation to mimic the emission from a true
atmosphere. In recent years, realistic atmosphere models have
been developed to study neutron stars in type I bursters and
estimate their masses and radii.

There exist two classes of neutron star atmosphere models in
the literature. The first class consists of model atmospheres,
which are approximate because they oversimplify the process
of electron scattering(Heinke et al. 2006; Webb & Barret 2007;
Guillot et al. 2011). This class of neutron star model
atmospheres is available in the widely used XSPEC(Arnaud
1996) software fitting package. The second class of available
model atmospheres does include an accurate Compton
scattering process, which is critically important to model
atmospheres of hot neutron stars (with effective temperature
of a few times 107 K, characteristic of X-ray bursters) and their
spectra(Madej 1989, 1991a, 1991b; Madej et al. 2004;
Majczyna et al. 2005; Suleimanov et al. 2011, 2012, 2016).
Those models were successfully used for the mass and radius
determination of non-rotating NS(Majczyna & Madej 2005;
Kuśmierek et al. 2011; Suleimanov et al. 2016, and references
therein). We would like to point out here that only model
atmospheres with Compton scattering fully taken into account
can be used for mass and radius determination. Recently, we
proved that the Compton redistribution functions that we use in
the radiative transfer equations are computed with excellent
precision(Madej et al. 2017).

Regarding the impact of strong gravity, studies have been
devoted to its effect on the radiative transfer in the atmosphere
itself, as well as on the subsequent propagation of photons
toward the distant observer. Most spectroscopic studies that
aim at constraining neutron stars’ properties from thermal
X-ray spectra of type I bursters approximate the effects of
general relativity by a single scalar factor, the surface
gravitational redshift z. Such a scalar correction is sufficient
to represent relativistic effects, provided the thickness of the
neutron star’s atmosphere is small compared to the radius of the
star. Only recently, Medin et al. (2016) presented models of
geometrically thick neutron-star atmospheres with accurate
Compton scattering, taking into account the relativistic bending
in the radiative transfer process itself, within the neutron star’s
atmosphere.

The effects of strong gravity on the subsequent propagation
of photons from the atmosphere to the distant observer has
been the subject of a series of studies in the past decade.
Cadeau et al. (2005, 2007) compared ray-tracing of photons in
an approximate analytical spacetime with no shape modifica-
tion of the star to ray-tracing of photons in an exact numerical
neutron star spacetime(Stergioulas & Friedman 1995) with the
deformation of the surface taken into account. These studies led
to the conclusion that the oblate shape of the rotating star is the
most important factor that should be considered. A recent series
of papers by Bauböck et al. (2012, 2013, 2015) studied the
importance of the rotation of the star, as well as the quadrupole
moment of the metric, considering an analytical approximation
to the exact neutron star metric; namely, the Hartle & Thorne
(1968) metric. The validity of this analytical approximation has
been studied by Berti et al. (2005) and Bauböck et al. (2013),
and has shown a satisfactory agreement for most astrophysical
contexts.
An interesting, very recent series of papers by Nättilä &

Pihajoki (2017) and Nättilä et al. (2017) is investigating in the
same direction as our paper. It describes a new open-source
ray-tracing code for neutron-star observables computation in
approximate spacetimes, and presents the first direct fit to
bursting neutron star data of model atmospheres (in contrast to
all previous fits performed with modified blackbodies). It is
obviously of crucial importance that more than one numerical
pipeline like ours should be published, so that cross-checks of
the rather involved outputs can be made.
Recent confirmation of the origin of short gamma-ray

bursts as mergers of binary neutron-star systems (Abbott
et al. 2017a, 2017b, 2017c) creates a new method of
establishing neutron stars’ parameters. From the observations
of tidal deformation imprinted on the waveform’s phase
during the last orbits of the inspiral, one can distill
information on the size of the star and the stiffness of the
EoS. The analysis performed in Abbott et al. (2017a)
suggests that the component stars taking part in the merger
had radii that were most likely smaller than 14 km at the
measured mass range around 1.4Me.
The aim of this article is to present a numerical pipeline

that implements the most accurate simulated neutron-star
spectrum to date, at the same time taking into account a
precise atmospheric model and considering all general-
relativistic effects of the star’s geometry on the photon
propagation. We compute an accurate numerical metric that
particularly takes into account the exact deformation of the
star due to its rotation. We solve the hydrostatic and radiative
transfer problem in the neutron star’s atmosphere, incorpor-
ating the exact value of the local (varying) surface gravity at
the star’s surface. This local spectrum is then transported to a
distant observer by means of a ray-tracing code that adheres
to the exact numerical metric of the neutron star. An obvious
point of interest for such a numerical pipeline is to provide a
practical testbed for approximate methods, which are faster
and also more adapted for fitting data. However, our model
can also be used to produce tables of model spectra that
could be implemented in XSPEC and used for fitting data.
Indeed, we will see below that the computing time necessary
to produce a spectrum is reasonable for this prospect
(producing one spectrum ≈5 minutes on the 2.9 GHz Intel
Core i7 processor of a personal laptop). Moreover, such a
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pipeline also offers the possibility to investigate, in full
detail, the impact of the EoS on the resulting spectrum, as
well as to accurately predict the observables associated with
“extreme” systems that have not yet been observed to date:
i.e., very fast-rotating and very massive neutron stars. We
highlight that our pipeline is, for the time being, only
partially open-source, but we aim at making it fully open-
source in the near future.

Our numerical method is presented in Section 2, and the
results of our simulations are given in Section 3. Section 4
summarizes our work and outlines future endeavours. An
Appendix demonstrates the validity of the ATM24 code, which
has been questioned in recent articles.

2. Description of the Methods

Images and spectra of neutron stars are computed following
the sketch of Figure 1. This section describes the various pieces
that appear in that sketch.

2.1. Spacetime Metric

To describe the spacetime generated by the neutron star, we
adopt the quasi-isotropic coordinates (t, r, θ, j). For simplicity,
we assume stationarity and axisymmetry, with Killing vectors

t¶ and ¶j corresponding to time and rotational symmetries.
Under the assumption of pure rotational fluid motion about the
symmetry axis, the general metric element reads

ds g dx dx N dt A dr r d

B r d dtsin , 1

2 2 2 2 2 2 2

2 2 2 2

q

q j w

= = - + +

+ -
mn

m n ( )

( ) ( )

where N, A, B, and ω are four functions of (r, θ), with N being
called the lapse function. The fluid four-velocity u is a linear
combination of the two Killing vectors (pure rotational motion
hypothesis): u ut

t¶ ¶= + W j( ), where the contravariant time

component of the four-velocity u t is expressible as u t=Γ/N,
where Γ is the Lorentz factor of the fluid with respect to the
zero angular momentum observers (ZAMO). In the following,
we will assume rigid rotation, i.e., a constant value of the star’s
angular velocity u u d dtt fW = =f .
The metric of a neutron star rigidly rotating with angular

frequency Ω is fully fixed once the dense matter EoS inside the
star is selected and the central density ρc (or pressure Pc) is
chosen. This is a natural choice for computational purposes,
which allows the general relativistic equations of structure for a
uniformly rotating body to be integrated. Two out of the three
following global quantities, which are well-defined in general
relativity for a rotating star, also uniquely determine a rotating
configuration and the properties of the metric at the star’s
surface:

1. The gravitational (ADM, Arnowitt et al. 1961) mass M,
2. The baryon mass Mb,
3. The total angular momentum J.

For the relations between these global parameters, which
properly define sequences of stellar configurations, see, e.g.,
Zdunik et al. (2006). Another important quantity is the
circumferential stellar radius R, defined such that the
circumference of the star in the equatorial plane, as given by
the metric tensor, is 2πR. Then R is related to the equatorial
quasi-isotropic coordinate radius req by the metric function
B(r, θ), according to R=B(req, π/2) req.
In order to obtain the accurate solutions for rotating

neutron stars configurations at arbitrarily high spin (i.e.,
beyond the slow-rotation approximation), we employ the
NROTSTAR code (Gourgoulhon 2010) built using the free and
open-source LORENE library(Gourgoulhon et al. 2016,
http://www.lorene.obspm.fr), which provides spectral-
method solvers to the Einstein equations. The NROTSTAR
code allows for fast computation of the stellar surface,
described by the coordinate radius rsurf(θ) as a function
of θ, the four-velocity of the fluid at the surface, as well as
the fluid four-acceleration at the surface. Throughout the star,
the fluid four-acceleration a has covariant components
given by

a u u uln . 2t=  = -¶m
n

n m m( ) ( )
The second expression results from the assumptions of

circularity and rigid rotation, i.e., from the fact that the fluid
four-velocity is u=u t k, where k t¶ ¶= + W j is a Killing
vector, because Ω is constant. The surface gravity gs is the
norm of a at the stellar surface:

g a a A a r a , 3r
s

2 2 2= = +m
m q( ) ( ) ( )

where the second equality results from the metric (1) and the
fact that Equation (2), along with the hypothesis of stationarity
and axisymmetry, implies a a 0t = =j .
The first integral of the relativistic Euler equation govern-

ing the fluid motion is h/u t=const (e.g., Gourgoulhon
2010), where h is the fluid’s relativistic specific enthalpy.
At the surface of the star, the fluid’s internal energy
and pressure tend to zero, so that h=1. It follows from
the first integral that the stellar surface is an isosurface of u t.
From Equation (2), we conclude that the fluid four-
acceleration gives the normal to the stellar surface (which
is a timelike hypersurface in spacetime). For some photon

Figure 1. Sketch of the methods used to compute images and spectra of
neutron stars. The neutron star is depicted in red; its structure and spacetime
metric are computed with the LORENE/NROTSTAR code. Its atmosphere is
represented in blue, but not to scale: the atmosphere is extremely thin,
compared to the star’s radius, typically 10s of cm vs. to 10 km. The radiative
transfer equation is solved there, together with hydrostatic equilibrium, via the
ATM24 code. Finally, the emitted photons are ray-traced to a distant observer
using the GYOTO code, which incorporates the neutron star’s metric computed
by LORENE/NROTSTAR.
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escaping the star with a tangent null four-vector p, the
emission angle ò between the direction of photon emission in
the frame corotating with the star and the local normal reads

n p
u p

cos , 4 = -
·
·

( )

where n=a/gs is the unit spacetime normal to the stellar
surface, u is the surface value of the fluid’s four-velocity, and
a dot denotes the scalar product taken with the metric (1).
As we will see below, all these quantities are necessary
for the ray-tracing and the atmosphere radiative transfer
calculations.

2.2. Directional Atmospheres

We compute local spectra emitted in the star’s hydrogen/
helium atmosphere via the radiative transfer code Atm24
(J. Madej et al. 2018, in preparation). Previous versions of the
code were described in Madej et al. (2004) and Majczyna et al.
(2005). We note that the neutron star’s atmosphere has a very
low height (≈1 m as compared to the star’s radius of ≈10 km),
so the radiative transfer computation is essentially local. This
allows us to neglect relativistic effects in this section and
instead use a Newtonian treatment.

The equation of radiative transfer in a plane-parallel
atmosphere can be written in the following form:

n n
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assuming that sources of true absorption (κν) and thermal
emission ( jν=κν Bν) are in local thermodynamic equili-
brium (LTE). Here, z is the geometrical depth, and μ= cos ò.
Equation (5) does not include relativistic corrections on the
neutron-star surface, which will be treated in the next
section. The above equation of transfer was a starting point
in earlier investigations (Sampson 1959; Madej 1989, 1991a,
1991b).

Variable σν denotes the coefficient of Compton scattering
at a given frequency ν, integrated over all incoming
frequencies ν′. The variable n n,s n n ¢ ¢( · ) denotes the
differential Compton scattering cross section, and k¢n is the
absorption coefficient uncorrected for stimulated emission.
All the opacity coefficients are given for one gram of
matter (units of cm2 g−1). The relation between the differential
Compton scattering cross section and the integrated Compton
scattering coefficient is given by the following equation:

n n
d

d
4

, . 6
0òs

w
p

s n n n=
¢

 ¢ ¢ ¢n
w¢

¥∮ ( · ) ( )

The Compton scattering differential cross section must fulfil
the relation:

n n n ne e, , ,
7

h kT h kT2 2s n n n s n n n ¢ ¢ = ¢  ¢ ¢n n- - ¢( · ) ( · )
( )

which results from the detailed balance of this process in global
thermodynamic equilibrium(Pomraning 1973).
Moreover, we define new variables:

e1 8h kTk k= ¢ -n n
n-( ) ( )

and

n n n n, , , , 9s n n s f n n ¢ ¢ = ¢ ¢n( · ) ( · ) ( )

where the Compton scattering redistribution function f is
normalized to unity:

n n
d

d
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Angle-dependent Compton scattering redistribution function f
was approximated by its zeroth angular moment,

n n
d

, , ,
4

. 11n n f n n
w
p
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¢

w¢
∮( ) ( · ) ( )

We then write the equation of transfer (5) on the monochro-
matic optical depth scale d dzt k s r= - +n n n( ) :

I
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Dimensionless monochromatic absorption is defined as  =n
k k s+n n n( ). We point out here that the equation of transfer,
Equation (12), is not linear, but rather is quadratic with respect
to the unknown Jν.
Here we stress that the equation of transfer assumes that

Compton scattering is an isotropic process. The angle-
integrated normalized redistribution function Φ(ν,ν′) was
derived from the exact redistribution function R1 as presented
in Madej et al. (2017).
The above equation of transfer is accompanied by two

boundary conditions, the first being:

d

d
f J H 0 13

t
=

n
n n n( ) ( ) ( )

at the top of the model atmosphere (τν=0). At the bottom, we
require Jν=Bν, according to the usual thermalization condi-
tion. The variable fν denotes the well-known Eddington factor.
In this paper, we solve the above equation by precisely

iterating Eddington factors fν at all frequencies and optical
depth points. In such a way, we exactly reproduce the angular
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behavior of the radiation field and determine the angular
stratification of the specific intensity Iν(τ, μ).

Our equations and the Compton redistribution functions
(Nagirner & Poutanen 1993; Suleimanov et al. 2012) work
correctly for both large and small energy exchange between
X-ray photons and free electrons at the time of scattering. The
resulting model atmosphere and theoretical spectra represent
the most accurate quantum mechanical solution of the Compton
scattering problem, as shown in our recent paper Madej et al.
(2017). The above equations also produce accurate solutions
when the initial photon energy before or after scattering
exceeds the electron rest mass (mec

2=511 keV).
In our numerical procedure, the equation above is solved

with the structure of the gas kept in simultaneous radiative,
hydrostatic, and ionization equilibrium. The condition of
radiative equilibrium implies, on each depth level τν, that

H d
T

4
, 14R

0

eff
4

ò t n
s

p
=n n

¥
( ) ( )

where σR=5.66961×10−5 (in cgs units). The second
condition of hydrostatic equilibrium can be expressed in the
usual form
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where gs is the surface gravity, which is computed self-
consistently along the neutron star’s surface with LORENE/
NROTSTAR. The standard opacities and standard optical depth τ
correspond to the same variables at the arbitrarily fixed
frequency. This hydrostatic equation is coupled to the radiative
transfer by the mass density ρ that appears in the optical depth
τν. We use the equation of state of an ideal gas and compute
ionization and excitation populations, therefore, the absorption
coefficient κν, using Saha and Boltzmann equations (assuming
local thermodynamic equilibrium).

Therefore, the inputs of ATM24 are:

1. The composition of the atmosphere, which is assumed here
to be composed of hydrogen and helium, in solar abundance;

2. The surface effective temperature, assumed here to be
Teff=107 K;

3. The surface gravity gs, self-consistently computed by
LORENE/NROTSTAR along the surface.

The output is the local spectrum of emitted specific intensity
Iν(ν, μ), as a function of emitted frequency and cosine of
emission angle. This output can also slightly depend on the
polar angle θ connected to the star’s shape, given that the
surface gravity becomes a function of θ for rotating stars, which
we fully take into account in this paper by computing the
accurate distribution of Iν(ν, μ, θ).

We note that the validity of the ATM24 code has been
recently put in question by Suleimanov et al. (2012), as well as
more recently by Medin et al. (2016), on the basis that one
model spectrum obtained by these authors differs from that
computed by ATM24. We show in Appendix that the ATM24
spectrum used for comparison simply was not properly
converged, as was suggested in the discussion of Suleimanov
et al. (2012). Appendix shows that fully converged ATM24
spectra do essentially agree with Suleimanov et al. 2012.

2.3. Ray Tracing

The open-source ray tracing code GYOTO(see Vincent
et al. 2011, 2012, andhttp://gyoto.obspm.fr) is used to
compute null geodesics backwards in time, from a distant
observer toward the neutron star. Photons are traced in the
neutron star’s metric as computed by the LORENE/NROTSTAR
code. Once the neutron star’s surface is reached, the emission
angle ò between the photon’s direction of emission and the
local normal is evaluated following Equation (4). Given the
observed photon frequency νobs, the emitted frequency νem is
found via knowing the redshift, which is defined by the local
value of the four-velocity at the neutron star’s surface and is
computed by LORENE/NROTSTAR. Finally, the local surface
gravity is also known from the LORENE output. Consequently,
the local value of the emitted specific intensity
I g, ,em

em s emn m qn ( ( )) at a polar angle θem can be interpolated
from the output table computed by the ATM24 code. The
observed specific intensity is then I Iobs

obs
3

em
3 emn n=n n . The

map of observed specific intensity (i.e., the image) in the frame
of a distant observer is thus at hand. Performing such
computations for a set of observed photon frequencies and
summing these images over the observer’s screen pixels (i.e.,
over the directions of photon reception) allows an observed
spectrum Fobs

n to be obtained.

3. Stellar and Atmospheric Models, and Ray-traced Images
and Spectra

3.1. Stellar Models

We consider two models of neutron stars described by the
SLy4 dense-matter EoS (Chabanat et al. 1998; Douchin &
Haensel 2001), supplemented with the description of the
neutron star’s crust from Haensel & Pichon (1994): a non-
rotating configuration and a configuration rotating rigidly at
716 Hz (matching the frequency of currently fastest-spinning
pulsar PSR J1748-2446ad, Hessels et al. 2006). For both
configurations, we select a gravitational mass of M=1.4Me.

Figure 2. Comparison of surface gravities between a non-rotating neutron star
(blue dashed–dotted line at a constant value of 1.68×1014 cm s−2) and for a
neutron star rigidly rotating at 716 Hz (red line, with values between
1.7×1014 cm s−2 for the pole at sin θ=0 and 1.19×1014 cm s−2 for the
equator at sin θ=1). In both cases, the gravitational mass equals 1.4 Me.
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In general, the surface gravity of a non-rotating neutron star is

g
GM

R GM Rc

1

1 2
. 16s,0 Hz 2 2

=
-

( )

For a mass of M=1.4Me and considering the SLy4 EoS,
gs,0 Hz=1.68×1014 cm s−2 (see Bejger & Haensel 2004 for a
summary for other EoS models). In contrast, a rotating neutron
star has a surface gravity varying along the θ direction, as
described in Section 2.1. In Figure 2, we compare the surface
gravities for both our models. The resulting values of surface
gravities and circumferential radii are on the order of
gs=1.5×1014 cm s−2 and R=12km. In comparison, the
neutron star model often considered as a reference, with
M=1.4Me and R=10 km, yields gs=2.43×1014 cm s−2

(Bejger & Haensel 2004).
We also compare the surface figures of stars. Figure 3 shows

them in coordinate values for both selected configurations and
compares them to the slow-rotation approximation to the shape
of the surface:

r r r r cos , 17peq eq
2q q= - -( ) ( ) ( )

where req and rp are the equatorial and polar quasi-isotropic
radii. This equation is used, for instance, in the Hartle-Thorne
metric used by Bauböck et al. (2012). Assuming that the polar

and equatorial radii are known, the error introduced by using
the slow-rotation approximation at the rotational frequency of
716 Hz and mass 1.4Me for the SLy4 EoS is maximally about
100 m in radius (for comparison, the maximal difference at
900 Hz is about 0.5 km).
The spacetime generated by a rotating star in full general

relativity is different from the slow-rotation approximation.
Figure 4 shows the comparison of the metric function lapse N,
with its approximation 1-M/r, versus the frame-dragging metric
term (shift vector component ω=−βf), with 2J/r3, where J is
the total angular momentum of the configuration rotating at
716 Hz (see also Gourgoulhon 2010).

3.2. Local Spectra

The local spectra are computed by ATM24 for an atmosphere
made of hydrogen and helium in solar abundance and an
effective temperature of Teff=107 K. All models used in this
paper were computed with a large number of iterations; they
achieved satisfactory convergence after 500–600 iterations,
depending on the value of surface gravity (see Appendix for
explanation). They are shown in Figure 5. The bounds of the
full range of surface gravities spanned by the non-rotating and
rotating configurations are 1.19×1014 and 1.70×1014,
respectively, in cgs units. This variation of ≈40% of the
surface gravity leads to a tiny variation (a fraction of a percent)
in the resulting local spectrum, which is thus scarcely sensitive
to the local surface gravity. Consequently, Figure 5 shows the
ATM24 spectrum at one unique value of surface gravity, equal
to gs=1.7×1014 cm s−2. Figure 5 also shows a color-
corrected blackbody spectrum, as defined by

I
f

B T f T
1

, 18BB corr

cor
4 cor eff= =n n ( ) ( )

where Bν is the Planck function and fcor=1.4 is the color-
correction factor.

Figure 3. Surface figures for selected configurations in coordinate values. The
blue dashed–dotted line denotes the non-rotating star (circumferential radius
R0 Hz=11.72 km). The red line denotes the surface of the star rotating at
716Hz (equatorial circumferential radius R716 Hz=12.65 km, r r 0.86p eq = ).
The green dashed line is the slow-rotation approximation of Equation (17). The
lower panel presents the difference between the shape of the rotating star
obtained with LORENE/NROTSTAR and the slow-rotation approximation of
Equation (17).

Figure 4. Left panel: Lapse function N in the polar (red dashed line) and
equatorial (solid green line) directions, compared to its slow-rotation
approximation 1-M/r (solid blue). Right panel: Frame-dragging metric term
(shift vector component ω=−βf) in the polar (red dashed line) and equatorial
(solid green line) directions, compared to the slow-rotation approximation
2J/r3 (solid blue), where J denote the total angular momentum of the star.
Vertical lines indicate the surface of the star. Dashed and solid lines are used
for the polar and equatorial directions, respectively.
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Figure 5 also represents, in its lower panel, comparisons
between various spectra. It first compares the corrected
blackbody spectrum to the ATM24 spectrum averaged over
the cosine of the emission angle μ=cos ò. The angle-averaged
specific intensity, at frequency ν and latitude θ, is equal to
twice the usual mean intensity:

I J I d, 2 0 , , . 19angle averaged òn q n m q m= =n n
m

n( ) ( ) ( ) ( )‐

Overall, the averaged ATM24 spectrum is close to the
corrected blackbody, but a closer look reveals significant
intensity differences at the level of ≈50% for both the
low- and high-energy spectral wings. Thus, considering a
realistic spectrum at the neutron star’s surface not only
changes the directionality of the emitted radiation, but
also the shape of the spectrum. The lower panel of Figure 5
also compares the tangentially and normally emitted local
spectra. This shows a difference with direction on the order
of tens of percent, up to a factor of two in a large fraction of
the band. Therefore, the ATM24 spectrum is very strongly
directional.

The effects of limb darkening, which are typical for stars
seen in the optical band, are caused by the lowering of local
gas temperature toward the interstellar space. The effect can
be mathematically derived from the formal solution of the
radiative transfer equation (Mihalas 1978). Most stars,
including neutron stars, exhibit an inversion of temperature,

which starts to rise toward the exterior. The best examples
are our Sun and other late-type stars, which develop
chromospheres with temperature inversion. As for neutron
stars, the inversion of temperature in the outermost
layers of the atmosphere is caused by the Compton
scattering of radiation emitted from deeper photospheres. For
some photon energy ranges, inversion of temperature manifests
itself as limb brightening, clearly seen in our intensity spectrum
for some ranges of photon frequency.

3.3. Images

This section investigates the appearance of the star once
imaged by our ray tracing code. In this section, the term
image refers to a specific intensity map. In all the simulations
presented below, the whole surface of the neutron star
is assumed to emit a homogeneous radiation I em

n . Three
ingredients are important in order to understand the
following images. Namely, the impacts of:

1. The local value of the emission angle ò;
2. The relativistic beaming effect, which enhances the

radiation of a source moving toward the observer;
3. The local value of surface gravity gs.

The sketch of Figure 6 shows how these various quantities
impact the image for an exactly edge-on view. Edge-on views
are ray-traced from an inclination of i=90°, where i is the
angle between the axis perpendicular to the equatorial plane

Figure 5. Local spectra emitted at the star’s surface. Top panel: the thick dashed blue curve shows a color-corrected blackbody at Teff=107 K, which is also the
effective temperature of the neutron star’s surface used in ATM24. The color-correction factor is fcor=1.4. All other curves are obtained by ATM24 after solving
the radiative transfer equation in the neutron star’s atmosphere. The surface gravity equals 1.7×1014 cm s−2 (but the effect of this parameter is very small).
Each solid thin black curve corresponds to a different emission angle ò, with the thick red curve corresponding to emission along the local normal and the thick
green curve to emission tangential to the star’s surface. Bottom panel: the percentage difference (defined as X X X X 200a b a b- + ´( ) ( ) ) between these two
extreme angles in black (tangent minus normal), and the percentage difference between the corrected blackbody and the ATM24 spectrum averaged over
emission angle in blue.
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and the line of sight. These three quantities will respectively
lead to radial, horizontal, and vertical gradients in the image.
All images in this section are computed at an observed energy
of 4.1 keV, close to the maximum of the neutron star’s
spectrum.

Figure 7 shows the face-on and edge-on views of the non-
rotating neutron star, together with the face-on view of the
fast-rotating (716 Hz) star. We use the term face-on view to
describe an image obtained with an inclination i=1°. Our
ray-tracing code uses spherical coordinates, so the i=0°
axis is singular. We also note that the computation time of
one such image (or spectrum) with resolution 30×30 pixels
on a standard laptop takes ≈5 minutes, allowing a large
number of such images/spectra to be computed rather easily.
Obviously, the face-on and edge-on views of the non-
rotating star (left and right panels) are extremely similar.
When comparing pixel by pixel, some non-negligible
differences appear, which can be as high as ≈1% for a
handful of pixels. This is due to the limited precision with
which the GYOTO code is able to find the neutron star’s
surface, particularly for a tangential approach (remember
that geodesics are integrated backward in time, so the
photon approaches the neutron star). The code precision
parameters can be adjusted to allow an arbitrarily precise
result to be obtained, but at the expense of computing

time. Given that the total flux, summed over all pixels,
is the real quantity of interest, we are not interested in
getting extremely precise values for each individual pixel.
We have checked that the flux difference between the
edge-on and face-on views of the non-rotating star is 0.05%,
which is far better than needed to fit observations. The
mainly radial gradient of the intensity in these images is due
to the radial variation of the emission angle ò, as explained in
Figure 6. We have checked that the image obtained when the
local spectrum is averaged over the emission angle shows an
exactly constant value, to within code precision. The central
panel of Figure 7 is the face-on view of the fast-rotating star.
It is very similar to the non-rotating neutron star image,
which is natural because the main difference when the star is
rotating is the relativistic beaming effect, which is absent for
a face-on view. The pixel values are still slightly different, as
compared to the non-rotating case, because the metric
determined by the ray-traced photons is different, even for
a face-on view, and the surface gravity is not exactly the
same in both cases.
Figure 8 shows edge-on images of the fast-rotating neutron

star. We have considered three different emission processes at
the star’s surface: either a simple color-corrected blackbody at
T=107 K, with a color-correction factor of fcor=1.4, or else
the local spectrum as computed by the ATM24 code, averaged
(or not) over the emission angle ò. The left and central panels
are very similar. They show a mainly horizontal gradient that is
due to the relativistic beaming effect (the approaching side
being on the left). The blackbody case shows no vertical
gradient, to within the code precision. The averaged ATM24
spectrum case shows a very small vertical gradient (not visible
on Figure 8, where the horizontal gradient largely dominates),
which is due to the slight variation of the local spectrum with
surface gravity. The right panel shows the combination of two
effects: the horizontal gradient due to relativistic beaming, and
the radial gradient due to the variation of the emission angle ò.
The superimposition of these two effects leads to a more
complex image.

3.4. Ray-traced Spectra

This section investigates the end product of our numerical
pipeline, i.e., the ray-traced neutron star spectra. All the spectra
in this section are computed with the same 30×30 pixel
resolution as the images presented in the previous section. We
checked, by comparing to a 100×100 resolution for one
particular case, that this resolution leads to an error smaller than
0.7% over the full energy range.

3.4.1. Impact of the Emission Process

Let us first focus on the impact of the local radiation process
at the neutron star’s surface on the end-product, ray-traced,
observed spectrum. Figure 9 shows the ray-traced spectra of the
non-rotating or fast-rotating neutron star for three different
kinds of emissions at the star’s surface: either a color-corrected
blackbody at the effective temperature of T=107 K, the
ATM24 spectrum averaged over the emission angle, or the
directional ATM24 spectrum.
This figure shows that the difference between the ray-

traced spectra of a neutron star emitting a color-corrected
blackbody, or a realistic spectrum as computed by ATM24, is

Figure 6. Sketch showing the main ingredients that explain the appearance
of the star’s ray-traced image. The blue line represents the neutron star’s
surface. The upper panel is a local view defining the emission angle
ò between the local normal and the direction of photon emission. The
lower panel shows an edge-on view of a rapidly rotating neutron star. Note
that the surface is not a circle, due to the high rotation. The value of ò varies
radially for an exactly edge-on view. Its direction of increase is
along the long dashed red arrow. The four-vector of the neutron star’s
surface velocity is labeled u. Its spatial part v points toward the observer on
the left side, lies in the plane of the paper at the center, and points away from
the observer on the right side. The corresponding beaming effect will
enhance the radiation on the left side and weaken the radiation on the right
side. Thus, the beaming effect shows a horizontal gradient. The surface
gravity gs is minimum at the center of the picture (the starting point of the
cyan arrow), as this point is the projection of some point in the equator of
the star where the radius is maximum. On the other hand, gs is maximal at
the end point of the cyan arrow, which corresponds to a pole of the star,
where the radius is minimal. Thus, gs increases from the center of the image
toward the border of the star, along the cyan vertical arrow. Surface gravity
has constant values on horizontals in this picture, and thus shows a vertical
gradient.
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of the same order as what was obtained in the local context of
Figure 5. Thus, taking a realistic emitted spectrum into
account typically changes the observed spectrum by ≈20%
over most of the energy band. This difference is related to the
fact that the locally emitted spectrum is strongly directional.
This directional dependence cannot be simplified, particu-
larly when the star is rotating fast and the photons undergo
highly non-trivial lensing effects that impact their emission
angle ò, and thus the specific intensity they carry. We note
that, as illustrated in Figure 5, even the angle-averaged local
spectrum is still very different from a corrected blackbody,
so even if one replaces the directional emitted spectrum by
its angle average (which would be wrong, because
of the non-trivial lensing effects highlighted before), the
resulting ray-traced spectrum would still be incorrect.
This problem is analogous to the computation of the spectra
reflected by black holes’ accretion disks. Ray-tracing
techniques must be used to compute the reflected spectrum
in order to properly take into account the strong directional
dependence of the local spectrum(García et al. 2014;
Vincent et al. 2016).

Figure 9 also allows comparison of the end-product ray-
traced spectrum when averaging the ATM24 local spectrum
over emission angle, vis-à-vis the directional case. This is
particularly interesting as a test of our pipeline, because the
result can be predicted to some extent. Let us first focus on
the (Ω=0, i=1°) case (it is very similar to the
(Ω=716 Hz, i=1°) case, which is thus not shown here).
The relative difference between the ray-traced averaged and
directional spectra is very similar to the relative difference
between the local tangent and normal spectra of Figure 5
(solid black, lower panel):

Averaged Directional Tangent Normal . 20
in ray traced spectrum in local spectrum

»     ‐ ‐ ( )
‐

The absolute value of the relative difference is smaller in the
ray-traced case, but the trend is exactly the same, as if the
directional ray-traced spectrum would privilege normal
emission. It is indeed so, as illustrated on Figure 10: the
projection effect suffered by the star when it is imaged on a
flat screen at the observer’s position leads to giving more
weight to normal emission than to tangential emission. On
the contrary, when considering an averaged spectrum, all

values of ò are considered with the same weight. The trend of
the top panel of Figure 9 thus makes sense. Let us now focus
on the lower panel of this figure, i.e., the (Ω=716 Hz,
i=90°) case. The relative difference between the averaged
and directional ray-traced spectra is similar to the top panel
on the low-energy side, but then gets inverted at high
energies. This is linked to the relativistic beaming effect,
which is the main effect shaping the edge-on spectra as
illustrated in Figure 8. However, the effect of beaming
strongly depends on the spectrum’s slope. Let us illustrate
this by focusing on the approaching side of the star (the left
part of the image in Figure 8). As the emitter travels toward
the observer, the Doppler effect translates into the observed
photon energy being higher than the emitted one. Thus, the
Doppler effect pushes the emitted intensity toward smaller
values when the spectrum increases with energy, and toward
higher values when the spectrum decreases with energy (see
Figure 11). On the approaching side, the beaming effect
always has the same effect: whatever the spectrum shape, it
enhances the radiation. Consequently, the Doppler effect
tends to compensate for the beaming effect on the increasing
side of the spectrum (i.e., low-energy side), and to boost the
beaming effect on the decreasing side of the spectrum (i.e.,
high-energy side). This allows us to understand the trend of
the relative difference between the averaged and directional
spectra of the lower panel of Figure 9. On the low-energy
side, the Doppler effect counterbalances the beaming effect
so that things look very much like the face-on case, which is
not affected by beaming. On the high-energy side, however,
the Doppler effect increases the effect of beaming,
strongly concentrating the radiation in the leftmost part of
the image. This part of the image is associated with mostly
tangential emission, as it lies far away from the center of the
neutron star on the observer’s screen. Thus, the directional
ray-traced spectrum selects tangential emission, opposite to
what was the case in the face-on scenario discussed above.
This explains the opposite trend of the relative difference
plot in the lower panel of Figure 9, as compared to the top
one. Thus, all trends depicted in Figure 9 can be explained.
This is a strong argument in favor of the correctness of our
pipeline.

Figure 7. Images of the neutron star at observed energy 4.1keV with (Ω=0, i=1°) for the left panel, (Ω=716 Hz, i=1°) for the central panel, and (Ω=0,
i=90°) for the right panel. The star is emitting the directional spectrum as computed by the ATM24 code in all cases. The mainly radial gradient of intensity is due to
the radial variation of the emission angle ò. The color bar is common to the three panels and shows the numerical value of the observed Iν in cgs units.
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3.4.2. Impact of the Angular Velocity

Figure 12 illustrates the effect of the star’s rotation on
the observed ray-traced spectrum, when the neutron star
emits either a color-corrected blackbody or the directional
ATM24 spectrum. It shows that the rotation has a small
impact when the star is seen face-on, which is not surprising
after what has been discussed on Figure 7. The difference
here is purely due to the change of the spacetime metric with
the star’s rotation. In contrast, the effect of rotation is huge at
high energy, when the star is seen edge-on, with a difference
reaching factors of a few. However, this effect is still small,
even for the edge-on case, on the low-energy side. This trend
is explained in the same way as above, i.e., by the coupled
influence of the Doppler and beaming effects. Figure 12 also
shows that the effect of rotation is very similar for the two
different emission processes, i.e., the blackbody and direc-
tional ATM24 spectrum.

The relative difference in bolometric flux between the 0
and 716Hz cases, for an edge-on view, is 13.7% for the
blackbody case and 11.2% for the ATM24 case. These
numbers are difficult to directly compare to the results of
Bauböck et al. (2015), given that the neutron star’s
parameters are not the same. However, we note that the
bolometric relative difference reported by these authors
between a 15km neutron star rotating at ≈700 Hz and its
non-rotating counterpart, seen edge-on, is ≈15% according
to the lower panel of their Figure 4.

4. Conclusions

We have presented a new numerical pipeline intended to
compute very accurate X-ray bursting spectra of neutron stars
with arbitrary masses and rotation. It is the only tool in the
literature, so far, that allows neutron-star spectra to be
computed while considering realistic model atmospheres
together with all general-relativistic effects on the star’s shape
and photon propagation. Our pipeline is a concatenation of the
LORENE/NROTSTAR, ATM24, and GYOTO codes. At the present
time, only LORENE/NROTSTAR and GYOTO are fully open-
source, but we intend to make ATM24 open-source in the near

future, so that the pipeline can be freely used by the
community.
This article first demonstrates the validity of our pipeline by

investigating in detail its outputs and comparing them when
possible to the literature. It also highlights the importance of
considering both a precise directional model atmosphere and
ray-tracing in order to obtain accurate predictions.
Our future work will be dedicated to broadening the

astrophysical impacts of this new pipeline, making it a
testbed to investigate the validity of the various simplifying
assumptions, either on the emitted spectrum or on the
treatment of strong gravity, that other codes consider. The
output of the pipeline will be implemented in XSPEC by
creating fits tables of bursting neutron star spectra that might
then be easily used for fitting data. Finally, we identify
potentially interesting research directions that can be only
undertaken with such a fully relativistic pipeline, namely
detailed investigation of the impact of the dense matter
EoS on the observables. We will also consider “extreme”
neutron stars, both very massive and fast-rotating, in order to
predict the observable specific features of these very special
sources.

F.H.V. thanks Jérôme Novak and Micaela Oertel for
interesting discussions. A.R., J.M., and B.B. were supported
by Polish National Science Center grants No. 2015/17/B/
ST9/03422, 2015/18/M/ST9/00541. M.B., M.F., P.H., and
L.Z. acknowledge support from 2013/11/B/ST9/04528.
Software:LORENE (Gourgoulhon et al. 2016), ATM24

(Madej et al. 2004; Majczyna et al. 2005), GYOTO (Vincent
et al. 2011).

Appendix
Validity of the ATM24 Code

Numerical solution of the model atmosphere problem is very
time consuming. We assume, that each model fulfills the
conditions of radiative and hydrostatic equilibrium, which
determine the evolution of temperature and gas pressure in the
atmosphere. These two conditions are numerically achieved by

Figure 8. Edge-on images of the fast-rotating (716 Hz) star. On the left panel, the star emits a simple color-corrected blackbody at T=107 K. On the central panel, the
star emits the spectrum computed by the ATM24 code, averaged over the emission angle ò. The right panel shows the most realistic image, with the directional
spectrum as computed by ATM24 taken into account. The two first panels clearly show a dominating horizontal gradient that is due to relativistic beaming. The right
panel superimposes the radial gradient of the emission angle ò over this effect, leading to a more complex appearance. The color bar is common to the three panels and
shows the numerical value of the observed Iν in cgs units. Note that the star’s surface is not circular, due to the high rotation.
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Figure 9. Effect of the emission process on the observed spectra. Top panel showsray-traced spectra (and relative differences) of a neutron star with zero rotation seen
face-on. Lower panel is thesame, but for a neutron star with 716Hz rotation seen edge-on. Three different radiation processes are considered at the star’s surface: the
color-corrected blackbody at T=107 K (dotted blue), the ATM24 spectrum averaged over emission angle (solid green), or the ATM24 directional spectrum (dashed
red). The lower sub-panel of each plot shows the relative difference in percentage between the averaged and directional ATM24 spectra (solid black), and between the
corrected blackbody and the directional ATM24 spectrum (solid blue).
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means of iterations, with gas pressure iterations being nested in
temperature iterations.
Atm24 uses very efficient and fast algorithms to ensure

hydrostatic equilibrium. However, temperature iteration steps
are very slow and must be repeated hundreds of times in the
most complicated models. In a typical computation, each step
requires solving 1025 (i.e., the number of frequencies) integro-
differential equations of transfer with the Compton redistribu-
tion function at all optical depth levels (typically 96 levels).
The Atm24 code is constantly upgraded to increase its

accuracy. The most difficult case is the pure hydrogen
atmosphere, when matter is completely ionized and Compton
scattering is the dominant process of opacity. Furthermore,
convergence problems appear when the surface gravity is close
to the Eddington limit, above which the atmosphere becomes
unstable.
Recently, Suleimanov et al. (2012) posited that our ATM24 code

is not correct, on the basis of a single result, which was exchanged
between those authors and ourselves in private communication.
This result was obtained for a pure hydrogen atmosphere, with
parameters close to the Eddington limit Teff=1.80×107 K and

glog 14.0= (cgs units). Even if flux and temperature corrections
were iterated with an accuracy of 0.1%, the final spectral shape
was not yet converged (after 62 temperature iterations, which we
normally have used for testing purposes). In Figure 13, we also
show subsequent iterations, 264 and 1954, of the same model
atmosphere computed with the same version of ATM24 code as
quoted by Suleimanov et al. (2012). The above figure shows
significant evolution of the model spectrum, reaching the
convergence limit of about 2000 iterations. For models with
higher surface gravity (i.e., far from the Eddington limit), using less
than 600 iterations is usually sufficient to achieve satisfactory
convergence. The remaining difference, with respect to Suleimanov
et al. (2012), is displayed at the bottom panel of Figure 13.
Therefore, the fully iterated sample ATM24 model is also in

agreement with Boutloukos et al. (2010) and Miller et al.
(2011), who concluded that the brightest RXTE spectra of
X-ray bursters 4U 1820-30 and GX 17+2 are best-fitted by
Bose–Einstein spectra, possibly with nonzero chemical
potential.

Figure 10. On the left, the star’s surface is shown in blue. The z-axis is the axis
of rotation, n is the local normal at some point of the surface, p is the direction
of emission toward the observer, ò is the emission angle, and R is the neutron
star radius. The plot on the right shows the evolution of ò=arcsin
(z/R) with z/R. The emission is normal when ò=0 and tangential when
ò=π/2. Because of the projection effect when imaging the neutron star on a
screen at the observer’s location, more weight will be given to normal emission
than to tangential emission. Indeed, a majority of values of z/R give rise to
values of ò that are closer to zero than to π/2, as is clear from the right panel.

Figure 11. Illustration of the combination of Doppler and beaming effect,
depending on the spectral trend, on the approaching side of a neutron star
observed edge-on. See text for details.
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We note that the spectral shape computed with our ATM24
code, discussed by Suleimanov et al. (2012) and Medin et al.
(2016), was neither published nor endorsed for publication by
our group in any of our earlier papers. The differences between
models computed by different groups may be caused by the use

of different algorithms or computational schemes, because the
problem is very complex and requires a huge amount of CPU
time. A more detailed comparison of ATM24 models and those
of Suleimanov et al. (2012) will be presented in a forthcoming
paper, J. Madej et al. (2018, in preparation).

Figure 12. Effect of rotation on the observed spectrum: ray-traced spectra of a neutron star seen face-on (left) or edge-on (right). The star’s surface emits color-
corrected blackbody (blue) or the directional ATM24 spectrum (black) and rotates at 0Hz (solid) or 716Hz (dashed). The lower panels show the relative difference
between the two blackbody and directional spectra in blue and black, respectively. Note the change of the vertical axis scale between the two lower panels.

Figure 13. The convergence of our ATM24 code for a pure hydrogen atmosphere. The dashed black line shows the spectrum after 62 iterations, which is not fully
converged and was used in the comparison of Figure C.1 of Suleimanov et al. (2012). Increasing the number of iterations to 264 and 1954, respectively, gives the
dashed blue and solid green lines. These spectra show perfect convergence of spectral shape and are compared to the spectrum computed by the numerical code (solid
red line) of Suleimanov et al. (2012). The comparison shows a very good agreement, at the few percent level, around the spectrum maximum.
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