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Chapter 7

PROSPECTS

7.2. Beyond Chaos.

At the end of Section 5.7, we arrived at the conclusion that a
Markov-Wiener process plays the fundamental role of a transformation
allowing one to go reversibly from classical to quantum and from quantum
to classical laws. However the completely deterministic “purely classical”
world and the completely undeterministic “purely quantum” world may be
viewed as the extremities of a full spectrum in the complexity of Nature:
We, indeed, now know that “deterministic” chaos exists in several
situations, some of which were previously considered as archetypes for
totally predictible systems. One of the most impressive example is the recent
suggestion by Laskar that the inner Solar System is chaotic with an inverse
Lyapunov exponent as low as 5 Myr.

The discovery of chaos, which is now defined as the extreme
sensibility to variation in initial conditions (this is often described by an
exponential divergence of trajectories in phase space, δx = δxo et/τ, where
1/τ  is the so-called Lyapunov or characteristic exponent30), may be
attributed to Poincaré.31
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Chaos is relevant in a huge variety of natural systems (see, e.g., the
series of popular papers in Refs. 32 and 40: celestial mechanics, fluid
mechanics and turbulence, weather, population dynamics, evolution,
ecology, mathematics, economics, dynamics of chemical reactions...).
Although  a large number of various methods of analysis has been coined
to describe the development of chaos (strange attractors, fractal and
information dimensions, entropy, characteristic exponents, catastrophe
theory...), all of them have up to now struck against the unpassable barrier
of unpredictability at large time scales. However, in many systems where
chaos arises, spatial and temporal structures seem also to arise: they are
observed experimentally (regularity of the distribution of planets, satellites
and asteroids in the Solar System, spatial and temporal structures in the
climate, biological structures, Belousov-Zhabotinskii reaction in chemistry,
Taylor-Couette flow...); these structures are in some few cases found or
confirmed in numerical simulations, but very rarely understood or predicted
from a fundamental theory.

We suggest in the present section a general method for attacking
these problems: this method is efficient precisely when other methods fail,
i.e., for very large time scales (compared to the “chaos time” τ). We shall
see that it naturally generates spatial and temporal structures. This will be
exemplified by its application to the problem of the Solar System.

Prediction beyond unpredictability.

The method is based on the formalism presented in Sec. 5.6, which is
an extension of Nelson's stochastic formalism. It is written in a compact
form thanks to the introduction of complex variables; the main new point is
that we have demonstrated that the fundamental equation of dynamics,
written in terms of our new complex time derivative operator d / dt,

F  =   m   
d 2
dt2  x    ,

becomes  Schrödinger's equation. But consider the basic hypothesis of the
formalism: the trajectory slopes are broken at any point of the space, this
breaking being described by an Einstein-Wiener process of diffusion, as is
done for the description of Brownian motion. Consider now chaotic
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trajectories in the plane. We place ourselves in the reference frame of a first
trajectory, say (x1 = 0, y1 = a t ). Then consider a second trajectory which is
exponentially divergent with respect to the first one (we assume a unique
Lyapunov exponent for simplicity): x =  δx et/τ, y = a t + δy et/τ). Then we
get the relation

y  =    
δy
δx  x +  a τ  ln 

x
δx     .

Such a  trajectory  (typically in x + lnx) is shown in Fig. 7.3 in the plane
(x,y), for various time scales. For very large time scales, i.e., with resolution

~>τ, it becomes non-differentiable at the origin, with different backward and
forward slopes, and looks like trajectories arising from a diffusion process or
from particle collision. For Lyapunov exponents different in x and y, one
gets a power law, with also a point of broken slope at the origin when seen
at large time scale. Now, in case of developed chaos, the small perturbation
(δx,δy) fluctuates and the divergence between possible trajectories described
in Fig. 7.3 occurs at any of their points: for ∆t >> τ,  the trajectories
become describable to a good approximation by non-differentiable and
fractal paths.

Figure 7.3. Schematic representation of the relative evolution of two initially close
trajectories seen at three different time scales, in the case of chaotic motion.

 Let us give another example. Consider one of the archetypes of
chaotic behaviour, the so-called logistic map of population dynamics,

xt+1 = λ xt (1 − xt)  ,
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which may be iterated for a discrete time t. For λ = 4, the behaviour
becomes completely chaotic and the values of x fill the interval [0,1], as
shown in Fig. 7.4. There too, it is immediately clear that the motion on the
line Ox resembles closely that of a particle subjected to random kicks, with
different velocities before and after the “kick”.

More generally, consider a system subject to developed chaos. For
time scales large with respect to the inverse maximum Lyapunov exponent
(i.e., beyond the time scale after which predictability of orbits is lost), we can
replace deterministic trajectories by families of potential trajectories, and
then the concept of definite positions by that of a probability density.

Figure 7.4. Illustration of high sensibility to initial conditions in the “logistic map”.

 This leads one to describe the effect of chaos in a stochastic way by a
diffusion process. Such an idea is not new in itself (see e.g. Ref. 61). The
new element that we suggest to add in the description is the explicit
introduction of the non-differentiability in terms of different backward and
forward velocities.

So our method consists in assuming that, for large time scales, the
evolution of the virtual trajectories can be described by a Wiener process,
and replacing in the basic differential equations the time derivative by our
complex time derivative operator (see Sec. 5.6). In other words, this means
that we set a principle of correspondence for classical chaotic equations.
When these classical equations are deduced from a Lagrangian formulation,
the new equations will be Schrödinger-like, and the solutions  quasi-
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quantum (with a different interpretation: the full behaviour of quantum
mechanics can be recovered only if one assumes the space-time to be non-
differentiable down to the smallest scales; here this is only a large time
scale approximation, since when coming back to small time scales one
recovers differentiable predictable trajectories).

It is known that quantum mechanics naturally yields structures: the
existence of well-defined boundary conditions for some variables results in
the quantization of the conjugate variables. One may expect the same
behaviour from the theory which is outlined here. Let us exemplify this by
applying our method to celestial mechanics, namely, to the old problem of
the regularity of planets in the Solar System.

“Quantization” of the Solar System.

The existence of regularities in the distribution of planets in the Solar
System was recognized long ago. This was Kepler's main motivation in his
search for planetary laws. The Titius-Bode “law” (rn = 0.4 + 0.3 x 2n) was
the first empirical attempt at describing these regularities, and was followed
by several other proposals.33-35 The discovery of similar structures in the
distribution of the satellites of the great planets led to a revival of interest
for such studies, and to the hope that indeed a physical mechanism was at
work; such a mechanism was searched for by most authors in the formation
conditions.36 It was however suggested by Hills37 that this regularity may
arise from a dynamical evolution relaxation (see Nieto33).

The discovery by Laskar38 that the inner planetary system (telluric
planets) is chaotic, with a very short inverse Lyapunov exponent of
τ ≈ 5 Myr, and its recent confirmation by independent studies39 sets the
question in a completely renewed way. The position of planets can no more
be predicted from usual celestial mechanics for time scales larger than
≈100 Myr. But several arguments, among which the maintenance of life on
Earth since ≈3.5−4 Gyr, show us from experience that the Solar System,
though chaotic, is nevertheless confined.40 Let us apply here our new
method for tackling this problem: we shall see that it allows us to predict
the preferential positions of planets and leads to the suggestion that these
structures can arise from large time scale effects of dynamical chaos.



312 FRACTAL SPACE-TIME AND MICROPHYSICS

The impossibility of following individual orbits for t ~> 100 Myr
forces us to jump to a probabilistic description.  The planet position is now
characterized by a probability density ρ (which applies to potential orbits)
rather than by well-defined variables. Once the chaos developed, the various
future or past potential trajectories evolve following a diffusion process,
characterized by some diffusion coefficient D. We describe this diffusion by
a Markov-Wiener process ξ(t) (i.e. the dξ(t) are Gaussian with mean zero,
mutually independent and such that <(dξ)2> = 2Ddt) as in the formalism
of Sec. 5.6. Let us recall once more the main steps of the demonstration.

Mean forward and backward derivatives41, d+/dt  and d-/dt, are
introduced which, once applied to the position vector x,  yield forward and
backward mean velocities,   d+

dt  x(t)  = b+ and   
d-
dt  x(t)  = b-. This describes

the fact that, at the time scales considered, the trajectories are broken at any
of their points (i.e. fractal). From these quantities we introduce a complex
velocity

V  =   V −  i  U   =     
b+ + b-

2     −  i      
b+ − b-

2

and a complex derivative operator

 
d
dt   =   

dv
dt   −  i    

du
dt   =     

1
2  ( 

d+ + d-
dt    −  i    

d+ − d-
dt  )

which is given by

  
d
dt   =    (   

∂
∂t   −  i  D  ∆  )    +   V  . ∇∇∇∇                            .

The real part V of V is identified with the classical velocity in the
differentiable case, while its imaginary part U is non-zero only in the non-
differentiable case. Now, since we deal with a Markov process, the
probability density verifies the forward and backward Fokker-Planck
equations, from which the equation of continuity and the following
expression for U may be derived:41

U  =  D  ∇∇∇∇ lnρ  .
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We conjecture that Newton's equation of dynamics still holds in terms
of our new complex variables

F  =  m   
d
dt  V .

As seen in Sec 5.6, the action principle may also be re-expressed in terms of
complex variables: this leads to the above form of Newton's equation and to
the result that V is also a gradient. We thus introduce a new quantity S such
that V = 2 D ∇∇∇∇S and define a complex function ψ  which is related to our
complex velocity :

ψ   =   √ρ   eiS    ⇒     V   =  − 2 i  D  ∇∇∇∇ (lnψ) .

When the force F derives from a potential,  F  =  −∇∇∇∇ U, as is the case for
gravitation, the equation of motion writes

 ∇∇∇∇ U  =  2 i  D m   
d
dt  (∇∇∇∇ lnψ ) .

Replacing the complex derivative operator by its expression finally gives

D2 ∆ψ  +  i  D   
∂
∂t ψ    −   

U
2m ψ  =  0 (7.2.1a)

up to an arbitrary phase factor. Take D=h
_
/2m , and this becomes

Schrödinger's equation, as shown in Sec. 5.6. The hereabove system is a
reexpression of stochastic quantum mechanics,41  but also a generalization:
assume that one has been able to characterize some chaotic system for large
time scale by a constant diffusion coefficient D, then (7.2.1) is a quasi-
quantum equation for such a system, which is expected to yield structures
(i.e., peaks of probability) once the boundary conditions are prescribed.

Let us apply this method to the Solar System. Consider a planet
(more generally a test particle) in the field of the Sun, U=−GmM/r,  and in
the collective field of an ensemble of planets (more generally of particles),
and assume that this system is chaotic. Our conjecture is that the effect of
chaos on large time scales can be summarized by a Brownian motion



314 FRACTAL SPACE-TIME AND MICROPHYSICS

process of diffusion coefficient D. Assume moreover that we deal with a
stationary motion with conservative energy E ≡ 2 i  D m ∂/∂t  (the time-
independent  Schrödinger equation may also be obtained directly by setting
V=0, see Nelson41). Equation (7.2.1a) becomes

D ∆ψ  +  [ 
E

2 m D 
  +  

G M

2 D r
   ] ψ   =  0. (7.2.1b)1

The equivalence principle suggests that D must be independent of m. This
equation is similar to the Schrödinger equation for the hydrogen atom,42,43

up to the substitutions  h
_
/2m → D, e2 → GmM,  so that the natural unit of

length (which corresponds to the Bohr radius) is

ao  =      
4 D2

G M      . (7.2.2)

We thus find that the energies E of planets are given by2

En  =    − 
G2 m M2

8 D2 n2
   ,   n =  1, 2, 3, ...  ,

and that the density of probability of their distances to the Sun are confined
to well defined regions given by the square of the well-known radial wave
function42,43 of the hydrogen atom (see Sec. 4.1). We also expect angular
momenta to scale as L = 2mDl, with l = 0, 1, ..., n−1. This means that,
unlike the case of quantum mechanics, E/m and L/m are quantized rather
than E and L. The average distance to the Sun and the eccentricity e  are
given in terms of the two quantum numbers n  and l by the following
relations:

anl  =  { 
3
2  n2   −   

1
2    l  (l  + 1) } ao , (7.2.3)

1 A misprint in the published version has been corrected (the denominator 2 m D was lacking under the

energy term) and an equation number has been added.
2 A misprint in the published version has been corrected (G2 instead of G).
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e2  =  1 −      
l  (l  + 1)
n (n − 1)  . (7.2.4)3

In order to compare these results with the actual Solar System, one
must first note that the inner (Mercury to Mars) and outer (Jupiter to
Neptune and/or Pluto) planetary systems are characterized by two different
inverse Lyapunov exponents, τint =5 Myr and a still unknown τext, perhaps
as high as 1 Gyr.44,45  That they must be treated as two different systems is
also suggested by many other arguments, such as their different chemical
compositions and  mass distributions.

Consider first the eccentricities. Even the largest eccentricities (Pluto,
e2=0.065; Mercury, e2=0.042) correspond to a good approximation to l =
n−1. This will be further discussed hereafter. We may then compare the
observed values of semi-major axes of the planets to our prediction
(Eq. 7.2.5), a = (n2+n/2)ao. This is only a one-parameter relation4 (the
slopes for the inner and outer systems are themselves related), since we
predict the ordinate at origin to be zero. This prediction is very well
verified for the two systems. We find Mercury, Venus, the Earth and Mars
to take respectively the ranks 3, 4, 5, and 6 in the inner system and Jupiter,
Saturne, Uranus, Neptune, and Pluto the ranks n = 2, 3, 4, 5, 6 in the outer
system. With these values, the regression lines are (in units of A.U.)

√aint  =  −0.015 + 0.199  √(n2+n/2) ,

√aext  =  −0.066 + 1.035  √(n2+n/2) ,

so aint(0) = 2 x 10−4 A.U. and aext(0) = 4 x 10−3 A.U., which are a fair
confirmation of our prediction. Assuming them to be strictly zero, we get

3 Subsequent works have proved this relation to be wrong. It was derived by using incorrectly a classical
expression for the eccentricity in which the quantum mechanical expression has been inserted. Actually
the states obtained in spherical coordinates are characterized by given values of E, L and Lz, so that the
eccentricity is undefined in this case. For obtaining a quantum theoretical prediction for the eccentricity,
one must use parabolic coordinates, which define states characterized by given values of E, Lz and Az,
where A is the Runge-Lenz vector. This is a conservative quantity which is specific of the Kepler
problem, whose modulus is precisely the eccentricity. By taking the axis z along the major axis, one
therefore derives a quantization formula for the eccentricity which reads e = k/n, where k<n is an integer
(See e.g. Da Rocha D. & Nottale L., 2003, Chaos Solitons and Fractals, 16, 565 (arXiv:astro-
ph/0310036) "Gravitational structure formation in scale relativity").

4 A misprint in the published version has been corrected (one-parameter instead of two-parameter).
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average slopes √ao int = 0.195 ± 0.0022  and √ao ext = 1.014 ± 0.016. Their
ratio is 5.2 ± 0.1. (Note that the value of the inner slope mainly reflects the
fact that the rank of the Earth is n = 5).

Two additional remarkable results are obtained: (i) the central peak
of the asteroid belt (2.7 A.U.) agrees remarkably well with n = 8 of the
inner system, and the main peak at  3.15 A.U. with n = 9; (ii) Mars' position
is also in very good agreement with n = 1 of the external system. Including
them yields improved slopes (√ao)int = 0.195 ± 0.0017  and (√ao)ext =
1.014 ± 0.012. These results are illustrated in Fig. 7.5.

Figure 7.5. Comparison of the observed average distances of planets to the Sun with
our prediction (see text). The lines shown are least-square regression lines. A1 and A2
stand for the two main peaks in the distribution of asteroids in the asteroid belt.5

5 Note the theroretical prediction, apparent in this figure, of the two probability peaks n = 1 (≈ 0.043
AU) and n = 2 (≈ 0.17 AU) in which no large planet lies in our own inner Solar System, but whose
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Note also the agreement of Pluto with the outer relation: this may
seem to be at variance with its particular orbit and the recent discovery that
its motion is chaotic with a Lyapunov 1/20 Myr;46 however it has been
argued that this chaos arises from resonances within resonances and that
this can limit the extent of Pluto's wandering.47 We shall see that indeed
Pluto is “anomalous” in terms of angular momentum, while our results
show that it is not so in terms of energy. In this respect, it is also noticeable
that Neptune and Pluto, both of which strongly disagreed with the three-
parameter Titius-Bode law, now both agree with our two-parameter
relation: moreover, as will be seen later, one may have the hope to see this
relation become a full totally constrained prediction, when the slopes are
precisely predicted from the Lyapunov exponents (or some other
characteristic of the chaotic dynamics).

The agreement between observations and predictions are tested in
two ways. We may compute (apred−aobs)/aobs for each planet. This is shown
in column 5 of Table 1. The only difference larger than ≈6% is Saturn
(12 %). The average relative difference is 3.4% in the inner system and
2.6% (Saturn excluded) or 4.3% (Saturn included) in the outer system.
These numbers are certainly indicative of the natural irreducible fluctuations
of the distance which are expected from our analysis: this is anyway a
remarkable confinement around the mean values, perhaps too good when
compared with the theoretical dispersion in the probability densities. At the
end of this section, we shall consider some improvements of the method
which could help us to understand such narrow fluctuations. If we take our
results at face value, the Earth would presently be in one of its closest
approach to the sun (4%).

Another test consists in checking the difference with the quantized
values n. Let us introduce δn  such that (n + δn)2 +(n +δn)/2 = aobs/ao. To
lowest order in δn  it is given by

δn   =    
aobs/ao   − n (n + 1/2)

2 (n + 1/4)      .

existence has been later supported  by the discovery of extrasolar planets (since 1995): more than 30
exoplanets have been found to lie in the (n = 1) peak (by the end of 2005).
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The values of δn  for the various planets are given in column 6 of Table 1.
 The statistical nature of our predictions is more clearly visible in this
indicator, which reaches 0.18 at the maximum difference.
__________________________________________________________

Planet n aobs (UA)   apred (AU) δa/a δn  e  δl
(1) (2) (3) (4) (5) (6) (7)  (8)

__________________________________________________________
Mercury 3 0.387 0.399 +0.031 −0.065 0.206 0.051
Venus 4 0.723 0.684 −0.054 +0.098 0.007 0.00008
Earth 5 1 1.045 +0.045 −0.139 0.017 0.0006
Mars 6 1.523 1.483 −0.026 +0.053 0.093 0.024
− 7    − 1.996       −       −     −      −
Aster.1 8 2.7 2.586 +0.043 +0.140     −      −
Aster.2 9 3.15 3.251 +0.030 −0.073     −      −

__________________________________________________________
Mars6 1 1.523 1.542 +0.012 −0.008 0.093 0.00000
Jupiter 2 5.20 5.14 −0.012 +0.013 0.048 0.0008
Saturn 3 9.57 10.79 +0.126 −0.183 0.054 0.0036
Uranus 4 19.28 18.51 −0.040 +0.088 0.051 0.0044
Neptune 5 30.14 28.27 −0.062 +0.173 0.005 0.00006
Pluto 6 39.88 40.09 +0.005 −0.017 0.256 0.178

__________________________________________________________

Table 1.

Let us now come back to angular momenta. From the now known
values of n  for the various planets, one may compute the difference with
the expected quantized number l. We set l = n −1+δl, and find from
Eq. (7.2.4) (to lowest order in δl )

δl  =   
n (n −1)

2n −1   e2    .

6 In further works, the n = 1 'orbital' of the outer Solar System has been better identified with the whole
inner system itself (see e.g. Nottale, L., Schumacher, G., Gay, J., 1997, Astron. Astrophys., 322, 1018,
http://wwwusr.obspm.fr/~nottale/arA&A322.pdf).
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The δl values are given in column 8 of Table 1. They are remarkably
small (some 1‰ or less), except in one case, Pluto, for which the difference
amounts to 0.18: indeed the orbit of Pluto is known to be partly determined
by its strong 3:2 resonance with Neptune. Concerning the asteroid belt,
there is a large spread of observed eccentricities from 0 to ≈0.4,  which may
be shown to arise from Jupiter's perturbation48 (more generally from the
four Jovian planets). For n = 8 (main asteroid belt), the second angular
momentum state is l = 6, which gives e = 0.5. There is indeed a population
of asteroids with eccentricities around this value.

Our method also sheds new light on one of the long standing
problems concerning the Solar System, namely that of the distribution of
angular momentum. Jupiter owns 62% of the angular momentum of the
Solar System and Saturn 25%. We have found that the angular momentum
over m is quantized, rather than the angular momentum itself. So the
distribution of angular momentum mainly reflects that of mass, hence
implying the domination of Jupiter and Saturn. (The origin of the
distribution of mass comes under the theories of formation of the solar
system, which are outside the scope of the present work7). In contrast, the
method in its present form does not allow us to understand the alignment of
angular momentum vectors (i.e. the nearly plane character of the Solar
System).

Concerning asteroids in the main belt, one may now reach a good
understanding of their distribution. First our approach brings new elements
for understanding the absence of a large planet there: the zone where the
belt lies, even though it corresponds to the maxima of probability density
for the inner system, also corresponds to a minimum in the outer system.
The region between Mars and Jupiter is where the two systems overlap (see
Fig. 7.5). While Mars, being in a probable zone in both systems, is expected
to have a remarkably stable orbit, (the mean predicted distance is 1.51 A.U.,
the observed distance 1.52 A.U.), this is not the case of the belt region, for
which the tendencies are opposite. Then most of the matter of the
primordial nebula situated between the n = 1 and n = 2 orbitals of the outer
system could have drifted towards what are now Mars and Jupiter: this may

7 We have reconsidered this conclusion in further works, see e.g. Nottale, L., Schumacher, G., Gay, J.,
1997, Astron. Astrophys., 322, 1018,  http://wwwusr.obspm.fr/~nottale/arA&A322.pdf.
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explain why the total mass of asteroids is far smaller than a planet mass.
However, peaks of probability  occur at n = 7, 8,  9 and 10 between Mars
and Jupiter, in terms of the inner system. Why are they not all filled? This is
due to the small time scale dynamical chaos48: the orbitals n = 7 and n = 10
coincide with the resonances 1:4 and 2:3 with Jupiter (see Fig. 3.4 of
Sec. 3.2). So one may hope to understand the existence and full distribution
of asteroids as a combination of the effect of large time scale chaos
(implying peaks of probability at 2.59 and 3.25 U.A8.) and of small time
scale chaos due to the resonant action of Jupiter resulting in the formation
of the Kirkwood gaps.48

All the above results have been obtained without specifying any
expression for the diffusion coefficients D of the inner and outer systems,
which were left as free parameters (and then fitted in Fig. 7.5). Is it possible
to get estimates for them, in particular to relate them to the calculated
Lyapunov exponents ?

 The problem is that the chaotic behaviour discovered by Laskar
concerns essentially the eccentricities and inclinations, while nothing is a
priori  known concerning the semi-major axes.  The distance at time t  of
two orbits initially separated by δxo  is x = δxo et/τ, where 1/τ is the
Lyapunov exponent which characterizes the chaotic behaviour.
Predictability of the planet position is completely lost when x ≈ a . However
this does not mean  that predictability of the mean distance a of the planet
to the sun is yet lost. Loss of information on the precise position is first
indicated by a loss of information on the angle (see e.g. the time evolution
of orbits in Ref. 44) This occurs when δxo et/τ≈ a. Beyond this point, the
divergence may begin to contribute to the loss of the information on the
average distance to the Sun. It is completely lost after some number k of
turns at a time T given by  δxo eT/τ ≈  2kπa.  If one assumes that the drift
on 1 radian remains of the order of δxo, one gets  2πk ≈ a/δxo and then  δxo

≈  a e−T/2τ. This very rough estimate, which corresponds to an inverse
Lyapunov exponent for semi-major axes (i.e., energy) twice that of other
orbital elements, should be considered as a lower limit only.

8 Misprint corrected: 3.25 AU instead of 4.25 AU in the published version.
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The diffusion coefficient is given by D = U/∇∇∇∇ lnρ. The probability of
presence for l = n−1 (corresponding to quasi circular states e2≈0 as
observed for planets in the solar system, see hereafter) writes

Pn (r)   =  
1

(2n)!    
8
n3    (

2r
nao

)2n−2
  e−2r/nao

 so that (∇∇∇∇ lnρ)-1 ≈ nao/2 ≈ a/2n, while U ≈ <δxo

2τ
 et/τ> ≈  

δxo
2T  eT/τ. Setting

R=a/δxo, we finally get a rough estimate for the diffusion coefficient:

D   ≈     
1
8n    

R
lnR    

a2

τ    .

From Eq. (7.2.2), it is also given by D = 12√(GMao). From Eq. (7.2.3), a =
(n2+n/2) ao for quasi-circular states (l = n−1). We may then estimate the
slope of the linear relation expected between √a  and √(n2 +n/2):

√ao    =     
1

<n>    ( 4τ  √(GM)    
lnR
R   )1/3

  . (7.2.5)

Using Kepler's third law (T2/a3 = cst) allows us to write this result in still
another form in terms of the planet period T:

 
τ
T     =   1

8π     
R

lnR      .

Let us finally attempt to compare our estimate of the slope (7.2.5)
with the observed one in the inner system, √ao = 0.195 (U.A.)1/2 =
7.5 105 cm1/2. Our estimate depends on the parameter R = a/δxo, then on
the value of the basic perturbation δxo. This does not correspond here to a
measurement uncertainty, but to the irreducible fluctuations of the positions
of the planets due to internal and/or external effects. The main effect comes
from the interaction with asteroids.45 It has been estimated that, in order to
keep a precision R−1 = 10−10, about 40 asteroids were to be included in the
motion equations, and several hundreds at 10−12 precision.45 The asteroid
trajectories being themselves chaotic, we may estimate the irreducible
perturbation to be such that R = 1010±1. With τint = 5 Myr and <n> = 4.5
for the inner solar system, Eq. (7.2.5)  yields
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√ao =    (5.3 −2.8
+6.1) x 105  cm1/2  ,

which is compatible with the observed value. The diffusion coefficient is
estimated to be D ≈ 1019±1 cm2.s-1, to be compared with Dobs = 

1
2 √(GM ao)

=  (4.34 ± 0.09) x 1018 cm2.s-1. But this result should not be taken too
seriously, because of all the uncertainties in its derivation. The large final
error on the theoretical estimate (7.2.5) still allows the inverse Lyapunov
exponent for semi-major axes to be 10 times its estimated minimal value,
namely 100 Myr.

Moreover, it is quite possible that our method applies essentially to an
earlier phase of the evolution of the Solar System, so that it would be
irrelevant to relate the diffusion coefficient in Eq. (7.2.1) to Lyapunov
exponents computed from the present state of the Solar System. The results
of numerical simulations by Hills37, Ovenden62 and Conway and Elsner63

seem to support this view: starting from random initial conditions of model
planetary systems, they find chaotic trajectories (the very irregular evolution
of semi-major axes seen in Figs. 1, 2, 4 of Ref. 63 fairly agrees with our
basic conjecture of fractality and non-differentiability), while systems placed
initially in conditions similar to that of the present Solar System were shown
to be very stable system, which maintained nearly circular orbits. Our
results suggest that, on very large time scales, a planetary system can pass
from the first type of system to the second one.

Anyway, the improvement of our approach needs a better
understanding of the relation61 between the Lyapunov exponents, which
describe the development of chaos, and the diffusion coefficients, which
hopefully describe, in our approach, what happens after the limit of classical
unpredictability. A promising method would consist in working with the
Kolmogorov-Sinai entropy, which is itself related to Lyapunov exponents,30

or with the algorithmic entropy recently introduced by Zurek.49 However
the Lyapunov exponent is presently calculated from numerical simulations,
while a completely self-consistent approach would imply obtaining it also
from the basic equations.  These problems are left to future works.

Before closing this section, let us add a last comment: as already
specified, even though our fundamental equation (7.2.1) is a quantum
mechanical-like equation, its interpretation must be different from that of
quantum mechanics. We know that the approximation of non-
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differentiability is no more valid on small time scales, for which one
recovers predictable and differentiable trajectories. So the (still open)
problem is to understand how to connect the small time scale behaviour to
the large time scale one, or in other words, how the probability densities
obtained at large time scales influences the motion observed at small time
scales.
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