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Abstract. We show in the present letter that the planetary
companions recently discovered around nearby stars agree with
the predictions made four years ago in the framework of the
theory of scale relativity (Nottale, 1993). In the simplest case, we
expect their periods to be "quantized" as Tn = 2πGMn3/w 0

3 ~–
3.25 (M/M ) n3 days. In this formula, which corresponds to the
peak of probability distribution of planet positions, M is the star
mass, and w 0  ~– 144 km/s is a universal constant having the
dimension of a velocity, which manifests itself from the Solar
System scale to the extragalactic scales (Tifft effect). In
particular, three planetary companions, including 51 Peg B, lie
at 0.05 AU from their star and so achieve the 'fundamental
level' of the theory for solar-type stars.
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1. Introduction

The theory of scale relativity is founded on the giving up of
the arbitrary hypothesis of the differentiability of space-time.
Let us briefly recall the main steps of its construction. A more
detailed account can be found in the book (Nottale, 1993) and
in the more recent review paper (Nottale, 1996a).
(i) We give up differentiability of space-time coordinates. This
implies their explicit dependence on resolutions. In a fractal
space-time, the various physical quantities, then the equations of
physics, become scale-dependent.
(ii) We re-interpret resolutions as essential variables that
characterize the relative state of scale of the reference system, in
the same way as velocities characterize its state of motion.
(iii) We extend Einstein's principles of relativity and of
covariance, in order to include the new scale transformations.
(iv) One can demonstrate that the scale laws to be constructed
must combine a standard fractal (power-law) behavior at small
and large scales, and a transition to scale-independence at
intermediate scales. In other words, space-time, that is
Riemannian at intermediate scales, becomes fractal for ∆x and ∆t
smaller and larger than some relative transition scales.
(v) In the fractal domains, scale-covariance transforms classical
mechanics into a quantum-like mechanics. We shall briefly
demonstrate this result again in what follows.

The aim of the present letter is to address some
observational consequences of the theory for gravitational
structures. We have already shown (Nottale, 1993) that it
accounts in a very constrained way for several structures
observed in the solar system, including planet distances, and we
have predicted that it must also apply to all extra-solar planetary
systems to be discovered in the future (Nottale, 1994). Such
systems have now been found and the theory can be checked
on them. It is the success of this test that we report here.

2. Theory

 The various physical effects of the nondifferentiable and
fractal nature of space-time in the minimal theory (see Nottale,
1992, 1993, 1996a for generalizations), namely, (i) infinity of
geodesics, (ii) breaking of the (dt  → –dt) reflection invariance,
(iii) new terms in differential equations of motion due to the
fractal behavior, can be reduced to the introduction of a
complex, scale-covariant time-derivative (Nottale, 1993, 1996a),

d
dt  =  

∂
∂t  +  V . ∇  − i  D  ∆ ,    (1)

where the mean velocity V = dx/dt  is now complex and D is a
parameter characterizing the new scale laws.

When we apply our scale-covariant derivative to classical
mechanics, it is transformed in a quantum-like mechanics.
Indeed, since the mean velocity is now complex, the same is true
of the Lagrange function, then of the generalized action S.
Setting ψ = eiS/2mD,  Newton's equation of dynamics becomes
m d V /dt = –∇Φ , which can be integrated in terms of a
generalized Schrödinger equation (Nottale, 1993),

D2 ∆ψ  +  i  D  
∂
∂t ψ   −  

Φ
2m ψ  =  0   . (2)

with ρ = ψψ†  giving the probability density of the particle,
since the imaginary part of Eq. 2 is the equation of continuity.

One of the consequences of the scale-relativistic approach is
that space-time, which is fractal at small scales, must become
fractal again at large scales. However, the interpretations of the
small and large scale laws are very different. In the
microphysical domain, nondifferentiability is unbroken toward
the small scales.  This allows the theory to be strictly equivalent
to quantum mechanics. At large scales, the situation is reversed.



Classical mechanics is recovered toward small scales, and Eq. 2
applies only to systems such that <v> = 0. This allows the de
Broglie length 2D /<v> to be infinite, so that no new transition
occurs toward the largest scales.

How can a small time-scale classical description be
reconciled with the large time-scale non-deterministic one ? The
answer is related to the concept of chaos. The evolution of
chaotic systems is highly dependent on initial conditions (e.g.,
an exponential divergence, δx = δx0 et/τ, where 1/τ is the
Lyapunov exponent). On time-scales >~ 20τ, the amplification of
microscopic fluctuations is so high that any predictability of
individual trajectories is definitively lost.  Now, we have shown
(Nottale, 1993, 1994) that the description of the trajectories of a
strongly chaotic system beyond its horizon of predictability is
similar to that of the geodesics of a nondifferentiable, fractal
space-time.  We have then suggested that, on very large time-
scales, chaotic systems must be described by the new above
theory. The transition from the classical theory at intermediate
time-scales to the quantum-like theory at large time-scales then
corresponds to the development of a chaotic behavior, the new
theory applying only beyond the horizon of predictability.

We have first applied this new approach to gravitational
systems (Nottale, 1993). The study of the general problem (see
Nottale, 1996a) is a vast task that we shall not consider in the
present letter. We specialize our study to the Kepler two-body
problem. We assume that the potential φ = GmM/r dominates,
and look for stationary solutions. In this case, Eq. 2 becomes:

2 D2 ∆ψ  +  [ 
E
m  +  

GM
r    ] ψ   =  0    . (3)

One of the main differences of our macroscopic theory
compared with standard, microphysical quantum mechanics, lies
in the physical meaning of the parameter D . In the
microphysical situation, it is totally constrained and related to
the Planck constant h (Nottale, 1993, 1996a). In the
gravitational case, the equivalence principle implies that it must
be independent of the test particle mass m and proportional to
the active gravitational mass M (Nottale, 1996a,b). Therefore we
write D = GM/2w , where w has the dimension of a velocity.
Solving now Eq. 3, we find that the probability for the particle
to orbit at a given distance r from the central body is given by
functions similar to the hydrogen atom orbitals, i.e. Pn(r) ∝
r2ne–2r/na for circular orbits, with a = GM/w 2. The peaks of
probability lie at distances an(peak) = GMn2/w2, and the mean at
an(mean) = GM(n2+n/2)/w 2. From Kepler's third law, the
velocity of a particle orbiting at peak is:

 vn    =   
w
n   . (4)

Our interpretation of this result is that the gravitational
system will have a tendency to make structures according to the
above distribution. Now a more detailed prediction depends on
the system considered. For a distribution of planetesimals (as
during the formation of planetary systems) or of asteroids, we
expect the bodies to fill the orbitals (this is well verified in the
asteroid belt of our Solar System, Hermann & Nottale, 1996).
For a planet, two possibilities can be considered. (i) The system
evolved from the planetesimal stage to the planet stage with
negligible external perturbations. In this case, the conservation

of energy implies that the planet must lie at distance an(mean).
(ii) The planet motion cannot be reduced to a two-body
gravitational problem, due to various perturbations (other
planets, collisions, capture...). In this case we can consider the
probability density Pn(r) to act on short time-scale motion as a
potential well, so we expect the planet to "fall" at distance
an(peak).

An important feature of our equations is that they naturally
make a hierarchy of structures (Nottale, 1994, 1996a). Let us
summarize the argument. Consider a system of test-particles
(e.g., planetesimals) in the dominant potential of the Sun. Their
evolution on large time-scales is governed by Eq. 2, in terms of
a constant w j. The particles then form a disk whose density
distribution is given in the inner region by P 1i(r). This
distribution can then be fragmented in sub-structures still
satisfying Eq. 2 (since the central potential remains dominant),
but with a different constant wj+1. We can iterate the reasoning
on several hierarchy levels. The matching condition between the
orbitals implies wj+1 = k j w j, with k j integer. Our own Solar
System is organized following such a hierarchy on at least 3
levels, from the Sun's radius to the outer planets (see below).

Before jumping to a comparison of observational data with
our predictions, let us make a last step in the physical
interpretation of the characteristic velocity w . As recalled
hereabove, our equations can have two different physical
interpretations. They can first be obtained in the framework of a
theory of strongly chaotic systems beyond their horizon of
predictability (this was our interpretation in Nottale, 1993,
1994). In this case, the theory is only approximate and the
predictions depend on the specific environment of each system
considered. The second, more radical interpretation, is that the
geometry of space-time becomes fractal at large time-scales. In
this case, the theory must apply even to classically non-chaotic
systems, such as the unperturbed two-body problem, and it
implies a universal, fundamental constant w0 that characterizes
the fractal geometry, and whose value is independent of the
system considered.

3. Results

We report in the present Letter the success of our
predictions, including this last, radical, one. We have already
shown that our theory accounted for the observed distributions
of position, eccentricity, angular momentum (Nottale, 1993,
1994, 1995) and mass (Nottale, 1994; Nottale et al., 1996) of
planets in the Solar System. The same is true for the satellites of
giant planets and for asteroids and comets (Hermann & Nottale,
1996). Since Titius and Bode, several empirical laws have been
suggested for the planet and satellite distances, most of the time
of a scale-invariant form (see Graner and Dubrulle, 1994). The
advantage of our proposal is that it is totally constrained. This
allows us to make new predictions, as e.g. the possibility of two
new intramercurial small planets (Nottale et al., 1996).

The motion of isolated binary galaxies also comes under
the two-body problem. This allowed us (Nottale, 1996a) to
explain the effect discovered by Tifft (1977a), according to
which the velocity differences in galaxy pairs are quantized in
terms of ≈72 or ≈144 km/s. Moreover, we find by inserting in



Eq. 2 the potential of a uniform density that matter in the
universe must structure locally, without any initial fluctuations,
according to the various modes of the isotropic 3-dimensional
harmonic oscillator, i.e., to the symmetries described by the
SU(3) group (Nottale, 1996a,c). This result yields a new general
framework for structure formation (Nottale, 1996c), and
contributes to explain the Tifft (1978) effect of "global" redshift
quantization (in ≈36 km/s) of galaxy redshifts, recently
confirmed by Guthrie & Napier (1996). A re-analysis of their
sample in the framework of our theory yields w0 = 144.7 ± 2.2
km/s (Nottale, 1996c). The same explanation applies to the
velocity structures observed in M 82 and in our galaxy (that
yield w0 = 144.8 ± 0.7 km/s, from Tifft's (1977b) data, since
their potential can be taken as that of a uniform density as a first
local approximation.

Let us now come to our new predictions. The various
"quantizations" effects recalled above can all be expressed in
terms of "Tifft's constant", w0 ≈ 144 km/s. Our theory predicts
that our own Solar System, as well as extra-solar planetary
systems, must be structured in terms of the same constant.

Star/planet Star mass Period (yr) 1/2maj. axis v (km/s) 144 / v n        δn n v  (km/s)

Sun/Mercury 1 0.24085 0.387 47.87 3.01 3   +0.01 143.6

Sun/Venus 1 0.61521 0.723 35.06 4.11 4   +0.11 140.2

Sun/Earth 1 1.00004 1.000 29.81 4.83 5   –0.17 149.0

Sun/Mars 1 1.88089 1.524 24.14 5.96 6   –0.04 144.8

Sun/Ceres 1 4.61 2.77 17.92 8.04 8   +0.04 143.4

Sun/Cybeles 1 6.35 3.43 16.09 8.95 9   –0.05 144.8

51 Peg B 1.10 0.01158 (1) 0.053 137 1.05 1   +0.05 137

47 UMa B 1.05 3.020     (2) 2.12 20.9 6.90 7   –0.10 146

70 Vir B 1.12 0.3195   (3) 0.485 45.3 3.18 3   +0.18 136

HD114762 B 1.0 0.230     (4) 0.376 48.65 2.96 3   –0.04 146

Prox Cen B 0.11 0.211     (5) 0.170 24.0 6.00 6   +0.00 144

55 Cnc B 0.8 0.04041 (6) 0.11 81.6 1.79 2   –0.21 163

τ Boo B 1.2 0.00907 (6) 0.046 152 0.95 1   –0.05 152

υ And B 1.2 0.0126   (6) 0.058 136 1.06 1   +0.06 136

Table 1. Inner solar system planets compared to extra-solar planetary
companion candidates (see text). The semi-major axes are given in AU.
The star masses are in M  unit and result from averages of
photometric and spectroscopic studies. The new mass 1.12 M  for 70
Vir comes from its new Hipparcos distance (Perryman et al., 1996). The
planet candidate around Proxima Centauri comes from the observation
of a 77 day periodicity in position residuals with the HST Fine
Guidance Sensor (Ref. 5). The Prox Cen mass derives from the analysis
of Kirkpatrick and McCarthy (1994). References for periods: (1) Mayor,
Queloz, 1995; (2) Butler, Marcy, 1996; (3) Marcy, Butler, 1996a; (4)
Latham et al., 1989; (5) Benedict et al., 1995; (6) Butler et al., 1996.

(i) Solar System. The Solar System is structured according to
the hierarchical law described above. As can be seen in Table 1
and Fig. 2, the velocities of planets in the inner Solar System,
including the mass peaks of the asteroid belt, are given by vn2 

=
w0 / n2, with w 0 = 144.3 ± 1.2 km/s. The whole inner system
achieves the fundamental orbital of the outer system, whose
peak is the Earth (n2 = 5). We then expect the outer system,
including the Earth at n1 = 1, to have velocities given by vn1 

=
w0/5n1. We find w0 = 140 ± 3 km/s. The 'mean' formula gives a
better fit for the outer system, as expected for the dominant

planets. When accounting for its second order terms, we obtain
w0 = 144.8 ± 2.6 km/s. The radius of the Sun itself corresponds
to a new sub-structure: the Kepler velocity at this distance is
436.8 = 3 x 145.6 km/s. We confirm this result on other stars
(Nottale & Lefèvre, 1996). It is clearly related to the Tifft
(1977b) 72.5 km/s quantization effect on the v sin i 's of B stars.

(ii) Planetary system around PSR B1257+12.  We have recently
shown that the system of 3 planets observed around the pulsar
PSR B1257+12 (Wolszczan, 1994) does follow our 'mean' law,
Tn = 2πGM w–3n3 (1 + 2/n)3/2, with such a precision that second
order terms can be checked (Nottale, 1996b and Fig. 1).
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Figure 1. Comparison of our prediction, an = a0 (n2+n/2), with the
observed semi-major axes for the planetary companions to the pulsar
PSR B1257+12 (Wolszczan, 1994). The agreement is far better than the
resolution of the diagram. The probability to obtain such an alignment
by chance is < 10–5. We have included three insets enlarged by a factor
of ≈50 to show the small residual differences.

 The planets rank n  = 5, 7 and 8, having periods T A =
0.06939(4) yrs, TB = 0.1821696(9) yrs and TC = 0.268925(2)
yrs. This yields (TC/TB)1/3 = 1.1386, to be compared to
(68/52.5)1/2 = 1.1381 and 8/7 = 1.1428, and (TC/TA)1/3 =
1.5707 while (68/27.5)1/2 = 1.5725 and 8/5 = 1.6. The
agreement with the lowest order formula is already very good
(relative errors –0.004 and –0.018), but it  becomes still 10
times better keeping the second order terms (+0.0005 and
–0.0011). Taking MPSR = 1.4 ± 0.1 M , we find w  = 426 ± 10
km/s = 3 x (142 ± 3.3) km/s, which is the above Sun radius
value. Conversely, using our determination w0 = 144.7 ± 0.6
km/s (see below), we derive a pulsar mass of MPSR = 1.48 ±
0.02 M . We can predict with high precision the periods of
possible additional planets, e.g., T6 = 42.62 days, T4 = 13.38
days and T9  = 138.5 days.

(iii) Extra-Solar planets around solar-type stars. Mercury does
not rank n = 1 in the inner solar system, but n = 3. This means
that, in addition to the preferential values 0.39, 0.69, 1.05, 1.5
AU of semi-major axes (that agree with Mercury, Venus, Earth
and Mars, see Table 1 and Fig. 2), we also expect two orbitals
closer than Mercury to a solar-type star, at 0.18 AU (n = 2) and
0.05 AU (n = 1) (Nottale, 1993a,b; Nottale et al., 1996). It is
then quite remarkable that the first extra-solar planet discovered
around a solar-type star, 51 Peg (Mayor & Queloz, 1995) lies



precisely at 0.05 AU from its star, i.e., at the 'fundamental' level
of our quantization law. Two more recent candidates, τ Boo B
and υ And B (Butler et al., 1996), which also fall around 0.05
AU, confirm this result  (Table 1 and Fig. 2).
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As can be seen in Table 1 and Fig. 2, the other recently
discovered planets, around HD 114762 (Latham et al., 1989),
47 UMa (Butler & Marcy, 1996), 70 Vir (Marcy & Butler,
1996a), 55 Cnc (Butler et al., 1996), and Proxima Cen
(Benedict et al, 1995), also agree with our prediction. The 8
new planets yield w0 = 143.9 ± 3.1 km/s. When combined with
the inner Solar System planets, we find w0 = 144.1 ± 1.8 km/s.
Moreover, one can demonstrate in a highly significant way that
this law is a genuine quantization law, not only an average one.
This can be seen from the values of δn (difference between the
value of 144/v and its closest integer, see Table 1 and Fig. 3): the
probability for δn  to be drawn from a uniform distribution is P
≈ 2 10-5 from a χ2 test (χ2 = 39 with 10 degrees of freedom),
and P << 10-4 from a Kolmogorov-Smirnov test.

4. Conclusion

It is noticeable that, at the time of the submission of this
letter for publication, the assumed mass of 70 Vir (0.92 M )
made it disagree with our law. We concluded in the first version
of this paper that 70 Vir was at least 2 times more distant from
the Sun than believed. This prediction has been meanwhile
confirmed in a remarkable way by Hipparcos data (Perryman et
al., 1996). In addition, three new planets around the stars 55

Cnc, τ  Boo and υ  And have also been discovered in the
meantime, and have brought a new independent confirmation of
our predictions (see Fig. 2). A theoretical prediction of the
periods of other possible planets is now straightforward.

As stressed hereabove, a crucial test of the theory is to
verify that it applies to pure two-body systems. We have shown
hereabove that it does for isolated binary galaxies and for single
planets such as (presumably) the 51 Peg system. Similar results
are obtained for double stars. For example, the average velocity
of eclipsing binaries in the Brancewicz catalog is 289.4 ± 3.0 =
2 x (144.7 ± 1.5) km/s, and the distribution of velocities of
binary systems including a pulsar shows a periodicity of (145.8
± 3.0) ÷ 3 km/s (Nottale, Lefèvre & Schumacher, 1996).

We have mainly considered velocity structures in the
present short letter, but clearly our theory predicts also
structures in position, angular momentum, obliquities,
inclinations..., and provides us with a new general framework
to study the formation and evolution of gravitational structures
(Nottale, 1996c). Let us conclude by remarking that the various
redshift quantization effects are explained here in terms of
normal, Doppler velocities (only their probability distribution is
changed with respect to the standard theory). This is confirmed
by our discovery that the same effect occurs in our own Solar
System, in terms of the directly observable motion of planets.
The universal status of the Tifft constant (which we find equal to
w0 = 144.7 ± 0.55 km/s from an average of the various
determinations quoted above) is corroborated by the fact that it
acts on at least 16 decades, from the Sun scale to hundred Mpcs.
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