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Nouvelle formulation de la mécanique stochastique
Application au chaos

résumé

Nous développons une nouvelle méthode pour aborder le problème de
l’émergence de structures telle qu'on peut l'observer dans des systèmes fortement
chaotiques. Cette méthode s’applique précisément quand les autres méthodes échouent
(au delà de l’horizon de prédictibilité), c’est à dire sur les très grandes échelles de
temps. Elle consiste à remplacer la description habituelle (en terme de trajectoires
classiques déterminées) par une description stochastique, approchée, en terme de
familles de chemins non différentiables. Nous obtenons ainsi des équations du type de
celles de la mécanique quantique (équation de Schrödinger généralisée) dont les
solutions impliquent une structuration spatiale décrite par des pics de densité de
probabilité. Après avoir rappelé notre formalisme de base, qui repose sur un double
processus de Wiener à coefficient de diffusion constant (ce qui correspond à des
trajectoires de dimension fractale 2), nous le généralisons à des dimensions fractales
différentes puis à un coefficient de diffusion dépendant des coordonnées mais
lentement variable. Nous appliquons finalement cette méthode au problème de la
compréhension des différentes structures observées dans le système solaire, telles que
la distribution des excentricités, des positions relatives des planètes, de leur masse et du
moment angulaire.

Abstract– We develop a new method for tackling the problem of the observed emergence of

structures in strongly chaotic systems. The method is applicable precisely when other methods fail,

i.e. at very large time-scales. It consists in replacing the usual description using well-defined classical

trajectories by a stochastic, approximate description in terms of families of non-differentiable paths.

We get quasi-quantum equations that yield spatial structures described by peaks of probability

density. After having recalled our basic formalism, which relies on a twin Wiener process with a

constant diffusion coefficient (i.e. fractal dimension 2), we generalize it to different fractal

dimensions and to the case of a slowly variable diffusion coefficient. We finally apply our method to

the problem of understanding various observed structures of the solar system, such as the distribution

of eccentricities, planet positions, mass and angular momentum.
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1.  INTRODUCTION

One of the main open problems of today's physics is that of the nature of
fundamental scales and of understanding scale-dependent phenomena. We have
suggested (Nottale, 1989, 1992, 1993a) that the failure of present physics when
dealing with such questions comes from the lack of a definite frame of thought in
which they could be properly asked. Our proposal is then to construct such a
framework  by generalizing Einstein's principle of relativity to the case of scale
transformations. Namely, we redefine space and time resolutions as essential variables
that characterize the state of scale of reference systems (in analogy with velocity
characterizing their state of motion); then we require that the laws of physics apply to
all reference systems whatever their state (of motion, which yields standard relativity,
but also of scale). This principle is mathematically translated into the requirement of
scale covariance of the equations of physics under scale transformations (i.e.,
contractions and dilations of resolutions). Here, covariance is taken in Einstein's
meaning, as analysed by Weinberg (1972): the equations of physics must keep not
only the same form whatever the coordinate system, but above all must keep their
simplest form, even in very complicated reference frames.

Now, present physics is founded on the hypothesis that space-time is continuous
and differentiable. Hence Einstein’s equations of general relativity are the most general
simplest equations which are covariant under continuous and at least two times
differentiable transformations of the coordinate system (Einstein, 1916). But no
experiment nor fundamental principle proves in a definitive way the hypothesis of
differentiability of space-time coordinates. On the contrary, Feynman’s path integral
approach to quantum mechanics (Feynman and Hibbs, 1965) allowed him to
demonstrate the opposite:  when going to small length- and time-scales, the typical
paths of quantum particles are continuous and nondifferentiable, and can be
characterized by  a fractal dimension D = 2.

If nondifferentiability is indeed a universal property of microphysical phenomena
at the quantum level, it is also often encountered, though in a more local way, in
chaotic phenomena: it is well known that strange attractors show fractal properties
(see e.g. Lichtenberg & Lieberman, 1983; Eckmann &  Ruelle, 1985) while fractals
are themselves, when pushed to their limit, characterized by their nondifferentiability
(Mandelbrot, 1982).

Hence it appears that there is a double need to generalize today's physical
equations: first to scale laws, second to nondifferentiable phenomena.  What is the
relation between these two approaches? The answer is given by a theorem due to
Lebesgue (see Tricot, 1994): a continuous curve of finite length is nearly everywhere
differentiable. This implies another theorem, a direct demonstration of which is given
in (Nottale, 1993a) using Non-Standard Analysis methods: a continuous but almost
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nowhere differentiable curve has an infinite length. In other words, the length of a
continuous and nowhere differentiable curve is explicitly dependent on the resolution ε
at which it is considered  [l = l(ε)], and, further, is divergent [i.e., l(ε) → ∞ when
ε  → 0]. Such a curve is then a fractal curve, in a general acceptance of this concept.
This theorem is easily generalizable to any dimension.

 Although the preferential domain of application of such methods is
microphysics (Nottale and Schneider, 1984; Nottale, 1989, 1993a), we have
nevertheless suggested that they can also be applied, as approximations, to developed
chaos when observed at very large time scales (Nottale, 1993a,b). Chaos (often defined
as extreme sensibility to variation of initial conditions) is relevant in a huge variety of
natural systems. Although various methods of analysis have been coined to describe
the development of chaos (strange attractors, fractal and information dimensions,
entropy, characteristic exponents, catastrophe theory...), all of them have up to now
struck against the unpassable barrier of unpredictability at large time scales. However,
in many systems where chaos arises, spatial and temporal structures are observed
experimentally; such structures are in some few cases found or confirmed in numerical
simulations, but very rarely understood or predicted from a fundamental theory.

The method we suggest for tackling this problem is efficient precisely when
other methods fail, i.e., on time-scales large compared to the “chaos time” (or inverse
Lyapunov exponent τ). We will see that it naturally generates spatial structures, in
terms of probability densities. In the present report, we shall first restate and perfect (in
Section 2) the stochastic method which was described in (Nottale, 1993 a & b), then
suggest some possible generalizations (Section 3). Our approach will be exemplified by
its application to the problem of understanding the various observed structures in the
Solar System, such as the distribution of planets, of eccentricities, mass, and angular
momentum (Section 4).

2.   BASIC FORMALISM

We assume the system under consideration to be strongly chaotic, i.e. that the
gap between any couple of trajectories diverges exponentially in time, as δx  = δx0 e

t/τ,

where  1/τ   is the Lyapunov exponent. As schematized in Fig. 1,  the relative motion
of one trajectory with respect to another one, when looked at with a very long time
resolution (i.e., ∆t >> τ: right diagram in Fig. 1), becomes non-differentiable at the
origin, with different backward and forward slopes, and looks like trajectories arising
from a diffusion process or from particle collision. If we now start from a continuum
of different values of δx0, the breaking point occurs anywhere, and the various
trajectories become describable by non-differentiable, fractal paths. However one must
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always keep in mind the fact that this is, strictly, a large time-scale approximation,
since when going back to ∆t  ≈ τ (left diagram in Fig. 1), differentiability is recovered.

Figure 1.  Schematic representation of the relative evolution in space of two initially nearby

chaotic trajectories seen at three different time scales (from Nottale, 1993a).

Then the first step of our approach consists in giving up the concept of well-
defined trajectory at large time scales, and in introducing families of virtual
trajectories (Nottale, 1989, 1993a). The real trajectory is one random realization
among the infinite number of trajectories of the family. Such families are now
characterized by a probability density ρ.

In order to describe them, we assume, once the chaos developed, that the virtual
trajectories evolve following a diffusion process, characterized by some diffusion
coefficient D. Such a diffusion can be described by a Markov-Wiener process ξ(t), as
used in Einstein's theory of Brownian motion.

However such a process is fundamentally irreversible, while our main concern
here is hamiltonian, non dissipative systems, the equations of which are fundamentally
reversible. As we shall see in Section 4, our first domain of application of this method
is the study of the final epoch of the Solar System formation, when the interactions
between planetesimals were only of purely gravitational origin. This means that the
reversed process (t  → –t) must be equally valid for the description of their temporal
evolution. We are then led to introduce, following Nelson (1966, 1985), a twin Wiener
(backward and forward) process. Reversibility is recovered from the mixing of the two
processes.

Namely, the position vector x(t) is assimilated to a stochastic process which
satisfies the following relations (respectively for the forward (dt  > 0) and backward
(dt <  0) process)

dx(t)  =  b+[x(t)] dt  + dξξξξ+(t)   =    b−[x(t)] dt  + dξξξξ–(t) . (1)
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In other words, the infinitesimal displacement dx is described for both processes
as the sum of a mean, <dx> = b dt , and a fluctuation about this mean, dξξξξ, which is
then by definition of zero average: <dξξξξ±> = 0.

Consider first  the average displacements. As remarked by Nelson (1966, 1985),
nondifferentiability implies that the average backward and forward velocities are in
general different. So he defines mean forward and backward derivatives,  d+/dt  and
d−/dt,

d±
dt  y(t)  =   lim∆t→0± < y(t+∆t ) − y(t)

∆t  > , (2)

which, once applied to the position vector x, yield forward and backward mean

velocities,   
d+
dt  x(t)  = b+ and   

d−
dt  x(t)  = b−.

Consider now the fluctuations dξξξξ±. If we start from a general fractal behavior,
i.e. assume that x(t) is a fractal function, then the general relation between dξi  and dt
is (see Fig. 2):

dξi 
D  ≈  dt . (3)

We shall first specialize our discussion to the particular case D = 2, which corresponds
to standard Brownian motion. In the next section, we shall suggest methods to deal
with the more general case D ≠ 2.

Figure 2.  Relation between differential elements on a fractal function. While the average,

“classical” <dx> is of the same order as the abscissa differential dt,  the fluctuation is far larger and

depends on the fractal dimension D as: dξ ≈ dt1/D.
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In the case of trajectories of fractal dimension 2, the dξξξξ(t)’s correspond to a
standard Wiener process, since we can describe them as Gaussian, with mean zero,
mutually independent and such that (3) becomes

< dξ±i  dξ±j > = ± 2 D δij  dt , (4)

 D standing for a “diffusion coefficient”.
The non-differentiability and scale divergence of this process is straighforward

from the computation of the velocity. Using standard methods, it does not exist, being
formally infinite: v ≈ dξ/dt  ∝ dt-1/2 → ∞ when dt → 0. This problem is solved by our
method which consists in describing physical quantities in terms of explicitly scale
dependent functions (Nottale, 1993a, 1994): here for the velocity v = v(t, δt). Then a
fractal velocity writes in general:

v(t, δt)  =  v0(t ) [ 1 + ( 
τ0

δt )
1–(1/D)

 ] , (5)

in which we recognize both the average and fluctuation terms.
While in every present formulations of Nelson’s stochastic mechanics, one

writes two systems of equations for the forward and backward processes (or for
combinations of them) and eventually combine them in the end into a complex
equation, we have suggested (Nottale, 1993a, 1994) to work from the beginning in
terms of complex quantities. So we combine the forward and backward derivatives of
Eq. (2) in terms of a complex derivative operator

 
d
dt  =  

(d+ + d−) − i (d+ − d−)
2dt   , (6)

which, when applied to the position vector, yields a complex velocity

VVVV   =  
d
dt x(t)  = V − i  U   =    

b+ + b–
2    −  i    

b+ − b–
2    . (7)

The real part V of the complex velocity VVVV generalizes the classical velocity, while its
imaginary part, U, is a new quantity arising from non-differentiability.

Equation (4) now allows us to get a general expression for the complex time
derivative d/dt. Consider a function f(x,t), and expand its total differential to second
order. We get

d f   =   
∂f
∂t  dt  + ∇∇∇∇ f . dx   +  

1
2  

∂2f
∂xi ∂xj

  dxi  dxj    . (8)

We may now compute the forward and backward derivatives of f. In this procedure,
the mean value of <dxi  dxj > reduces to <dξ±i  dξ±j>, so that the last term of Eq. (8)
amounts to a Laplacian thanks to Eq. (4). We obtain
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d±f /dt  =  (∂/∂t  + b± . ∇∇∇∇  ±  D ∆  ) f  , (9)

so that we can finally give the expression for the complex time derivative operator
(Nottale, 1993a):

d
dt   =   

∂
∂t   + VVVV  . ∇∇∇∇         −  i  D  ∆     .      (10)

We shall now postulate that the passage from classical (differentiable) mechanics
to the new nondifferentiable mechanics that is considered here can be implemented by
a unique prescription:  Replace the standard time derivative d/dt  by the new complex
operator d/dt. In other words, this means that  d/dt. will play the role of a scale-
covariant derivative. This is our main tool for implementing our initial requirement of
scale-covariance, at least at this level of the analysis. From Eq. (10), a partial covariant
derivative can be built:

∇∇∇∇
~

    =  ∇∇∇∇    – i  D   
VVVV
VVVV2

  ∆   . (11)

Let us now give the main steps by which one may generalize classical mechanics using
this scale-covariance. We assume that any mechanical system can be characterized by
a Lagrange function L(x, VVVV, t), from which an average stochastic action S is defined:

S  =  ∫
t1

t2

 L(x, VVVV, t) dt . (12)

Our Lagrange function and action are a priori complex and are obtained from the
classical Lagrange function L(x, dx/dt, t) and classical action S precisely from applying
the above prescription d/dt → d/dt. The stationary-action principle, applied on this
new action with both ends of the above integral fixed, leads to generalized Euler-
Lagrange equations (Nottale, 1993a)

d
dt  

∂L
∂Vi

   =   
∂L
∂xi

  , (13)

which are exactly the equations one would have obtained from applying the scale-
covariant derivative (d/dt →  d/dt) to the classical Euler-Lagrange equations
themselves: this result demonstrates the self-consistency of the approach and vindicates
the use of complex numbers. Other fundamental results of classical mechanics are also
generalized in the same way. In particular, assuming homogeneity of space in the
mean leads to defining a generalized complex momentum given by



9

P  =   
∂L
∂V

  . (14)

If one now considers the action as a functional of the upper limit of integration in Eq.
(12), the variation of the action from a trajectory to another nearby  trajectory, when
combined with Eq. (13),  yields a generalization of another well-known result:

PPPP  =  ∇∇∇∇S . (15)

We shall now specialize and consider Newtonian mechanics. The Lagrange
function of a closed system, L  = (1/2) m v2− U , is generalized as  L(x, VVVV , t) =
(1/2) m V2 − U, where U denotes  a (still classical) scalar potential. Note that the real
part of L becomes 

1
2 m(V2–U2) − U, which is the Lagrangian field proposed by

Guerra and Morato (1983).  The Euler-Lagrange equations keep the form of Newton's
fundamental equation of dynamics

−∇∇∇∇ U  =  m   
d
dt VVVV  , (16)

which is now written in terms of complex variables and operator. The complex
momentum PPPP now reads:

 PPPP  = m VVVV  , (17)

so that from Eq. (15) we arrive at the conclusion that, in this case, the complex
velocity VVVV is a gradient, namely the gradient of the complex action:

VVVV = ∇∇∇∇S / m . (18)

This is an interesting result owing to the fact that in several derivations of Nelson’s
stochastic mechanics, the classical velocity V (i.e. the real part of  our complex velocity
VVVV) is a gradient is postulated.

We may now introduce a complex function ψ which is nothing but another
expression for the complex action S,

ψ  =  eiS/2mD  . (19)

It is related to the complex velocity as follows:

    VVVV  =  − 2 i  D ∇∇∇∇ (lnψ)  . (20)

From this equation and Eq. (17), we obtain:

PPPP ψ  =  –2 i m D ∇∇∇∇ ψ  , (21)
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which is nothing but the correspondence principle of quantum mechanics for
momentum, but here demonstrated and written in terms of an exact equation.
 We have now at our disposal all the mathematical tools needed to write
Newton’s equation (Eq. 16) in terms of the new quantity ψ.  It takes the form

∇∇∇∇ U  =  2 i  D m  
d
dt  (∇∇∇∇ lnψ )  . (22)

Replacing d/dt  by its expression (Eq. 10) yields:

∇∇∇∇ U =  2 i  D m [ 
∂
∂t   ∇∇∇∇ lnψ  − i  D ∆(∇∇∇∇ lnψ)  − 2i D (∇∇∇∇ lnψ .∇∇∇∇ )(∇∇∇∇ lnψ) ]. (23)

Standard calculations on differential operators allows one to simplify this expression
thanks to the relation

1
2 ∆ (∇∇∇∇ lnψ) + (∇∇∇∇ lnψ .∇∇∇∇ )(∇∇∇∇ lnψ)  =    

1
2   ∇∇∇∇   

∆ψ
ψ   , (24)

and we obtain

d
dt  V  =   −2  D ∇∇∇∇    { i  

∂
∂t  lnψ  +  D  

∆ψ
ψ    }  =    −∇∇∇∇ U / m . (25)

Integrating this equation finally yields

D2 ∆ψ  +  i  D  
∂
∂t ψ    −   

U
2m ψ  =  0  , (26)

up to an arbitrary phase factor α(t) which may be set to zero by a suitable choice of
the phase of ψ . In the very particular case when D is inversely proportional to mass,
D = h

_
/2m, we get the standard form of Schrödinger's equation

  
h
_2

2m  ∆ψ    +  i h
_

  
∂
∂t ψ    =   U ψ . (27)

The hereabove system becomes equivalent to Nelson's stochastic quantum
mechanics (Nottale, 1993a), with several advantages, such as the new formulation of
the correspondence principle, the fact that the real part of Eq. (13) defines an
acceleration which is identical to that postulated by Nelson (1966, 1985), and more
generally the complete symmetry with classical mechanics, including the definition of
the Lagrange function. But the main difference with standard stochastic mechanics is
that Nelson's Schrödinger equation is obtained as a mixing of a real Newton equation
and of a Fokker-Planck equation for the diffusion process. In our approach, as the
reader can check, we have obtained the Schrödinger equation without introducing the
probability density and without writing the Kolmogorov equations. Hence this theory
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is not statistical in its essence, and must be completed, as has been the case for
quantum mechanics in its own time,  by a statistical interpretation.

Such a statistical interpretation is simply obtained by setting ψ ψ† = ρ, and then
writing the imaginary part of Eq. (26) in terms of this new variable. One gets:

∂ρ / ∂t  +  div(ρ V)  =  0 , (28)

which is easily recognized as an equation of continuity. More generally one can
demonstrate that ρ verifies a forward and a backward Fokker-Planck equation
(Nelson, 1966; Welsh, 1970):

∂ρ / ∂t  +  div(ρ b±)   =  ±  ∆ (Dρ) . (29)

Note that, from the viewpoint of the standard theory of Markovian processes, these
two equations are both forward equations.  Namely, we have actually considered two
processes, a forward process with time running to the future, and another forward
process with reversed time. Nelson's new “backward” equation, written with an
average velocity different from that of the forward one, “kills” the usual backward
Kolmogorov equation (Nottale and Van Waerbeke, 1995). In the case, considered in
the present section, when the diffusion coefficient is constant, we can take it out of the
∆ sign. The two Fokker-Planck equations can be combined in a single complex
equation:

∂ρ / ∂t  +  div(ρV)   =  −i  D ∆ρ  . (30)

Then we can finally conclude that ρ is the density of probability to find the particle at
a given position, and that the complex action S  is given in terms of the classical action
and of the probability density by the relation:

S  =  2 m D  (S − i  lnρ1/2)  , (31)

i.e., the imaginary part of the generalized complex action is identified with the
logarithm of the probability density.

Before considering some possible generalisations of this formalism, then apply it
to the problem of the formation of the solar system, we want to stress once again the
difference between its application to quantum mechanics and to developed chaos. In
the case of quantum mechanics (Nottale, 1993a), our fundamental assumption is that
space-time itself is continuous but non-differentiable, then fractal without any lower
limit. The complete withdrawal of the hypothesis of differentiability is necessary if we
want the theory not to be a hidden parameter one and to agree with Bell's theorem
and the undeterminism of quantum paths. On the contrary, in the application to
classical chaos, we know from the beginning that non-differentiability is only a large
time-scale approximation, and that when going back to small time resolution we
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recover differentiable, predictable classical trajectories. Then it must be clear that, even
if the theory yields densities of probability in a quasi-quantum way, the interpretation
remains classical.

3.   GENERALIZATION TO VARIABLE DIFFUSION COEFFICIENT

3.1.  Fractal dimension different from 2

 Two generalizations are particularly relevant: the case of a fractal dimension
different from 2 (Brownian motion is only a very peculiar case of fractal behavior),
and the case of a diffusion coefficient varying with position and time, D = D(x,t), since
the hypothesis of a constant D is clearly unjustified in most applications to chaos. The
general problem of tackling properly the case D ≠ 2 lies outside the scope of the
present contribution: such processes correspond to fractional Brownian motions,
which are known to be non-Markovian, and persistent (D < 2) or antipersistent (D >
2). We shall consider only the case when the fractal dimension D remains close to 2.
Indeed, in this case its deviation from 2 can be approximated in terms of an explicit
scale dependence in terms of the time resolution, as first noticed by Mandelbrot and
Van Ness (1968). Namely we decompose the <dξ2>'s, which vary now as dt2/D, as a
product of a pure Brownian term proportional to dt and a resolution-dependent
correction:

<dξ±i  dξ±j> = ± 2 D0 δij  dt   (δt/τ)(2/D)–1  , (32)

where τ  is some characteristic time-scale. Hence the effect of D ≠ 2 can be dealt with
in terms of a generalized, scale-dependent, diffusion coefficient:

D  =  D(δt)  = D0 (δt/τ)(2/D)–1  . (33)

It is easy to verify that the demonstration of Section 2 can be followed without any
modification. But now the “wave function” ψ  becomes explicitly dependent on scale:

ψ  =  exp { i S /2m D(δt) }, (34)

as well as the generalized Schrödinger equation:

 D2(δt) ∆ψ  + i  D(δt)  
∂ψ
∂t    =   

Uψ
2m   , (35)

where D(δt) is given by Eq. (33). We have made a first study of the behavior of this
equation in (Nottale, 1995): it is relevant in particular in our development of a
“Lorentzian scale relativity” (Nottale, 1992, 1993a). Concerning the problem in which
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we are interested here, the remarkable result is that the form of the equation is
conserved, and that the equation with a constant diffusion coefficient (Eq. 26) will
remain a good approximation provided the domain of variation of δt  is not too large.

3.2.  Position-dependent diffusion coefficient

 Let us now consider the case of a diffusion coefficient varying with position and
time, D = D(x,t), particularly relevant for the application of this approach to chaotic
dynamics.  Namely we write:

<dξ±i  dξ±j> = ± 2 D(x,t) δij  dt   . (36)

We can now reconsider the various steps of the formalism of Section 2. The
complex time derivative operator (Eq. 10) is found to keep its form:

d
dt   =    

∂
∂t   +  VVVV . ∇∇∇∇            − i D(x,t) ∆        .      (37)

Equations (12) to (18) remain unchanged. This is no longer the case for the
following steps, in particular for the definiton of the wave function which depends on
D in Eq. (19). Let us introduce the average value of the diffusion coefficient by
writing:

 D(x,t)  =  <D> +  δD(x,t)  . (38)

We now introduce the complex function ψ  from the relation,

ψ  =  eiS/2m<D>  . (39)

Then ψ  is related to the complex velocity :

  VVVV  =  − 2 i  <D> ∇∇∇∇ (lnψ) . (40)

The generalized complex Newton’s equation now takes the form

∇∇∇∇ U  =  2 i  m <D> 
d
dt  (∇∇∇∇ lnψ ) . (41)

Remembering that D, which appears in the expression for d / dt , is now a function of
x, we find:

∇∇∇∇ U =  2i  <D> m [ 
∂
∂t ∇∇∇∇ lnψ − i  D ∆(∇∇∇∇ lnψ) − 2i <D> (∇∇∇∇ lnψ .∇∇∇∇ )(∇∇∇∇ lnψ) ], (42)

which becomes
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∇∇∇∇ U

2m<D>
   =    ∇∇∇∇  { i  

∂
∂t  lnψ  +  <D>  

∆ψ
ψ   }  +  δD(x,t) ∇∇∇∇ (∆ lnψ) . (43)

Let us make appear the gradient of δD  thanks to the identity ∇∇∇∇ (δD ∆lnψ) = ∆lnψ
∇∇∇∇ δD + δD ∇∇∇∇(∆lnψ). Equation (43) may finally be given the form of a generalized
Schrödinger equation:

    ∇∇∇∇  { 
U

2m<D>
   –  

 1

ψ
  [  D ∆ψ  + i   

∂ψ
∂t   ] + δD (∇∇∇∇ lnψ)2 }  =  – ∇∇∇∇(δD) ∆lnψ . (44)

We let open for future works the study of the general form of this equation. We shall
only consider here the special, simplified case when ∇∇∇∇(δD) = 0 or ∇∇∇∇(δD) << 1. In this
case, which corresponds to a slowly varying diffusion coefficient in the domain
considered, or, at the limit, to a diffusion coefficient depending on time but not on
position, the right -hand side of Eq. (44) vanishes, so that it may still be integrated,
yielding:

 D ∆ψ  + i   
∂ψ
∂t     =   [ 

U
2m<D>

 + a  + δD (∇∇∇∇ lnψ)2 ] ψ  , (45)

where a is a constant of integration. Assuming that δD/D remains <<1, the effect of
the term δD ψ (∇∇∇∇ lnψ)2 which is in addition to the standard Schrödinger equation
and the effect of D being a function of x and t can be treated perturbatively. One
finally gets the equation

 <D>2 ∆ψ  + i <D> 
∂ψ
∂t     =  [ 

U(x,t)
2m  – <D> [∆ lnψ ]0 δD(x,t) ] ψ  . (46)

Hence the effect of the new terms amounts to adding a new term to the potential in
the standard Schrödinger equation. Note that such a behavior could be of interest in
the perspective of a future development of a field theory based on the concept of scale
relativity and fractal space-time. Indeed, fluctuations in the fractal space-time geometry
are expected to imply fluctuations δD(x,t) of the diffusion coefficient (in a way which
remains to be described). Then even in the absence of an artificially added external
potential U in Eq. (46), these fluctuations will imply the appearance of an internal
potential term coming from the geometry of space-time itself. (More generally, we
expect the “diffusion coefficient” to become a tensor in such a space-time approach).
The development of such ideas lies beyond the scope of the present contribution and
will be carried on elsewhere

Let us conclude this section by a brief comment. In the particular cases
considered above, the statistical interpretation of the wave function ψ in terms of ρ =
ψψ† giving the probability of presence of the particle remains correct, since the
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imaginary part of this generalized Schrödinger equation remains the equation of
continuity. We recall indeed that we do not need to write the Fokker-Planck equations
in our derivation of the Schrödinger equation and of its generalized form. This may no
longer be the case for the general equation, since we took for our definition of ψ in
Eq. (39) the simplest possible generalization, which may not be the adequate one. A
more complete treatment would certainly need coming back to the basic stochastic
approach, and to writing Kolmogorov equations containing new terms due to the
presence of D(x,t) into the Laplacian (Eq. 29).  Such an improved method will be
presented in a forthcoming work.

4.   APPLICATION TO CELESTIAL MECHANICS

The existence of structuration in the Solar System has been recognized for long,
at first by Kepler himself. The Titius-Bode “law” (see e.g. Nieto, 1972) is the first
empirical attempt at describing these regularities, and was followed by several other
proposals (see e.g. Neuhäuser and Feitzinger, 1986; Souriau, 1989).  Most attempts at
understanding the distribution of planets were based on theories of formation of the
Solar System (see e.g. Brahic, 1982). However, there has been increasing evidence, in
recent years, that chaos may play a leading role in celestial mechanics (Hénon and
Heiles, 1964; Petit and Hénon, 1986; Wisdom, 1987; Sussman and Wisdom, 1988;
Laskar,1989, 1990).

Hills (1970) has noticed that it is likely that an epoch of strong dynamical
encounters occurred before the planets relaxed into stable orbits. It is also remarkable
that numerical simulations (Conway and Elsner, 1988) which have considered various
initial conditions for planetary systems, find that systems placed in initially arbitrary
distributions are generally chaotic, while when initially placed in Titius-Bode-like laws
(increasing planetary separations), they are very stable systems.

It has been recently argued by Graner & Dubrulle (1994) that the various
avatars of Titius-Bode law share the property of scale invariance, and then that the
"law", if real, would be only a consequence of the scale and rotational invariance of
the initial protoplanetary disk. Since these are natural symmetries of such disks,
Graner and Dubrulle conclude that Titius-Bode-like laws cannot serve as diagnostic for
the validity of a model or theory of planet formation. We would agree with their point
only in case this was the only test of such a theory. The distribution of planet distances
is one among the various structures observed in the Solar System that one could try
to reproduce in a theory of its formation (including possibly the distribution of
eccentricities, of mass, of angular momentum, of element abundances, etc..), and as
such it must be included into the test. Note that, in particular, the distribution of
angular momentum, which is mainly carried by Jupiter (62 %) and  Saturn (25 %) is
an important unsolved problem for these theories.
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With these considerations in mind, we shall investigate the possibility that, at the
end of the formation of the Solar System, when planetesimals (see e.g. Wetherill,
1990) had become large enough for their motion to be only of purely gravitational
origin, an epoch of strong chaos occurred (to which the above formalism can be
applied), and that the present rather stable state of the system resulted precisely from
structuration originating  from chaos itself (Nottale, 1993a,b).

Consider a gravitational system described by a Newtonian potential U such that
∆U = 4πGρ, and assumed to be subjected to developed chaos: assuming that one can
define an average diffusion coefficient, Eq. (26) applies (as a first approximation
model) to this problem. We have also seen in Section 3 that even when accounting for
a slowly variable diffusion coefficient the equation still kept the same form. Then
consider a test planet (or planetesimal) orbiting in the field of the Sun, U = −GmM/r,
and describe the collective, chaotic effect of all the other planetesimals by a Brownian-
like motion, as given by the double Wiener fluctuation of the above formamism. The
specialization of Eq. (26) to the case of stationary motion with conservative energy E
≡ 2iDm∂/∂t  yields

D ∆ψ  +  [ 
E 

2m D
  +  

G M

2 D r
   ] ψ   =  0  . (47)

The equivalence principle suggests that D is now independent of m. This equation is
similar to the Schrödinger equation for the hydrogen atom, up to the substitution
h
_
/2m → D, e2 → GmM,  so that the natural unit of length (which corresponds to the

Bohr radius) is:

a0 = 4 D2/GM . (48)

We thus find that the energies of planets scale as En = −GmM2/8D2n2,   n =  1, 2, 3,
..., and that the probability densities of their distances to the Sun are confined to
definite regions given by the square of the well-known radial wave functions of the
hydrogen atom. We also expect angular momenta to scale as L = 2mDl, with l = 0, 1,
..., n−1: this means that, unlike in quantum mechanics, E/m and L/m are “quantized”
rather than E and L . (One must be cautious that here the “quantization” does not
take as strict a meaning as in quantum mechanics: since the trajectories become classic
again at small time-scales, it must be understood as indicating the occurence of
preferential values).

 The average distance to the Sun and the eccentricity e  are given, in terms of
the two quantum numbers n  and l , by the following relations (see e.g. Messiah,
1959):

anl  =  { 
3
2  n2   −   

1
2   l  (l  + 1) } a0 , (49a)
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e2  =  1 −   
l  (l  + 1)
n (n − 1)  . (49b)

Let us now briefly compare these predictions to the observed structures in the
Solar System. Note that the difference of physical and chemical composition of the
inner and outer solar systems suggests to us that they can be treated as two different
systems, i.e., that we expect two different diffusion coefficients for them. (See Section
4.3 (iii) for a possible justification of this point). The main results are summarized
hereafter (see Fig. 3).

4.1.  Distribution of eccentricities of planets

The observed orbits of the planets in the solar system are quasi-circular. Even
the largest eccentricities (Pluto, e2 = 0.065; Mercury, e2 = 0.042) actually  correspond
to small values of e2. Such a result is clearly a prediction of our theory: Indeed, Eq.
(49b) implies that, after the purely circular state  l = n − 1,  the first non circular state,
l = n −2, yields eccentricities larger that 0.58 for n ≤ 6 (which is the range observed
for n in the solar system, see below). Such a large value would imply orbit crossing
between planets and strong chaos and cannot correspond to a stable configuration on
large time scales. Then only the quasi-circular orbits remain admissible solutions.

4.2.  Distribution of planet distances

We may now compare the observed values of semi-major axes of the planets to
our prediction (Eq. 49a) with l = n −1: √a  = n (1+1/2n)1/2 √a0, for the inner and
outer systems respectively. Note that the ordinate at origin is predicted to be zero.
This prediction is very well verified for the two systems: we find aint(0) = 2 x 10−4

A.U. and aext(0) = 4 x 10−3 A.U.
Mercury, Venus, Earth and Mars take respectively ranks n = 3, 4, 5 and 6 in the

inner system. The average slope is (√a0)int = 0.195 ± 0.0022. The orbits n = 1
corresponds to a distance so close to the Sun (0.05 A.U.), that its emptiness may be
easily understood, while the possibility that n = 2 hosts a still undiscovered small planet
is not excluded.

The central peak of the asteroid belt (2.7 A.U.) agrees remarkably well with n =
8 of the inner system, and the main peak (3.15 A.U.) with n = 9.  Including them
yields (√a0)int = 0.195 ± 0.0017. This result may help understanding the fact that there
is no large planet there: the zone where the belt lies, even though it corresponds to
maxima of  probability density for the inner system, also corresponds to a minimum in
the outer system. The region between Mars and Jupiter is where the two systems
overlap. The emptiness of the orbits n = 7  and n = 10 is easily understandable, since
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they coincide with the resonances 1:4 and 2:3 with Jupiter, where small time-scale
dynamical chaos is expected to occur (Wisdom, 1987).

Figure 3. Comparison of the observed average distances of planets to the Sun with our

prediction (see text). The abscissa is labelled by the value of n, but is given by √n(n+1/2). A1 and A2

are for the two main peaks in the distribution of asteroids in the asteroid belt. The size of the symbols

indicates the planet relative masses in a qualitative way. “IS”  stands for the whole inner solar system,

which corresponds to “orbital” n = 1 of the outer system.

  Jupiter, Saturn, Uranus, Neptune and Pluto rank n = 2, 3, 4, 5, 6 in the
outer system (see Fig. 3). The average slope is (√a0)ext = 1.014 ± 0.016. The average
distance of the inner solar system in very good agreement with n = 1 of the outer
system (see below our suggestion that it corresponds to a secondary process of
fragmentation): including it yields an improved slope (√a0)ext = 1.014 ± 0.012. Note
also the agreement of Neptune and especially Pluto with the outer relation (recall that
they did not fit the original Titius-Bode law).
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4.3  Distribution of mass in the solar system

0 5 10 15 20 25 30
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0.002
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0.006

0.008
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Figure 4. Possible mechanism of fragmentation for the mass distribution in the solar system

(see text).

Not only the distribution of planet positions, but the distribution of mass itself is
not at random in the solar system.  Consider first the outer system, in which the
average inner system is counted as one. We see the mass increase, reach a peak with
Jupiter, then decrease up to Pluton (this decrease may continue with the possible ultra-
plutonian small bodies). Now consider the inner solar system: the mass distribution
follows the same shape, with an increase for Mercury to Earth, then a decrease up to
the asteroids. Such a mass distribution is in agreement, at least in its great lines, with
the laws of probability density derived from Eq. (47), which write for the various
values of n (circular orbits, l = l – 1, and ∫ P(r)dr = 1):

P(r)  ∝  
1

2n!  (
2
na)

2n+1
  r

2n
  e–2r/na   . (50)

This suggests to us a possible mechanism for the mass distribution in the solar system.
The first step would be a distribution of planetesimals according to the fundamental
state (n0 = 1) of Eq. (50), which is in qualitative agreement with the global mass
distribution. Then a first process of fragmentation would occur, once again according
to Eqs (47) and (50). The peak of probability density will give rise to the formation of
the most massive planet in the system, i.e. Jupiter, which fixes the unit in Eq. (50) and
for all other length scales. The remaining planetesimals would then make the other
planets of the outer system (see Fig. 4), with distances increasing in terms of a new
index n1. However, although far from the sun the planetesimals accrete in only one
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planet in each orbital, tidal effects imply for the fundamental one (n1 = 1) a new
fragmentation process in terms of a third “quantum number”, n2. This “orbital” is
then identified with the whole inner solar system. The advantage of such a process is
that it relates the scales of the  inner and outer systems and then reduces the number
of free parameters to only one. Indeed the ratio of distances between the peak of
orbital n1 = 2 (Jupiter) and the peak of orbital n1 = 1 (which is identified with the
planet of largest mass in the inner solar system, i.e. the Earth) is expected to be aJ/aE ≈
5, in good agreement with the observed value 5.2.

4.4  Distribution of angular momentum

Our finding that L/m  is quantized rather than L  allows us to suggest a solution
to the problem of the distribution of angular momentum among planets (Jupiter 60%,
Saturn 25%). Indeed, since the quantum number n remains small (≤ 6), the
distribution of angular momentum is expected to mainly mirror that of mass: then
most angular momentum must be carried on by the largest planets, as observed.

5.   DISCUSSION AND CONCLUSION

In spite of the success already obtained by the method presented here, progress
still needs to be made in order to improve its applicability, in particular to the solar
system problem. The first need of improvement concerns the flattening of the proto-
planetary disk, since our method remains, up to now, mainly tri-dimensional.
Concerning the diffusion coefficient, even if we have demonstrated the stability of our
solution under slow variations of it, it is nevertheless clear that a better treatment
would consist in writing coupled equations in which the diffusion coefficient would be
itself dependent of the probability density. Such a generalized method will be
presented in a future work.

One of the difficulty of theories of the solar system formation and structures is,
up to now, its uniqueness: we do not know whether an observed  “law” is a peculiar
configuration of our own system, or whether it is shared by all planetary systems in
the universe. But we can expect such other systems to be discovered in the
forthcoming years, and new informations to be obtained about the very distant solar
system (Kuyper’s belt, Oort cometary cloud...). In this regard our theory is a falsifiable
one, since it makes definite predictions about such observations of the near future:
observables such as the distribution of eccentricities, mass, angular momentum, the
preferred positions of planets and asteroids, or possibly the ratio of distance of the
largest gazeous planet and the largest telluric one, are expected in our framework to
be universal structures shared by any planetary system.
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Before concluding, we emphasize once again the fact that, even though our
equations are quantum mechanical-like equations, their interpretation is very different
from that of quantum mechanics. We have conjectured elsewhere (Nottale, 1989,
1991, 1993a, 1994) that the origin of the quantum properties which are irreducible to
the classical behaviour was the nondifferentiability (and fractal structure) of the
quantum space-time. On the other hand, the application of the above formalism to
classical chaotic systems relies on the approximation of nondifferentiability, which is
no longer valid on small time-scales, for which one recovers predictable and
differentiable trajectories. Then, while this formalism is able to provide us with peaks
of probabilities, and then to help us understanding the emergence of structures from
chaos, the probabilities nevertheless remain classical.

To conclude, we think that it is the demonstration of the ability of our new
method to solve several different problems involving stongly chaotic dynamics that
will be the best proof of its physical meaning: we shall indeed present in forthcoming
works its application to new problems such as the structuration of double galaxies and
large scale structures in the universe.
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