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Abstract
We first recall that the system of fluid mechanics equations (Euler and
continuity) that describes a fluid in irrotational motion subjected to a
generalized quantum potential (depending on a constant which may be
different from the standard quantum constant h̄) is equivalent to a generalized
Schrödinger equation for a ‘wavefunction’ whose modulus squared yields the
fluid density. Then we show that even in the case of the presence of vorticity,
it is also possible to obtain a nonlinear Schrödinger-like equation (now of
the vectorial field type) from the continuity and Euler equations including
a quantum potential. The same kind of transformation also applies to a
classical charged fluid subjected to an electromagnetic field and to an additional
potential having the form of a quantum potential. Such a fluid can therefore
be described by an equation of the Ginzburg–Landau type, and is expected to
show some superconducting-like properties. Moreover, a Schrödinger form
can be obtained for a fluctuating rotational motion of a solid. In this case
the mass is replaced by the tensor of inertia, and a generalized form of the
quantum potential is derived. We finally reconsider the case of a standard
diffusion process, and we show that, after a change of variable, the diffusion
equation can also be given the form of a continuity and Euler system including
an additional potential energy. Since this potential is exactly the opposite of a
quantum potential, the quantum behavior may be considered, in this context,
as an anti-diffusion.

PACS numbers: 2.50.Ey, 03.65.−w, 05.45.Df, 47.37.+q

1. Introduction

It has been known since the origins of quantum mechanics [1] that the Schrödinger equation,

D2�ψ + iD
∂ψ

∂t
− φ

2m
ψ = 0, (1)
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where D = h̄/2m, and ψ = √
P eiθ , can be given the form of a fluid-like system of equations

in terms of a probability density P = |ψ |2 and of a velocity V = 2D∇θ . The imaginary
and real parts of the Schrödinger equation respectively yield a continuity equation and an
Euler-like equation (after differentiation)

∂P

∂t
+ div(PV ) = 0,

(
∂

∂t
+ V · ∇

)
V = −∇

(
φ + Q

m

)
, (2)

including an additional ‘quantum potential’ Q, that reads1

Q = −2mD2 �
√

P√
P

. (3)

The aim of the present paper is to study the reverse transformation and to suggest
generalizations of the possible forms of quantum potentials. The question asked is whether a
classical fluid of density ρ subjected to a quantum-like potential Q = −2D2�

√
ρ/

√
ρ can be

described by a Schrödinger-type equation for a ‘wavefunction’ ψ such that ρ ∝ |ψ |2.
As we shall see, the answer is positive. Generalized forms of the quantum potential can

still be found, and the application of such quantum potentials to classical Euler and continuity
equations allows one to integrate them into Schrödinger equations, possibly of the nonlinear
type. Moreover, this transformation can be done for any value of the coefficient D, which
is no longer restricted to the standard quantum value D = h̄/2m and can take macroscopic
values, therefore leading to macroscopic Schrödinger-type equations.

For the construction of these generalizations (in particular to a tensorial form in
section 4) and for the interpretation and possible application of these results to observational
data and experimental devices, we shall be helped by a third representation of the same
equations, the geodesic form obtained in the scale relativity theory [2, 5, 6, 28]. In this
framework one constructs, as a manifestation of fractal geometry and of local irreversibility,
a covariant derivative d̂/dt = ∂/∂t + V · ∇ − iD� which allows one to write the equation of
motion under the free Galilean form, d̂V/dt = 0. This equation can then be integrated under
the form of a Schrödinger equation [2, chapter 5.6].

A fluid that would be subjected to this kind of generalized quantum-like potential is
expected to exhibit some macroscopic properties typical of quantum fluids (though certainly
not every aspects of a genuine quantum system). We then conclude by a discussion of
the possible ways by which such a new type of classical fluid owning some quantum-type
properties could be either identified in natural systems, or achieved in experimental and
technological devices.

2. The scale relativity approach to a Schrödinger equation

2.1. Dynamics equation in a fractal space

We give in this section a summary of the way a Schrödinger equation is derived in the scale
relativity framework, in which spacetime is described as a non-differentiable (therefore fractal)
continuum (see e.g. [7] for more detail). Although not absolutely necessary in the context of
the present work (which studies the effect of adding quantum potentials to the equations of
classical fluids), this approach is actually revealed to be useful for (i) constructing tensorial
generalizations of quantum potentials (section 4) and (ii) suggesting real situations and

1 The quantum potential Q and the velocity field V are well defined only for nonzero ψ . When P → 0,Q diverges
when �

√
P �= 0, so that the two representations are not fully equivalent. It is an open problem how to treat nodal

surfaces separating domains: this problem lies outside the scope of the present paper (but see section 6) and will be
considered in a forthcoming work.
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systems (natural or artificial) in which the effects studied here could be effectively achieved
(section 6).

A nondifferentiable geometry implies three main consequences [2, 4, 5, 7]:

(i) The number of fractal geodesics is infinite. This leads to the adoption of a generalized
statistical fluid-like description where the velocity V (t) is replaced by a scale-dependent
velocity field V [X(t, dt), t, dt] (3D case, see [5] for the 4D generalization).

(ii) There is a breaking of the reflexion invariance on the differential element dt . Indeed,
in terms of fractal functions f (t, dt) which are explicitly dependent on the differential
element dt [2], two derivatives are defined,

X′
+(t, dt) = X(t + dt, dt) − X(t, dt)

dt
, X′

−(t, dt) = X(t, dt) − X(t − dt, dt)

dt
, (4)

which transform one into the other under the reflection (dt ↔ −dt), and which have
a priori no reason to be equal. This leads to a fundamental two-valuedness of the velocity
field.

(iii) The geodesics are themselves fractal curves of fractal dimension DF = 2 [8].

This means that one defines two divergent fractal velocity fields, V+[x(t, dt), t, dt] =
v+[x(t), t]+w+[x(t, dt), t, dt] and V−[x(t, dt), t, dt] = v−[x(t), t]+w−[x(t, dt), t, dt], which
can be decomposed in terms of differentiable parts v+ and v−, and of fractal parts w+ and w−.
Note that, contrary to other attempts such as Nelson’s stochastic quantum mechanics which
introduces forward and backward velocities [9], the two velocities are here both forward, since
they do not correspond to a reversal of the time coordinate, but of the time differential element
now considered as an independent variable.

Going back to differentials, the elementary displacements dX on the geodesics of a
nondifferentiable space can therefore be decomposed as the sum of two terms [2, 3, 5] (we
omit the three-dimensional indices for simplicity)

d±X = d±x + d±ξ, (5)

d±ξ representing the ‘fractal (differentiable) part’ and d±x, the ‘classical (non-differentiable)
part’, defined as

d±x = v± dt, (6)

d±ξ = η±
√

2D dt1/2, (7)

where η is a normalized stochastic (or simply fluctuating) variable such that 〈η〉 = 0 and
〈η2〉 = 1. This expression for the fractal fluctuation d±ξ corresponds to the fractal dimension
DF = 2.

Then one combines the two time derivatives in terms of a complex derivative operator [2]

d̂

dt
= 1

2

(
d+

dt
+

d−
dt

)
− i

2

(
d+

dt
− d−

dt

)
. (8)

Applying this operator to the position vector yields a complex velocity

V = d̂

dt
x(t) = V − iU = v+ + v−

2
− i

v+ − v−
2

. (9)

One finds that the complex time derivative operator reads [2, 7, 10]

d̂

dt
= ∂

∂t
+ V̂ · ∇, (10)
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where V̂ = V − iD∇. It plays the role of a ‘covariant derivative operator’, i.e., of a tool that
allows the equation of dynamics in a fractal nondifferentiable space to be given the same form
as in a classical differentiable one.

Namely, the classical part of the system can be characterized by a Lagrange function
L(x,V, t), from which an action S̃ is defined as S̃ = ∫ t2

t1
L(x,V, t)dt , where both the Lagrange

function and the action are now complex because the velocity V is itself complex. Using this
covariant derivative, one then writes the equation of dynamics in a potential φ under Newton’s
classical form (although this equation is no longer classical)

m
d̂

dt
V = −∇φ. (11)

In the case when there is no external field the covariance is explicit, since equation (11) can
be identified with a geodesics equation that takes the form of Galileo’s equation of inertial
motion,

d̂

dt
V = 0. (12)

This vacuum form of the motion equation is also obtained when the field can be itself derived
from a covariant derivative under a geometric interpretation, as in the case of gravitation in
Einstein’s theory of general relativity of motion, and now of gauge fields [24].

In both cases (with and without external field), the complex momentum P reads P = mV
[2], so that the complex velocity V is the gradient of the complex action, V = ∇S̃/m.

2.2. Derivation of a generalized Schrödinger equation

Then one introduces a complex function ψ which is nothing but another expression for the
complex action S̃,

ψ = eiS̃/S0 , (13)

where one can show that the constant S0, which must be introduced for dimensional reasons,
is linked to the parameter D by the relation S0 = 2mD [7]. In the case of standard quantum
mechanics, S0 is nothing else but the Planck constant, S0 = h̄, so that D = h̄/2m. But, as we
shall see, all the mathematical structure of the derivation holds for any value of the constant
D, which defines here the amplitude of the fractal fluctuations (equation (7)). The ψ function
is therefore related to the complex velocity as follows:

V = −2iD∇ ln ψ, (14)

so that the fundamental equation of dynamics of equation (11) reads

2imD
d̂

dt
(∇ ln ψ) = ∇φ. (15)

Replacing d̂/dt by its expression, given by equation (10), and replacingV by its expression
in equation (14), one obtains after some calculations the equation

∇φ = i2mD∇
[
∂ψ/∂t − iD�ψ

ψ

]
, (16)

which can finally be integrated under the form of a Schrödinger equation [2]

D2�ψ + iD
∂ψ

∂t
− φ

2m
ψ = 0. (17)

We recover the standard quantum-mechanical equation in the special case D = h̄/2m, but it
is generalized here to any value of D.
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It is important here to remark that the parameter D is a mere re-expression, up to constants,
of a fundamental length scale of the theory, λC = 2D/c. Since standard quantum mechanics
is recovered for D = h̄/2m, this length scale is nothing but a generalization of the Compton
length, λC = h̄/mc. This involves two consequences which are relevant for the interpretation
of the suggested experiments.

(i) The Compton length receives in this framework a new interpretation, namely, it gives
the amplitude of the fractal fluctuations. Indeed, this amplitude reads under the form
(dξ/λC)2 = η2(c dt/λC), so that the Compton length (and therefore the mass in standard
quantum theory) can be defined in a geometric way as

λC = 〈 dξ 2〉
c dt

, (18)

where 〈〉 denotes averaging over the stochastic or fluctuating variable η.
(ii) The de Broglie length also acquires, in such a framework, a simple geometric interpretation

as a classical to fractal transition (in scale space). Indeed, since dx and dt are
differential elements of the same order, one may write dξ 2 = η2 × λCc dt under the form
dξ 2 = η2 × λ dx. The new length scale introduced in this expression for dimensional
reasons therefore reads λdB = cλC/(dx/dt), i.e.,

λdB = c

v
× λC, (19)

which generalizes the non-relativistic de Broglie scale since this yields λdB = h̄/mv

when λC = h̄/mc (standard quantum case). The elementary displacements therefore read
dX = dx + dξ = dx(1 + η

√
λdB/dx), and they indeed show a transition from a classic,

differentiable behavior to a fractal, nondifferentiable (i.e., scale-divergent) behavior when
dx becomes smaller than λdB.

This last result allows one to identify D in a given physical situation, since in most cases
the observable characteristic length scale of a system coming under such equations is the de
Broglie scale (while λC is in general far too small, because of the factor v/c).

This description can be generalized to the many-particle case [18]. Indeed, the fractality
parameter D does not characterize directly the fractal spacetime itself, but its geodesics. It
is therefore quite possible to define a unique spacetime (in terms of a unique action S̃ and
therefore of a unique wavefunction ψ = eiS̃/h̄) which contains different sub-sets of geodesics
with different geometric properties corresponding to different particles. This is reminiscent
of Einstein’s general relativity where various bodies with different active gravitational masses
Mi and therefore different Schwarzschild radii 2GMi/c

2, each of them following their own
geodesics, contribute to the same unique spacetime.

For example, in the two-particle case, two different velocity fields of geodesics,
V1 = −2iD1∇1 ln ψ and V2 = −2iD2∇2 ln ψ can be defined for a single wavefunction
ψ(x1, y1, z1, x2, y2, z2, t). The Lagrange function keeps the form of the classical Lagrange
function for two particles, but now in terms of these complex velocity fields, i.e., L =
(1/2)m1V2

1 + (1/2)m2V2
2 − φ. Then the complex Hamilton function, which was found to read

H = V̂ ·P−L in the one-particle case [7], becomes for two particles H = V̂1 ·P1 + V̂2 ·P2 −L,
and the Hamilton–Jacobi energy equation H + ∂S̃/∂t = 0 becomes Hψ = iS0∂ψ/∂t . The
calculation is the same as for the one-particle case [7] except for the existence of two terms
instead of one, so that, after replacing the complex velocity field by its expression in terms of
ψ , one finally derives a two-particle Schrödinger equation,

S0

[
(D1�1 + D2�2)ψ + i

∂ψ

∂t

]
= φψ. (20)
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Another generalization of such an equation will be given in what follows (equation (124)).
One recovers the two-particle Schrödinger equation of standard quantum mechanics for
D1 = h̄/2m1,D2 = h̄/2m2 and S0 = h̄.

For a more complete development of the application of this approach to standard quantum
mechanics (which has been only summarized here since it is not the direct subject of the
present paper), see [7] in particular for a full derivation of the basic ‘postulates’ of quantum
mechanics, and [11] for the question of the origin and universality of the Planck constant h̄ in
microphysics.

Now, the generality of this description also involves the possibility to build macroscopic
quantum-type systems or devices which are no longer constrained by the Planck constant
(see section 6)—for example, systems embedded in fractal media which would be scaling
on a large range of scales [2], or artificial devices in which a quantum potential would be
simulated by a classical one—and/or the possibility that such systems do already exist in nature
[2, 4, 10, 12, 13, 19].

3. Schrödinger equation in fluids mechanics

3.1. From Schrödinger to Euler and continuity equations

By separating the real and imaginary parts of the generalized Schrödinger equation and by
using a mixed representation of the motion equations in terms of (P, V ), instead of (V ,U)

in the geodesics form and (P, θ) in the Schrödinger form, one obtains fluid dynamics-like
equations, i.e., an Euler equation and a continuity equation (this is a generalization of the
Madelung–Bohm transformation, but whose physical meaning is set from the very beginning
instead of being a posteriori interpreted).

Let us recall explicitly this transformation. We first come back to the definition of the
wavefunction by making explicit the probability and the phase, namely,

ψ =
√

P × eiS/2mD. (21)

By introducing this form of the wavefunction in the Schrödinger equation (17) with an exterior
scalar potential φ, we obtain{

−
√

P

2m

(
∂S

∂t
+

(∇S)2

2m
+ φ − 2mD2 �

√
P√

P

)
+ i

D
2
√

P

(
∂P

∂t
+ div

(
P

∇S

m

))}
eiS/2mD = 0.

(22)

Now the complex velocity V = V − iU is being linked to the wavefunction by the relation
V = −2iD∇ ln ψ , its real part is therefore given in terms of the phase by the standard classical
relation [2]

V = ∇S

m
. (23)

We note once again that this fundamental identification is here derived (since V has been
defined from the very beginning as the real part of the geodesics mean velocity field), while
in the standard Madelung transformation V is defined from the above equation itself, and it
is therefore interpreted from it. In the scale relativity/nondifferentiable spacetime approach,
the velocity field and therefore the wavefunction from which it derives characterize from the
beginning the bundle of potential fractal geodesics.
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By replacing, in the above form of the Schrödinger equation, ∇S/m by the real velocity
field V , it reads{

−
√

P

2m

(
∂S

∂t
+

1

2
mV 2 + φ + Q

)
+ i

D
2
√

P

(
∂P

∂t
+ div(PV )

)}
eiS/2mD = 0. (24)

The real part of this equation is an energy equation,

E = −∂S

∂t
= 1

2
mV 2 + φ + Q, (25)

whose gradient yields an Euler-type equation(
∂

∂t
+ V · ∇

)
V = −∇

(
φ + Q

m

)
, (26)

while the imaginary part is a continuity equation, namely,

∂P

∂t
+ div(PV ) = 0. (27)

But, in the energy and Euler equations, an additional potential energy Q has emerged, that
writes

Q = −2mD2 �
√

P√
P

. (28)

This scalar potential generalizes to a constant D which may be different from h̄/2m the
quantum potential obtained in the Madelung–Bohm transformation. The potential Q is now
understood as a manifestation of the fractal geometry, and the probability density is also
interpreted in this framework as arising from the distribution of geodesics, so that the Born
postulate is derived [5, 7, 17], as can be verified by numerical simulations [27, 28].

3.2. Inverse derivation: from Euler to Schrödinger equation (pressure-less potential motion)

It is less well known that the transformation from the generalized Schrödinger equation to the
Euler and continuity equations with quantum potential is reversible. Indeed, the Euler and
continuity system reads in the pressureless case(

∂

∂t
+ V · ∇

)
V = −∇

(
φ − 2D2 �

√
ρ√

ρ

)
, (29)

∂ρ

∂t
+ div(ρV ) = 0. (30)

Their form is similar to equations (26) and (27), but with the probability density P replaced
by the matter density ρ and with m = 1. Assume, as a first step, that the motion is irrotational
(see section 3.5 for the account of vorticity and pressure). Then we set

V = ∇S. (31)

Equation (29) takes the successive forms

∂

∂t
(∇S) +

1

2
∇(∇S)2 + ∇

(
φ − 2D2 �

√
ρ√

ρ

)
= 0, (32)

∇
(

∂S

∂t
+

1

2
(∇S)2 + φ − 2D2 �

√
ρ√

ρ

)
= 0, (33)
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which can be integrated as

∂S

∂t
+

1

2
(∇S)2 + φ + C − 2D2 �

√
ρ√

ρ
= 0, (34)

where C is a constant that can be taken to be zero by a redefinition of the potential energy φ.
Let us now combine this equation with the continuity equation as follows:{

−1

2
√

ρ

(
∂S

∂t
+

1

2
(∇S)2 + φ − 2D2 �

√
ρ√

ρ

)
+ i

D
2
√

ρ

(
∂ρ

∂t
+ div(ρ∇S)

)}
eiS/2D = 0. (35)

We have therefore recovered the form (22) of the Schrödinger equation (with m = 1). Finally
we set

ψ = √
ρ × eiS/2D, (36)

and equation (35) is strictly identical to the following generalized Schrödinger equation:

D2�ψ + iD
∂

∂t
ψ − φ

2
ψ = 0. (37)

Given the linearity of the equation obtained, one can normalize the modulus of ψ by replacing
the matter density ρ by a probability density P = ρ/M , where M is the total mass of the fluid
in the volume considered. These two representations are equivalent.

The imaginary part of this generalized Schrödinger equation amounts to the continuity
equation and its real part to the energy equation that reads

E = −∂S

∂t
= 1

2
mV 2 + φ − 2D2 �

√
ρ√

ρ
. (38)

3.3. From Euler to Schrödinger: account of pressure

Consider now the Euler equations with a pressure term and a quantum potential term:(
∂

∂t
+ V · ∇

)
V = −∇φ − ∇p

ρ
+ 2D2∇

(
�

√
ρ√

ρ

)
. (39)

When ∇p/ρ = ∇w is itself a gradient, which is the case of an isentropic fluid, and, more
generally, of every cases when there is a univocal link between pressure and density, e.g., a
state equation [31], its combination with the continuity equation can be still integrated in terms
of a Schrödinger-type equation [4],

D2�ψ + iD
∂

∂t
ψ − φ + w

2
ψ = 0. (40)

Now the pressure term needs to be specified through a state equation, which can be chosen as
taking the general form p = kpργ .

In particular, in the sound approximation, the link between pressure and density writes
p − p0 = c2

s (ρ − ρ0), where cs is the sound speed in the fluid, so that ∇p/ρ = c2
s ∇ ln ρ. In

this case, which corresponds to γ = 1, we obtain the nonlinear Schrödinger equation

D2�ψ + iD
∂

∂t
ψ − kpψ ln|ψ | = 1

2
φψ, (41)

with kp = c2
s . When ρ − ρ0 � ρ0, one may use the additional approximation c2

s ∇ ln ρ ≈(
c2
s

/
ρ0

)∇ρ, and the equation obtained takes the form of the nonlinear Schrödinger equation
which is encountered in the study of superfluids and of Bose–Einstein condensates (see

8
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e.g. [32, 33]), and which is also similar to the Ginzburg–Landau equation of superconductivity
[35] (here in the absence of field),

D2�ψ + iD
∂

∂t
ψ − β|ψ |2ψ = 1

2
φψ, (42)

with β = c2
s

/
2ρ0. In the highly compressible case the dominant pressure term is rather of the

form p ∝ ρ2, so that p/ρ ∝ ρ = |ψ |2, and one still obtains a nonlinear Schrödinger equation
of the same kind [32].

3.4. From the Schrödinger equation in a vectorial field to Euler and continuity equations

Let us now consider a more general case. In the previous sections, only a scalar external
field was taken into account. We shall now study the decomposition of the Schrödinger
equation which applies to a system subjected to a vectorial field (such as, e.g., a magnetic
field). As we shall now show, it can also be generally decomposed in terms of an Euler-type
equation and a continuity-type equation, with the external vectorial field playing a role similar
to the rotational part of the velocity field. Thanks to this analogy, this decomposition applies
actually to two different cases: (i) quantum fluids subjected to a magnetic field (such as in
the Ginzburg–Landau equation of superconductivity) and (ii) some fluids with a non-potential
velocity field.

Start from the general form of the Schrödinger equation for a spinless particle subjected
to a scalar field φ and to a vectorial field Kj (for example, an electromagnetic field):{

1

2
(−2iD∇ − K)2 +

φ

m

}
ψ = 2iD

∂ψ

∂t
. (43)

In order to prepare the reverse derivation in which K actually represents the rotational part
of the velocity field of the fluid under consideration, we have given here to the potential K a
form in which it has the dimensionality of a velocity. In the case of an electromagnetic field,
it is related to the vector potential A by the relation K = (e/mc)A. In the particular case
when D = h̄/2m, one recovers the Schrödinger equation of standard quantum mechanics in
the presence of a vectorial field,{

1

2m
(−ih̄∇ − mK)2 + φ

}
ψ = ih̄

∂ψ

∂t
. (44)

Note that this equation may itself be found from the scale relativistic interpretation of gauge
field theories according to which the field and the charges emerge as manifestations of
the fractality of spacetime [24, 25, 30]. In this approach, the QED covariant derivative
−ih̄∇̃ = −ih̄∇ − mK can be derived from geometric first principles, and therefore the
electromagnetic Schrödinger equation can be established as the integral of a geodesic equation
(see also [26]).

Let us expand the Hamiltonian. We obtain (reintroducing for clarity indices running from
1 to 3)

−2D2�ψ + 2iDKk∂
kψ + iD(∂kK

k)ψ +
1

2
(KkK

k)ψ +
φ

m
ψ = 2iD

∂ψ

∂t
. (45)

We now express the wavefunction ψ in terms of its modulus and of its phase,

ψ =
√

P × eiθ . (46)

Therefore we have

∂kψ = (∂k

√
P + i

√
P∂kθ) eiθ , ∂tψ = (∂t

√
P + i

√
P∂tθ) eiθ , (47)

9
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�ψ = {(∂k∂
k
√

P −
√

P∂kθ∂kθ) + i(2∂kθ∂k
√

P +
√

P∂k∂
kθ)} eiθ . (48)

The Schrödinger equation becomes, after simplification of the eiθ term in the factor,

−2D2(∂k∂
k
√

P −
√

P∂kθ∂kθ) − 2D
√

PKk∂
kθ +

(
1

2
KkK

k +
φ

m

) √
P + 2D

√
P∂tθ

+ i{−2D2(
√

P∂k∂
kθ + 2∂kθ∂k

√
P)

+ 2DKk∂
k
√

P + D(∂kK
k)

√
P − 2D∂t

√
P } = 0. (49)

3.4.1. Continuity equation. Let us first consider the imaginary part of this equation. After
multiplication by 2

√
P it becomes

−2D∂tP − 2D2(2P�θ + 2∂kP ∂kθ) + 2D(Kk∂
kP + P∂kK

k) = 0. (50)

Without the indices, it reads

∂tP + 2D(P�θ + ∇P · ∇θ) − K · ∇P − P∇ · K = 0. (51)

Let us now introduce, as in the scalar field case, a potential motion velocity field

V = 2D∇θ. (52)

We obtain

∂tP + P∇ · V − P∇ · K + ∇P · V − ∇P · K = 0. (53)

This leads us to define a full ‘velocity field’ as

v = V − K, (54)

in terms of which the above equation reads

∂tP + P∇ · v + ∇P · v = 0, (55)

and finally becomes the continuity equation

∂P

∂t
+ div(P v) = 0, (56)

which is therefore generally valid, provided it is written in terms of the full velocity field
v = V − K instead of only the velocity field V (which is linked to the phase of the
wavefunction).

3.4.2. Energy equation. Let us now consider the real part of equation (49). It reads

√
P

[(
2D∂tθ + 2D2∂kθ∂kθ − 2D2 �

√
P√

P
+

φ

m

)
− 2DKk∂

kθ +
1

2
KkK

k

]
= 0. (57)

We now use the equivalent notation S = 2mDθ (= h̄θ in the case of standard quantum
mechanics), so that the wavefunction is now defined, like in previous sections, as

ψ =
√

P × eiS/2mD. (58)

We obtain

√
P

[
∂tS +

1

2m
∂kS∂kS + φ − 2mD2 �

√
P√

P
− Kk∂

kS +
1

2
mKkK

k

]
= 0. (59)

The potential part of the full velocity field now reads

V = ∇S

m
, (60)
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and we get the energy equation

∂S

∂t
+

1

2
mV 2 +

1

2
mK2 − mV · K + φ − 2mD2 �

√
P√

P
= 0. (61)

One recognizes, once again, the emergence of the full velocity field v = V − K in this
equation, where V is potential while K is rotational. In its terms the energy equation takes the
same form as in the scalar field case, namely,

−∂S

∂t
= 1

2
mv2 + φ − 2mD2 �

√
P√

P
. (62)

When the energy is conserved, E = −∂S/∂t . We therefore recover the same three
contributions of the kinetic energy Ec = 1

2mv2, exterior potential energy φ, and quantum
potential energy

Q = −2mD2 �
√

P√
P

, (63)

as in the previous case. The quantum potential also keeps exactly its previous form in this
new (vectorial field) situation.

Let us now take the gradient of the energy equation. One obtains

∂V

∂t
+

1

2
∇(v2) = −∇

(
φ + Q

m

)
. (64)

In the potential case, 1
2∇(v2) = (v · ∇)v. But here, in the case of the rotational motion, this

relation leads to the introduction of a vorticity-like quantity, ω = curl v, i.e.,

ωαk = ∂αvk − ∂kvα = ∂kKα − ∂αKk. (65)

Since K represents here a vector potential, −ω = curl K therefore represents a magnetic-like
field. In tensorial notation we have

1
2∂α(vkvk) = vk∂αvk = vk∂kvα + vk(∂αvk − ∂kvα) = vk∂kvα + vkωαk, (66)

i.e.,

1
2∇(v2) = (v · ∇)v + v × ω. (67)

Therefore, since V = v + K and curl v = −curl K , one finally obtains the equation

∂v

∂t
+ (v · ∇)v = −∂K

∂t
+ v × curl K − ∇

(
φ + Q

m

)
. (68)

One recognizes in the right-hand side of this equation the exact analog of a Lorentz force, to
which is added the quantum force −∇Q/m. The term −∂K/∂t is the analog of the magnetic
contribution −∂A/c∂t to the electric field E = −∂A/c∂t −∇φ, while v×curl K is the analog
of the magnetic force (e/c)v × curl A (see e.g. [29]).

This equation has therefore exactly the form of the Euler equation that is expected for a
fluid of the velocity field v coupled to a scalar potential φ and to a vectorial potential K, and
subjected to an additional quantum potential Q. It agrees with the continuity equation which
is also written in terms of the full velocity field v.

11
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3.4.3. From the Ginzburg–Landau equation to fluid equations with magnetic field and quantum
potential. Such an approach can be applied to the transformation of the Ginzburg–Landau
equation of superconductivity into the classical equations for a fluid subjected to a magnetic
field and to a quantum-like potential.

Let us start indeed from the Ginzburg–Landau equation of superconductivity [35]
generalized to a coefficient D which may be different from h̄/2,(

D∇ − i
K

2

)2

ψ + αψ − β|ψ |2ψ = 0, (69)

where A = (mc/e)K is the magnetic vector potential.
From the previous decomposition, it is equivalent to the classical continuity and Euler

equations of a fluid subjected both to a Lorentz force and to a quantum potential Q, namely
(for m = 1)

∂P

∂t
+ div(P v) = 0, (70)

∂v

∂t
+ v · ∇v = −∂K

∂t
+ v × curl K − ∇Q, (71)

where P = |ψ |2 and

Q = −2D2 �
√

P√
P

. (72)

The reversibility of the transformation (see section 3.5) means that, if one applies to a classical
charged fluid a classical force having exactly the form of the ‘quantum potential’ Q (with a
coefficient D no longer limited to the microscopic value h̄/2), such a fluid would be described
by the Ginzburg–Landau equation and it would therefore acquire some of the properties of a
superconductor.

3.4.4. Euler equation when v × curl v vanishes. A more simple form of Euler equation may
be recovered in rather general situations, as we shall now see.

When v × curl v = 0, this means that v and curl v are parallel, i.e., curl v = λv (Beltrami
stream). In this case the Schrödinger in vectorial field equation takes the form of a standard
Euler and continuity system of equations for a fluid subjected to a quantum-type potential
Q = −2mD2�

√
P/

√
P and to a force FK = −∂K/∂t , namely,

∂v

∂t
+ (v · ∇)v = FK − ∇

(
φ + Q

m

)
, (73)

∂P

∂t
+ div(P v) = 0. (74)

3.4.5. Euler equation when v × curl v is a gradient. When v × curl v = ∇ξf /m,which
corresponds to curl(v × curl v) = 0, ξf plays the role of an additional scalar potential, and the
Schrödinger equation in the vectorial field may also be given the form of a standard Euler and
continuity system of equations for a fluid subjected to a quantum-type force FQ = −∇Q, with
Q = −2mD2�

√
P/

√
P , to a force FK = −∂K/∂t , and to a total force F = −∇(ξf + φ)/m,

namely,

∂v

∂t
+ (v · ∇)v = FK − ∇

(
φ + ξf + Q

m

)
, (75)

12
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∂P

∂t
+ div(P v) = 0. (76)

3.5. Inverse problem: from Euler equation with vorticity to Schrödinger equation with
a vectorial field

The previous calculations are reversible in the case when v ×curl v is a gradient, and therefore
they allow us to achieve a new result. Namely, the equations of the motion of a fluid including
a rotational component subjected to a quantum-type potential can also be integrated in terms
of a (possibly nonlinear) Schrödinger equation, the rotational part of the motion appearing in
it under the same form as an external vectorial field.

Consider a classical non-viscous fluid subjected to a scalar potential φ and described by its
velocity field v(x, y, z, t) and its density �(x, y, z, t). These physical quantities are solutions
of the Euler and continuity equations,(

∂

∂t
+ v · ∇

)
v = −∇φ − ∇p

�
, (77)

∂�

∂t
+ div(�v) = 0. (78)

In the case of an isoentropic fluid, and more generally in all cases when there exists a
univocal link between the pressure p and the density �,∇p/� becomes a gradient [31],
namely ∇p/� = ∇w, where w is the enthalpy by mass unit in the isentropic case (s = cst).
In this case we set

∇φ +
∇p

�
= ∇(φ + w) = ∇�, (79)

and the Euler equation becomes(
∂

∂t
+ v · ∇

)
v = −∇�. (80)

Let us now assume that the classical fluid is subjected to an additional force

FQ = −∇Q = 2D2∇
(

�
√

�√
�

)
, (81)

so that the Euler and continuity equations read(
∂

∂t
+ v · ∇

)
v = −∇ (w + φ + Q) , (82)

∂�

∂t
+ div(�v) = 0. (83)

The Euler equation can be written in the form

∂v

∂t
+

1

2
∇(v2) − v × curl v = −∇(w + φ + Q). (84)

In this section, we specifically consider the case when the velocity field v is no longer
potential. However, we can decompose it in terms of a potential (irrotational) contribution V

and a rotational one K. Namely, we set

v = V − K, V = ∇S. (85)
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Then we build a ‘wavefunction’ from the potential part only, by combining this function S and
the density � in terms of a complex function:

ψ = √
� × eiS/2D. (86)

Therefore ∂v/∂t = ∂∇S/∂t − ∂K/∂t = ∇(∂S/∂t) − ∂K/∂t , so that the Euler equation now
reads

∂K

∂t
− v × curl K = ∇

(
∂S

∂t
+

1

2
v2 + w + φ + Q

)
. (87)

The scalar expression under the gradient is not vanishing in the general case. We call
−χ(x, y, z, t) this function, and we may therefore write a (formal) generalized energy
equation,

−∂S

∂t
= 1

2
v2 + w + φ + Q + χ, (88)

while equation (87) now writes

∂K

∂t
− v × curl K = −∇χ. (89)

We have now recovered the conditions (energy equation and continuity equation) which
lead to the construction of a nonlinear (NL) Schrödinger-type equation in terms of a complex
linear combination of these two equations.

Therefore the whole calculation of section 3.4 can be reversed in this case (with m = 1
and P ∝ �), so that we can integrate the Euler and continuity system in terms of a nonlinear
Schrödinger-type equation including a vectorial field (analogous to the standard Schrödinger
equation of a charged particle in a magnetic field),(

D∇ − i
K

2

)2

ψ + iD
∂ψ

∂t
=

(
w + φ + χ

2

)
ψ, (90)

where we recall that ψ = √
� × exp(iS/2D). In general the pressure, and therefore the

enthalpy w is a function of the density ρ = |ψ |2, which contributes to the nonlinearity of
this equation. In the absence of vorticity, it is similar to the kind of NL Schrödinger equation
encountered in the study of superfluids and Bose–Einstein condensates (see e.g. [32, 33]).

Equation (90) can also be given an expanded form,

D2�ψ + iD
∂ψ

∂t
=

{
φ + w + χ

2
+

K2

4
+ i

D
2

∇ · K + iDK · ∇
}

ψ, (91)

where the term between brackets in the right-hand side may be interpreted, when K · ∇ψ is
negligible, as a generalized potential energy.

In this Schrödinger equation, the rotational part K of the velocity field v = V − K plays
the role of an external vector potential, and therefore the vorticity ω = −curl K the role of the
corresponding field. Its evolution equation is obtained by taking the curl of the Euler equation,
namely,

∂ω

∂t
= curl(v × ω), (92)

which is equivalent to equation (89), but without the unknown function χ .
However, the situation here remains different and more complicated than the quantum-

mechanical Schrödinger equation in an external electro-magnetic field of electric potential φ

and vectorial potential K (up to constants), which is accompanied by the Maxwell equations
for the external field. Here two terms are added, (i) the pressure p, expressed in terms of
the enthalpy w, which may be known as a function of the density ρ, i.e. |ψ |2, through a
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state equation and lead to a nonlinear contribution and (ii) the unknown function χ(x, y, z, t).
Therefore, except for the large class of flows for which χ = cst, i.e.,

∂K

∂t
− v × curl K = 0, (93)

in the general case this system of equations remains incomplete, since an equation for χ is
lacking. Nevertheless, despite this situation, this result may remain physically meaningful
and useful, since the Schrödinger equation and its solutions have general properties which are
valid whatever the applied fields. It shows that the application of a quantum-like potential on
a fluid is sufficient to transform the energy and continuity equations into a Schrödinger-like
equation for a function ψ linked to the density by ρ = |ψ |2, even in the presence of vorticity.

Let us finally consider the stationary version of equation (90) in the general case when
the pressure terms read w = p/ρ ∝ ρ (see section 3.3). We obtain(

D∇ − i
K

2

)2

ψ + αψ − β|ψ |2ψ = 0, (94)

with α = (E−φ−χ)/2. This equation has exactly the form of the Ginzburg–Landau equation
of superconductivity [35], generalized to a coefficient 2D which may be different from h̄. This
result may be applied to the two cases initially considered at the beginning of section 3.4,
namely:

(i) The case where K represents the true vector potential of a magnetic field. It may correspond
to a classical charged fluid subjected to an electromagnetic field and to a classical potential
which has been tuned in order to give it the form of the quantum potential Q. As already
remarked in section 3.4.3, the equations of motion of such a fluid (continuity equation
and Euler equation with a Lorentz force) may be combined in terms of a single complex
equation which takes the form of the Ginzburg–Landau equation of superconductivity.
One may therefore hope such a fluid to acquire some of the properties of a quantum fluid.

(ii) The case when K does not represent here an external magnetic field, but a rotational part
of the velocity field. This means that a nonlinear Schrödinger form can also be given to
the equation of motion of fluids showing vorticity and subjected to an external potential
Q having a quantum-like form.

3.6. From Navier–Stokes to the nonlinear Schrödinger equation

Let us finally consider the general case of Navier–Stokes equations including a viscosity term.
The fluid mechanics equations including a quantum-type potential read in this case(

∂

∂t
+ v · ∇

)
v = ν�v − ∇p

�
− ∇(φ + Q), (95)

∂�

∂t
+ div(�v) = 0, (96)

where the quantum-type potential energy is still given by

Q = −2D2 �
√

�√
�

. (97)

We set as in the previous section

v = V − K, V = ∇S, ψ = √
� × eiS/2D, (98)
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i.e., V is the potential part of the full velocity field v. Therefore the viscosity term reads

ν�v = ν�(∇S − K) = ν∇(�S) − ν�K, (99)

and, assuming once again ∇p/� = ∇w, the Navier–Stokes equation now takes the form

−∂K

∂t
+ ν�K − v × curl v = −∇

(
∂S

∂t
− ν�S +

1

2
v2 + w + φ + Q

)
. (100)

This equation is not generally integrable. However, it nevertheless becomes integrable for a
large class of flows, namely, those for which its left-hand side is a gradient,

−∂K

∂t
+ ν�K − v × curl v = ∇χ. (101)

In this case, one obtains an energy and a continuity equation that read

∂S

∂t
− ν�S +

1

2
v2 + w + φ + χ + Q = 0,

∂�

∂t
+ div(�v) = 0, (102)

and which can be combined into the form of a nonlinear Schrödinger equation of the magnetic
type, (

D∇ − i
K

2

)2

ψ + iD
∂ψ

∂t
= 1

2
(w + φ + χ − ν�S) ψ. (103)

The viscosity therefore leads to add a new nonlinear term in this NL Schrödinger equation that
depends on the phase S/2D of the wavefunction. When the fluid motion is irrotational, the
integration under the form of a NL Schrödinger equation of the continuity and Navier–Stokes
equations including a quantum potential is always possible.

4. A Schrödinger equation for the rotational motion of a solid

4.1. Introduction

In the previous sections, a Schrödinger form has been obtained for the equations of motion and
of continuity of a fluid subjected to a quantum potential. However, the method we used may be
applied not only to a fluid but also to a mechanical system. Indeed, we have shown [4] that the
scale relativity approach can be applied to the rotational motion of a solid, leading once again
to a Schrödinger-type equation. Here we give an improved demonstration of this Schrödinger
equation, then, as in previous sections, decompose it in terms of its real and imaginary parts,
and then obtain a new generalized form of the quantum potential. Conversely, the addition of
such a new quantum potential in the energy equation yields, in combination with the continuity
equation, a Schrödinger equation.

4.2. Equation of rotational solid motion in scale relativity

Let us briefly recall the results of [4, 36], in which a Schrödinger form was obtained for the
equation of the rotational motion of a solid subjected to the three basic effects of a fractal
and nondifferentiable space (namely, infinity of trajectories, fractal dimension 2 and reflection
symmetry breaking of the time differential element).

The role of the variables (x, v, t) of translational motion is now played respectively by
(ϕ,�, t), where ϕ stands for three rotational position angles (for example, Euler angles) and
� for the angular velocity. We choose a contravariant notation ϕk for the angles, where the
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indices run from 1 to 3, and we adopt Einstein’s convention for summation on upper and lower
indices. The Euler–Lagrange equations for rotational motion classically write [34]

d

dt

∂L

∂�k
= ∂L

∂ϕk
, (104)

in terms of a Lagrange function L = (1/2)Iik�
i�k − �, where Iik is the tensor of inertia of

the solid body and � its potential energy in an exterior field. Therefore the angular momentum
of the system is

Mi = ∂L

∂�i
= Iik�

k. (105)

The torque is given by

Ki = ∂L

∂ϕi
= − ∂�

∂ϕi
(106)

and the motion equations finally take the Newtonian form

dMi

dt
= Ki. (107)

Let us now consider the generalized description of such a system in the scale relativity
framework. Following the same road as for position coordinates, in the generalized situation
when spacetime is fractal, the angle differentials dϕ = dxϕ + dξϕ can be decomposed in terms
of two contributions, a classical (differentiable) part dxϕ and a fractal fluctuation dξϕ which is
such that 〈dξϕ〉 = 0 and〈

dξ j
ϕ dξk

ϕ

〉 = 2Djk dt, (108)

where Djk is now a tensor which generalizes the scalar parameter D of the translational case.
As we shall see in the following, this tensor is, up to a multiplicative constant, similar to a
metric tensor.

The breaking of reflexion invariance (dt ↔ −dt) on the time differential elements, which
is a consequence of the nondifferentiability, yields a two-valuedness of the angular velocity
[2, 3, 5]. This leads to introducing a complex angular velocity �̃, then a complex Lagrange
function L̃(ϕ, �̃, t). The two effects of nondifferentiability and fractality of space can finally
be combined in terms of a rotational quantum-covariant derivative [4],

d̂

dt
= ∂

∂t
+ �̃k∂k − iDjk∂j∂k, (109)

where ∂k = ∂/∂ϕk . Using this quantum-covariant derivative, we may generalize to fractal
motion the equation of rotational motion while keeping its classical form,

Ijk

d̂ �̃k

dt
= −∂j�, (110)

where Ijk is the tensor of inertia of the solid and � an externally added potential.
We then introduce a complex function (which will subsequently be identified with a

wavefunction) as another expression for the complex action S̃ = ∫
L̃ dt ,

ψ = eiS̃/S0 , (111)

where S0 is a real constant introduced for dimensional reasons. Now the complex angular
momentum is, like in classical solid mechanics, linked to the complex action by the standard
relation M̃k = ∂S̃/∂ϕk , so that one obtains

M̃k = Iαk�̃
k = −iS0∂α ln ψ. (112)
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Let us therefore introduce the inverse of the tensor of inertia, [I ]−1 = Iαk , such that

IαkI
kβ = δβ

α . (113)

This allows us to express the complex velocity field in terms of the wavefunction,

�̃k = −iS0I
kα∂α ln ψ. (114)

We can now replace the velocity field by this expression in the covariant derivative and in the
rotational motion equations. We obtain

−iS0

(
∂

∂t
− iS0I

kβ∂β ln ψ∂k − iDjk∂j ∂k

)
∂α ln ψ = Kα, (115)

which can be written as

−iS0

(
∂α

∂

∂t
ln ψ − i{S0 ∂β ln ψ Ikβ∂k∂α ln ψ + Djk∂j ∂k∂α ln ψ}

)
= Kα. (116)

We have reversed in the second equation the places of I kβ and ∂β : this is possible since I kβ is
assumed to be constant. This reversal allows one to make the operator I kβ∂k appear. Provided
the tensor of inertia plays the role of a metric tensor, we have I kβ∂k = ∂β , and we recognize
in the expression under brackets {} a tensorial generalization of the expression which was
encountered in the translational motion case, namely,

S0m
−1(∂β ln ψ∂β)∂α ln ψ + D∂k∂

k∂α ln ψ. (117)

Indeed, as recalled at the beginning of this paper, the relation

S0m
−1 = 2D, (118)

that is nothing but a generalized Compton relation, allows one to transform this expression
into a remarkable identity which leads to the integration of the motion equation in terms of a
Schrödinger equation.

Now we are able to generalize this result to the rotational motion case, despite the
complication brought by the fact that the mass is replaced by the inertia tensor. Indeed, the
inverse of the mass is replaced by the inverse tensor [I ]−1, and we can identify the fractal
fluctuation tensor with this metric tensor up to a constant, namely

Dαβ = S0

2
Iαβ, (119)

i.e., in matrix form, S0[I ]−1 = 2[D]. (Note the correction to [4, 36] where an inverse relation
between these quantities was erroneously given; the Schrödinger equation obtained in these
papers nevertheless remains correct). This is a new tensorial generalization of the Compton
relation. Moreover this means that it is the inertia tensor itself which serves as a metric tensor
and can be used to raise and lower the indices, e.g., I jk∂j ∂k = ∂k∂k , while Djk does the same
but up to a constant, namely, Djk∂j ∂k = (S0/2)∂k∂k .

The existence of a similarity between the rotational diffusion term M̂jD
jkM̂k , where

M̂ denotes angular momentum operators, and the corresponding quantum-mechanical
Hamiltonian M̂j I

jkM̂k/2 of a rigid body has already been remarked by Dale Favro [37]
in his theory of rotational Brownian motion. Here we directly identify Djk to (S0/2)I jk

(but Djk , despite its stochastic definition, should not be confused with a standard diffusion
coefficient).

The equation of motion now takes the form

−iS0

(
∂α

∂

∂t
ln ψ − i

S0

2
{I kβ∂β ln ψ∂k∂α ln ψ + I jk∂j ∂k∂α ln ψ}

)
= Kα, (120)
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and, using the tensorial notation I jk∂j = ∂k , it can now be written as

−iS0

(
∂α

∂

∂t
ln ψ − i

S0

2
{2∂k ln ψ∂k∂α ln ψ + ∂k∂k∂α ln ψ}

)
= Kα. (121)

This expression can be simplified under the form

−iS0

(
∂α

∂

∂t
ln ψ − i

S0

2
∂α

∂k∂
kψ

ψ

)
= −∂α�, (122)

and finally be written globally as a gradient,

∂αS0

{
(S0/2)∂k∂

kψ + i∂ψ/∂t

ψ

}
= ∂α�. (123)

This equation can therefore be integrated in the general case under the form of a new generalized
Schrödinger equation that reads [4, 36]

S0

(
Djk∂j ∂kψ + i

∂

∂t
ψ

)
= �ψ. (124)

In terms of the inverse tensor of inertia this rotational Schrödinger equation reads

1

2
S2

0I jk∂j ∂kψ + iS0
∂

∂t
ψ = �ψ. (125)

Since the tensor of inertia plays the role of a metric tensor, in particular for the lowering and
raising of indices, it can finally be written as

1

2
S2

0 ∂k∂kψ + iS0
∂

∂t
ψ = �ψ, (126)

which keeps the form of the scalar case [2], while generalizing it.
The standard quantum case is recovered by identifying S0 with h̄, but, once again, all

the mathematical structure of the equation (and therefore of its solutions) is preserved with a
constant that can have any value, including a macroscopic one.

We may now conclude by returning to the fractal angular fluctuations that writes in terms
of the inverse inertia tensor〈

dξ j
ϕ dξk

ϕ

〉 = S0I
jk dt. (127)

We therefore gain a complete justification of the identification of the tensor of inertia with a
metric tensor, since, owing to the fact that I kj Ijk = δk

k = 3, we obtain the invariant metric
relation

dt = Ijk

3S0

〈
dξ j

ϕ dξk
ϕ

〉
, (128)

where S0 = h̄ in the standard quantum case, and where dt (which appears instead of its square
dt2 as an expression of the fractal dimension 2) is indeed the fundamental invariant here since
all this study is done in the framework of Galilean motion relativity.

4.3. Fluid representation and newly generalized quantum potential

Let us now give this Schrödinger equation a fluid mechanical form. This can be easily done
by following the same steps as in section 3.1, but now using tensorial derivative operators. We
set

ψ =
√

P × eiS/S0 , (129)
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and we replace ψ by this expression in equation (126). The imaginary part of this equation
reads

1

2

√
P∂k∂

kS + ∂kS∂k
√

P +
∂
√

P

∂t
= 0. (130)

i.e., after simplification,

∂P

∂t
+ ∂k(P ∂kS) = 0. (131)

Since S is the real part of the complex action, it is linked to the angular momentum Mk (which
is itself the real part of the complex angular momentum) and to the real angular velocity �j

by the relations

Mα = Iαj�
j = ∂αS. (132)

Now, since I kαIαj = δk
j , we find

�k = I kαIαj�
j = I kαMα. (133)

Therefore

�k = I kα∂αS = ∂kS. (134)

Finally, we find that the imaginary part of the rotational Schrödinger equation amounts, once
again, to a continuity equation in the general case

∂P

∂t
+ ∂k(P�k) = 0. (135)

Note the correction to [4, 36], in which we concluded that this was the case only in some
particular reference systems. This means that the probability interpretation of P = |ψ |2 is
also generally ensured [5, 17].

The real part of equation (126) takes the form

∂S

∂t
+ � − 1

2
S2

0
∂k∂

k
√

P√
P

+
1

2
∂kS∂kS = 0. (136)

Let us first consider the last term of this expression. It reads
1
2∂kS∂kS = 1

2Mk�
k = 1

2Ijk�
j�k = Trot, (137)

which is the classical expression of the rotational kinetic energy. In the conservative case,
E = −∂S/∂t is the total energy, so that we recover the standard energy equation,

E = � + Q + Trot, (138)

but which now includes an additional potential energy that reads

Q = −S0
Djk∂j ∂k

√
P√

P
= −1

2
S2

0
I jk∂j ∂k

√
P√

P
. (139)

This is a new generalization of the quantum potential in the rotational case.
An Euler-like equation including this quantum potential is simply obtained by taking the

gradient of this equation, namely,

∂α

(
∂S

∂t

)
+ ∂α

(
1

2
�kMk

)
= −∂α(� + Q). (140)

Now one has ∂α(∂S/∂t) = ∂(∂αS)/∂t = ∂Mα/∂t , and since Mα = ∂αS is a gradient,
∂αTrot = �k∂αMk = �k∂kMα , so that we finally obtain(

∂

∂t
+ �k∂k

)
Mα = −∂α(� + Q), (141)
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which is indeed the expected generalization in terms of an Euler equation of the equation
of dynamics dM/dt = K in the case when the rotational velocity becomes a velocity field,
namely, � = �[ϕ(t), t].

4.4. From an Euler to a Schrödinger equation

Reversely, one may now consider a rotating body or an ensemble of rotating bodies which are
subjected to a fluctuating motion of rotation, such that the rotational velocity can be replaced,
at least as an approximation, by a rotational velocity field � = �[ϕ(t), t].

Assume, moreover, that each body is subjected, in addition to the torque −∂α� of an
exterior field, to a quantum-like torque KQ = −∇ϕQ, where the quantum potential Q is given
by equation (139).

Such a system would be described by an Euler equation and a continuity equation,(
∂

∂t
+ �k∂k

)
Mα = −∂α

(
� − 1

2
S2

0
I jk∂j ∂k

√
P√

P

)
, (142)

∂P

∂t
+ ∂k(P�k) = 0, (143)

which, after introducing the wavefunction ψ = √
P × eiS/S0 , can be recombined to yield a

generalized Schrödinger equation that reads
1

2
S2

0I jk∂j ∂kψ + iS0
∂

∂t
ψ = �ψ, (144)

so that it would be expected to show some kind of quantum-type properties. Indeed, in
the particular case S0 = h̄, we recover the standard Schrödinger equation of the quantum-
mechanical description of a rigid body which is used, e.g., for determining the rotational levels
of molecules taken as a whole. In the macroscopic case, such an equation has been applied
with positive results to the study of the probability distribution of the inclination and obliquity
of chaotic astronomical bodies [13, 36].

5. Diffusion potential opposite to the quantum potential

The question of the relation of the quantum theory with diffusion processes has been posed for
long. This domain of research includes proposals according to which the quantum behavior
may originate in a diffusion process, such as stochastic mechanics [9] (even though further
works have shown that it corresponds to no existing classical diffusion [41, 42]) or binary
random walks [43]. The relation between scale covariance, the Schrödinger equation and the
hydrodynamical picture of diffusion-type processes has also been recently studied in [44, 45].

Our aim in this section is not to study in detail this question, but to enlighten it by a
new result, according to which a diffusion process may also be written in terms of an Euler
equation including an additional potential energy, which is exactly the opposite of a quantum
potential. Such a result leads to characterize the quantum behavior, which is in many cases self-
organizing and stabilizing (as demonstrated by the existence of stationary solutions describing
stable structures such as atoms and molecules), as an opposite of the diffusion behavior, which
is instead linked to entropy increase and, most of the time, disorganization.

Let us consider a classical diffusion process. Such a process is described by the Fokker–
Planck equation:

∂P

∂t
+ div(P v) = D�P, (145)
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where D is the diffusion coefficient. When there is no global motion of the diffusing fluid or
particles (v = 0), the Fokker–Planck equation is reduced to the usual diffusion equation for
the probability P:

∂P

∂t
= D�P. (146)

This well-known equation holds for the propagation of heat (in this case P is replaced by the
temperature), for the diffusion of a fluid in a mixing of fluids (in this case P is replaced by the
concentration of the diffusing fluid), and for the Brownian motion of particles diffusing in a
fluid.

Conversely, when the diffusion coefficient vanishes, the Fokker–Planck equation is
reduced to the continuity equation,

∂P

∂t
+ div(P v) = 0. (147)

5.1. Continuity equation

Let us now make the change of variable:

V = v − D∇ ln P. (148)

Let us first prove that, in the general case v �= 0, the new velocity field V (x, y, z, t) is now
the solution of the standard continuity equation. Indeed, we obtain, by replacing V by its
expression,

∂P

∂t
+ div(PV ) = ∂P

∂t
+ div(P v) − D div(P∇ ln P) = ∂P

∂t
+ div(P v) − D�P. (149)

Finally using the Fokker–Planck equation, we find

∂P

∂t
+ div(PV ) = 0. (150)

5.2. Euler equation for v = 0

Let us now establish the form of the Euler equation for the new velocity field V . Let us
calculate its total time derivative, at first in the simplified case v = 0:

dV

dt
=

(
∂

∂t
+ V · ∇

)
V = −D

∂

∂t
∇ ln P + D2(∇ ln P · ∇)∇ ln P. (151)

Now, since ∂∇ ln P/∂t = ∇∂ ln P/∂t = ∇(P −1∂P/∂t), we can make use of the diffusion
equation so that we obtain(

∂

∂t
+ V · ∇

)
V = −D2

(
∇ �P

P
− (∇ ln P · ∇)∇ ln P

)
. (152)

We shall now use the remarkable identity [7],

1

α
∇

(
�Rα

Rα

)
= �(∇ ln R) + 2α(∇ ln R · ∇)(∇ ln R). (153)

By using it for R = P and α = 1, we can replace ∇(�P/P ) by �(∇ ln P) + 2(∇ ln P ·
∇)∇ ln P , so that equation (152) becomes(

∂

∂t
+ V · ∇

)
V = −D2 [�(∇ ln P) + (∇ ln P · ∇)∇ ln P ] . (154)
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The right-hand side of this equation comes again under the identity (153), but now for α = 1/2.
Therefore we finally obtain the following form for the Euler equation of the velocity field V :(

∂

∂t
+ V · ∇

)
V = −2D2∇

(
�

√
P√

P

)
. (155)

This result calls for the following comments:

(i) It gives an equivalence between a standard fluid subjected to a force field and a diffusion
process.

(ii) The above ‘diffusion force’ derives from a potential φdiff = 2D2�
√

P/
√

P . This
expression introduces a square root of probability in the description of a classical diffusion
process.

(iii) This ‘diffusion potential’ is exactly the opposite of the quantum potential Q/m =
−2D2�

√
P/

√
P .

The relation between quantum-type processes and diffusion processes is now enlightened
in a new way: they appear as exactly opposite, so that quantum-type behavior can be considered
as an ‘anti-diffusion’ process in this context.

The change of the sign of the potential has therefore dramatic consequences, since in
one case it yields a classical diffusion equation which is known to lead to disorganization,
irreversibility and spreading in

√
t while in the other it yields a Schrödinger equation that

allows stationary solutions and leads to structuring and self-organization.

5.3. Euler equation for v �= 0

Let us now consider the general situation of a non-vanishing global velocity field v. In order
to do this calculation we now introduce the indices in an explicit way. Equation (151) takes
the form

∂V k

∂t
+ V j∂jV

k = ∂vk

∂t
− D∂k

(
∂P/∂t

P

)
+ (vj − D∂j ln P)∂j (v

k − D∂k ln P). (156)

Accounting for the Fokker–Planck equation it becomes

∂V k

∂t
+ V j∂jV

k =
(

∂vk

∂t
+ vj ∂jv

k

)
− D∂k

(
D�P − ∂jP vj − P∂jv

j

P

)
−Dvj∂j ∂

k ln P − D∂j ln P∂jv
k + D2∂j ln P∂j∂

k ln P. (157)

After some calculation one finally obtains

∂V k

∂t
+ V j∂jV

k = −2D2∂k

(
∂j ∂

j
√

P√
P

)
+

dvk

dt
+ D{∂k∂jv

j + (∂kvj − ∂jvk)∂j ln P }. (158)

In the case when v is potential, the last rotational term vanishes and the force in the right-hand
side of this equation derives itself from a potential

� = 2D2 �
√

P√
P

− D�ϕ +
∂ϕ

∂t
+

1

2
(∇ϕ)2, (159)

where we have set v = ∇ϕ. This is in particular the case of the scale-relativistic description
(see section 2.1) where v = v+ is potential. The quantum potential (plus possibly an external
potential φ) can therefore be obtained in this case provided

∂ϕ

∂t
+

1

2
(∇ϕ)2 − D�ϕ = φ − 4D2 �

√
P√

P
. (160)
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Under this condition, the Euler and continuity equations can be integrated under the form of
a Schrödinger equation,

D2�ψ + iD
∂ψ

∂t
= 1

2
φψ. (161)

Therefore the possible values of the velocity field v = v+ differ fundamentally between the two
situations (quantum versus diffusion). In particular v+ = U +V = 0 is excluded in the quantum
case, since it leads to the standard diffusion equation. This explains how the Fokker–Planck
equation can be common to the two processes, despite their fundamental antinomy.

6. Discussion: possible applications

The aim of this paper was mainly to set the theoretical basis for observational and experimental
applications of generalized quantum-like potentials. Specific works will be devoted to each
of these applications [38, 39] that we shall therefore only briefly discuss here.

(1) The concept of quantum potential has been applied for long to standard quantum
mechanical systems coming under the Planck constant h̄ [16], in which case its amplitude
is exclusively given by −h̄2/2m. It reveals to be particularly useful for the study of
quantum fluids [32], since it can be computed in this case in terms of the density of matter
and not only of a density of probability.

(2) The new proposal here consists of looking for systems subjected to quantum-like potentials
of the form Q = −2mD2�

√
P/

√
P and their various generalizations such as, e.g.,

the tensorial form equation (139), whose amplitude could now be macroscopic. The
parameter D can now be specific of the given system and no longer be constrained
by the relation D = h̄/2m: not only the dependence on h̄ is relaxed, but also the
inverse dependence on the inertial mass. Such systems, although they remain classical
in many of their properties (they would in particular not come under indistinguishability
of identical particles, entanglement and EPR paradox, Pauli exclusion principle, etc)
would nevertheless be described, as we have shown here, by a generalized ‘wavefunction’
solution of a Schrödinger equation and satisfying the Born postulate P = |ψ |2. Note
also that this description would be valid strictly only in a subdomain of the system: due
to classical effects such as viscosity, one does not expect a complete vanishing of ψ

(and then of the density or of the fluid height), thus preventing the singularity one may
encounter for the quantum potential on nodal lines or surfaces.

We can suggest the following (possibly non-exhaustive) applications of this case:

(2.1) Systems which would manifest, at least in an approximative way, conditions leading to
the transformation and integration of the equations of motion into a Schrödinger-type
equation.

Let us consider two approaches in which such a transformation is achieved and
then analyze the conditions that underlie this transformation. The first, which involves a
diffusion process, is Nelson’s stochastic mechanics [9]. In this theory a probability density
is introduced from the beginning, which is a solution of the standard Fokker–Planck
equation (i.e., the forward Kolmogorov equation of standard diffusion theory), but also of
a ‘backward Fokker–Planck’ equation in which the average backward velocity is different
from the forward one. The problem, in the present context, is that this backward Fokker–
Planck equation is incompatible with the backward Kolmogorov equation of standard
diffusion [40] and that, as pointed out by many authors [4, 7, 41, 42], it corresponds to
no existing classical diffusion process. Moreover, the form of the mean acceleration in
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stochastics mechanics must be postulated. As a consequence, a full justification seems
to be lacking for the application of this non-standard diffusion process to macroscopic
systems, even though such an application has been proposed, in particular as a description
of the diffusion process in protoplanetary disks [46, 47].

A second approach is the scale-relativity theory of quantum spacetime. When it is
applied to standard quantum mechanics in the microphysical realm [2, 7], one assumes a
full nondifferentiability of the spacetime continuum which gives rise to the various new
contributions to the covariant derivative (equation (10)) in terms of which the motion
equation is written as a geodesic equation (equation (12)). However, when it is applied
to macroscopic systems [2, section 7.2], [4, 12], the interpretation is different. Indeed,
the same contributions to the covariant derivative (section 2) may be obtained, at least
as an approximation, provided three conditions be fulfilled: (i) the number of possible
trajectories is infinite or very large (which leads to a fluid-like description in terms of a
velocity field); (ii) each of these trajectories is of fractal dimension 2 over a large enough
range of scales (at least 104 to 105) which ensures that the relation 〈dξ 2〉 = 2D dt remains
a valid approximation of the true fluctuation on this range; (iii) there is a fundamental
irreversibility on timescales δt small with respect to the characteristic timescales of the
system, allowing a breaking of the reflexion symmetry δt ↔ −δt and a two-valuedness of
the velocity field. To these three conditions one should add a Newtonian dynamics, since
a Langevin regime, e.g., of the Brownian motion type (force proportional to velocity)
does not allow to derive a Schrödinger equation. (For a discussion of the relation between
stochastic mechanics and the fractal spacetime approach, see [2, 4, 12, 7].)

An analysis of these conditions leads to suggest (at least) two situations where they
could be fulfilled:

(2.1.1) Natural systems: we have suggested [2, chapter 7.2], [3, 4] that some chaotic systems,
studied at timescales larger than the temporal horizon of predictibility implied by the
exponential divergences, may satisfy the above conditions and could therefore be
described by a Schrödinger-type equation at these timescales. This suggestion has
been applied to the formation of planetary systems [2, 19, 20, 12]—in this case one
finds thatD = GM/2cαg , where M is the star mass and αg is a ‘gravitational coupling
constant’ [48, 19]—and more generally to the formation of structures in cosmology
[3, 4, 13]. The use of a Schrödinger representation in cosmology has also been
proposed more recently in [15], at least as a method of resolution of hydrodynamics
equations (by making h̄ → 0, as also proposed in [4]), and in [14], including the
account of a quantum potential (also previously introduced in [12]). At mesoscopic
scales, we have suggested that some aspects of living systems, which are also
characterized by fractality, stochastic fluctuations and small timescale irreversibility,
could also come under a similar description (in a yet different context) [21, 22].

(2.1.2) Experimental/artificial systems or devices: in a fractal medium achieved over a large
enough range of scales (larger than ≈ 104, the equation of propagation of particles in
this medium (provided their dynamics be Newtonian and the above three conditions
be fulfilled) could take a Schrödinger-like form [2].

(2.2) Systems subjected to a quantum-like potential Q or to a quantum-like force FQ = −∇Q.
These cases also include possible natural systems and man-made devices:

(2.2.1) Natural systems: a classical potential could, in a transient way, take at random the
form of a quantum-like potential. This could happen, e.g., for systems subjected
to a highly fluctuating external field, which would yield rare events coming under
a Schrödinger regime. A possible example is the highly fluctuating combination

25



J. Phys. A: Math. Theor. 42 (2009) 275306 L Nottale

of currents, wind and ground shape achieved in the ocean, which could lead to the
appearance of freak waves [39]. In biology, such a random and transient emergence
of a Schrödinger regime due to fluctuating environmental conditions could have been
selected during evolution on the basis of the advantages it would bring to the system
(self-organization, morphogenesis, non-dissipation, etc [10, 22]). In this application
to living systems, the nodal surfaces corresponding to divergences of the quantum
potential, instead of being a problem, may play an important and relevant role in
the description of the ‘biological fluid’, which is indeed characterized by domains
separated by walls (cells, organs, etc).

(2.2.2) Artificial/experimental devices subjected to a classical force simulating a quantum-
like force: we have suggested [22, 49] to achieve such a new kind of quantum-like
system in a laboratory experiment by applying a classical potential taking the form
of a quantum potential to a classical fluid though a retro-active loop involving real
time measurements of its density (compressible fluid) or of the height of its surface
in a basin (incompressible fluid [39]). Numerical simulations of such an experiment
have given encouraging results [38].

7. Conclusion and future prospect

In this paper, we have recalled that the continuity and Euler equations including a quantum
potential can always be integrated and combined under the form of a linear (without pressure)
or nonlinear (with pressure) Schrödinger equation (NLSE) when the fluid motion is irrotational.

In the case of the fluid motion including vorticity and therefore possibly turbulence, a
Schrödinger form can also be obtained, at least in a formal way. Such an equation is of the
‘magnetic’ Schrödinger form, in which the vorticity field plays a role similar to that of an
exterior electromagnetic field. We intend to generalize this result by considering the possibility
to use more complete tools, such as spinorial, bispinorial or multiplet wavefunctions (see [50]
for a recent attempt of implementation of this proposal), and a generalized description of the
vectorial vorticity field, using, e.g., non-Abelian gauge field theory [24].

The same transformation also holds for a classical charged fluid subjected to an
electromagnetic field to which one also applies a potential having the form of a quantum
potential. Such a fluid is then described by a Ginzburg–Landau-like equation, and it is
therefore expected to have at least some of the properties of a quantum fluid. This particularly
interesting case will be specifically studied in more detail in future works, since it could lead
to a new kind of macroscopic superconducting-like behavior.

The same method has been applied to the chaotic rotational motion of a solid, and a
generalized tensorial form of the quantum potential has been obtained in this case. Finally,
we have shown in this paper that, after a change of variable, the diffusion equation can also
be given the form of a continuity and Euler system including an additional potential energy.
Since this potential is exactly the opposite of a quantum potential, the quantum behavior may
be considered, in this context, to be equivalent to a kind of anti-diffusion. Consequences for
the inverse problem (of possible partial reversal of the motion of a diffusive fluid, see e.g.
[51]) will be considered in future works.

Let us conclude by recalling that some numerical simulations of possible future
experimental devices implementing this theoretical description have given encouraging results
[38]. Such kind of devices, in which the applied potential depends on the knowledge of some
internal measurable properties of the system (such as a density of matter, the height of the
surface of a fluid [39] or a probability density) involves a retro-action loop which may be
typical of living-like systems [22].
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