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ENERGY STRUCTURE AT 3.2 × 10
20 EV IN SPECIAL

SCALE-RELATIVITY
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Abstract. In scale relativity, one considers a space-time geometry that is
continuous but non-differentiable, which implies its fractality (i.e. a struc-
turing of the scale-space). One can show that the standard laws of dilation
correspond to a “Galilean” version of the theory. Their Lorentzian general-
ization involves the appearance of two length-scales, invariant under dilations
and unreachable, one toward the small scales that can be identified with the
Planck length-scale and the other toward the large scales that can be iden-
tified with the scale IL of the cosmological constant (Λ = 1/IL2). One of the
consequences of these new laws of dilation is the existence of a very high
energy structure at E = (3.2 ± 0.2) × 1020 eV, generated when the SU(2)
running coupling reaches the critical value 1/4π2. This predicted energy is
precisely the maximal energy observed for ultra-high energy cosmic rays by
the Fly’s Eye detector, at E = (3.2 ± 0.9) × 1020 eV.

1 Introduction

Ultra high energy cosmic rays observed beyond 1019 eV are still of unknown origin.
The highest energy shower has been observed in 1991 by the Fly’s Eye detector at
(3.2±0.9)×1020 eV (Bird et al., 1994, 1995). The second highest energy event is at
2.1×1020 eV. Such detections, and more generally the highest energy spectrum of
cosmic rays, pose an important problem, because one expects a Greisen-Zatsepin-
Kuzmin (GZK) cutoff of the energy spectrum at ≈ 4×1019 eV for travel distances
larger than about 30 Mpc, due to pion photoproduction energy losses. Such a con-
straint strongly limits the possible astrophysical sources for such events, provided
they are produced by accelerated known particles.

In order to circumvent this problem, it has been proposed that the highest
energy cosmic rays originate in the decay of topological spacetime defects such as
cosmic strings or vortons (Bonazzola & Peter, 1997). Such theories would predict
a continuing cosmic ray flux all the way up the grand-unification mass scale (1023

eV in the minimal standard model, 1028 eV if the unification is at the Planck
energy).
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2 Ultra-high energy structure in special scale-relativity

A similar proposal can be made in the scale-relativity framework (Nottale, 2003),
but with another mass scale for the primary particle. Recall that the special
scale-relativity theory (Nottale, 1992) introduces a generalized law of scale trans-
formations of a log-Lorentz form, in which the Planck length-scale becomes a
limiting, impassable, minimal scale in nature, invariant under dilations and con-
tractions, playing the role previously devoted to the zero point. Moreover, in this
new framework we expect the occurrence of new kinds of spacetime structures,
linked in particular to mass-charge relation and to the critical value 4π2 of inverse
couplings (Nottale 1996). One of these structures is given by the equation (see
Fig. 1):

α−1

2
(E) = 4π2, (2.1)

where α2 is the SU(2) weak coupling and E is the energy-scale to be solved for.
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Fig. 1. Variation with scale of the inverse couplings of the fundamental interactions U(1),

SU(2) and SU(3) in the scale-relativistic minimal standard model. This scale-relativistic

diagram (mass-scale versus inverse coupling constants) shows well-defined structures and

symmetries which are predicted by the theory (Nottale, 1996)).

The scale dependence of the α2 running coupling is given by the solution to its
renormalization group equation, that reads to first order (see e.g. Nottale 1993,
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and references therein):
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where λZ is the Compton length of the Z boson, NH is the number of Higgs
doublets, and r a running length-scale. As demonstrated in (Nottale, 1992, 1993),
this solution remains correct in the special scale-relativity framework, provided
it is written in terms of length-scale. Conversely, while one can replace ln(λZ/r)
by ln(m/mZ) in the standard model, this is no longer the case in special scale-
relativity, since a log-Lorentz factor is now involved in the mass-scale / length-scale
transformation, namely,

ln

(

λZ

r

)

=
ln(m/mZ)

√

1 + ln2(m/mZ)/ ln2(mIP /mZ)
(2.3)

Now solving Eq. 2.1 for E = mc2 with the precise value of α−1

2
(mZ) = 29.802 ±

0.027 (PDG, 2000) yields:

E = (3.20± 0.26) × 1020eV. (2.4)

Including second order corrections in the renormalization group equation and ac-
counting for the scale-relativistic correction on the fundamental constant ICZ =
ln(λZ/lP ) = 39.756 (which differs by 1% from ln(mP /mZ) = 39.436 (Nottale,
1993), one obtains an equivalent result,

E = (3.27± 0.26) × 1020eV, (2.5)

which agrees very closely with the maximal energy of cosmic rays observed at
(3.2 ± 0.9) × 1020 eV (see Fig. 2). Due to the large value of this energy, the
agreement would remain remarkable even if the experimental error revealed to be
underestimated.

Such a result, provided it is confirmed by future observations, e.g. at the Pierre
Auger observatory, allows one to put to the test the number of Higgs doublets
and the scale-relativistic log-Lorentz factor. Indeed, the predicted energy becomes
8.0×1019 for 0 Higgs doublet (excluded) and 1.7×1021 for 2 Higgs doublets (which
will be excluded if no showers at energies larger than 3.2× 1020 eV are observed).
This is a confirmation of our result concerning the fine structure constant (Nottale,
1996):

α−1 = (137.04± 0.03) + 2.11(NH − 1), (2.6)

that already strongly excludes NH 6= 1.
This effect could also be used to discriminate between the Galilean scale-

relativistic (i.e. standard) and Lorentzian scale-relativistic theory. Indeed, in
the absence of a log-Lorentz factor, one obtains for one Higgs doublet E =
(2.0 ± 0.12) × 1019 eV, which is smaller than the Fly’s Eye energy by a factor
16 and lies below the GZK cutoff.
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Fig. 2. Comparison of the theoretical prediction with the Fly’s Eye detection (see text).

With additional Higgs doublets, one obtains (1.9±0.1)×1020 eV for 3 doublets
and 7.2×1020 eV for 4 doublets. The first value is already too low and the second
will be excluded if the present limiting energy is not exceeded by future detections.
This is therefore a new test of the log-Lorentz factor, that is added to other previous
tests (Nottale, 1992, 1993).

3 Conclusion

Such a proposal, namely the decay of a new particle of mass 3.2 × 1020 eV/c2, is
falsifiable, since in this case one would not expect to find cosmic rays of energy
far larger than the Fle’s Eye value. Moreover, if it were confirmed, the distance
limits set on the source no longer apply. This reopens the possibility of a galactic
source (as supported by the arrival direction that lies close to the galactic plane,
at b = 9.6 deg), or of a very distant extragalactic source: hence 3C147, a QSO of
redshift 0.545, lies within the 1σ error box (Elbert & Sommers 1995).
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GENERALIZED MACROSCOPIC SCHRÖDINGER EQUATION

IN SCALE RELATIVITY

Célérier, M.N.1 and Nottale, L.1

Abstract. The scale transformation laws produce, on the motion equations
of gravitating bodies and under some peculiar assumptions, effects which are
anologous to those of a ”macroscopic quantum mechanics”. When we con-
sider time and space scales such that the description of the trajectories of
these bodies (planetesimals in the case of planetary system formation, in-
terstellar gas and dust in the case of star formation, etc...) is in the shape
of non-differentiable curves, we obtain fractal curves of fractal dimension 2.
Continuity and non-differentiability yield a fractal space and a symmetry
breaking of the differential time element which gives a doubling of the veloc-
ity fields. The application of a geodesics principle leads to motion equations
of Schrödinger-type. When we add an outside gravitational field, we obtain a
Schrödinger-Poisson system. We give here the derivation of the Schrödinger
equation for chaotic systems, i.e., with time scales much longer than their
Lyapounov chaos-time.

1 Introduction: the foundations of scale relativity

The scale relativity theory is a geometric representation of nature (as General
Relativity is a geometric representation of gravitation) based on a continuity hy-
pothesis and constrained by the relativity principle. It includes in its description
non-differentiable manifolds, thus the fractal character of space-time in the general
meaning: fractal ≡ LDT

(ε) −→

ε→0
∞ (for the demonstration see (Nottale, 1993)).

This approach involves a scale dependence of the reference frames. We therefore
add to the standard variables (position, orientation and motion), which charac-
terize the reference frame, other variables characterizing its scale state. The use
of differential equations is made possible thanks to the representation of physical
quantities, usually mere functions of the space-time coordinates f(x), by fractal
functions f [x(ε), ε], explicitly depending on the scale variables, generically noted
ε.

1 Laboratoire Univers et THéories (LUTH), Observatoire de Paris-Meudon, 5 place Jules
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Generalizing the definition of fractal functions to fractal space(-time)s (fractal
space(-time) ≡ equivalence class of a family of Riemannian space(-time)s), we
obtain scale dependent geodesics equations and, therefore, an infinite family of
geodesics.

2 Dynamics in scale relativity

In the scale relativity theory, the Schrödinger equation is derived from three fun-
damental conditions which are consequences of the non-differentiability:

(1) The fractality of space, which implies that the number of geodesics is infi-
nite. We are therefore led to use a fluid-like description where the velocity v(t) is
replaced, as a first step, by a velocity field v[x(t), t].

(2) The fractal geometry of each geodesic, which implies that the velocity
field is actually a fractal function, V [x(t, dt), t, dt], explicitly depending on a scale
variable, identified, in the present case, to the differential element dt. One can
show (Nottale, 1993) that it can be decomposed in terms of the sum of a classical
(differentiable) velocity field and of a divergent fluctuation field,

V [x(t, dt), t, dt] = v[x(t), t] + w[x(t, dt), t, dt] = v

[
1 + ζ

( τ
dt

)1−1/DF

]
, (2.1)

where DF is the fractal dimension of the geodesics. The w function is a fractal
fluctuation which is described in terms of a stochastic variable such that (for the
critical case DF = 2)

< wi >= 0 < wiwj >= δij

(
2D

dt

)
. (2.2)

(3) The non-differentiability of space, which breaks the local reflection invari-
ance of the time differential element dt. As a result, two fractal velocity fields
V+ and V−are defined, which are fractal functions of the scale variable dt. Each
velocity field split, as in Eq.(2.1), into

V+ = v+[x(t), t] + w+[x(t, dt), t, dt], V− = v−[x(t), t] + w−[x(t, dt), t, dt]. (2.3)

2.1 Covariant derivative operator

Even after the transition to the “classical” domain is completed, there is no reason
for the two velocities v+ and v− to be equal. The natural choice for a mathematical
representation of this twin-process is the use of complex numbers (Célérier and
Nottale, 2004). The elementary displacement for each of the two processes, dX±,
can thus be written as the sum of a scale independent “classical” term and a
fluctuation around this term,

dX+(t) = v+ dt+ dξ+(t), dX−(t) = v− dt+ dξ−(t). (2.4)
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Two “classical” derivative d/dt+ and d/dt−are defined , which are applied to the
position vector x to obtain the two “classical” velocities,

d

dt+
x(t) = v+

d

dt−
x(t) = v−. (2.5)

To recover local reversibility of the time differential element, the two derivatives
are combined in terms of a complex derivative operator,

d́

dt
=

1

2

(
d

dt+
+

d

dt−

)
−
i

2

(
d

dt+
−

d

dt−

)
, (2.6)

which, when it is applied to the position vector, gives a complex velocity,

V =
d́

dt
x(t) = V − iU =

v+ + v−
2

− i
v+ − v−

2
. (2.7)

Now, the total derivative with respect to t of a function f(x, t) contains finite
terms up to the highest order. For a fractal dimension DF = 2, it writes

df

dt
=
∂f

∂t
+ ∇f.

dX

dt
+

1

2

∂2f

∂xi∂xj

dXidXj

dt
. (2.8)

The “classical” scale independent part of the term dXidXj/dt is finite and equal
to < dξi dξj > /dt = ±2 D δij . The last term of the scale independent part of this
equation is therefore a Laplacian, and the final expression for the complex time
derivative operator is derived (Nottale, 1993)

d́

dt
=

∂

∂t
+ V .∇− iD∆ . (2.9)

2.2 Improving the covariant tool of scale relativity

This operator is a linear combination of first order and second order derivatives,
so that its Leibniz rule is also a linear combination of the first order and second
order Leibniz rules. Now the covariant character of this tool can be improved by
introducing a ‘symmetric product’ (Pissondes, 1999) in terms of which the first
order form is recovered. Another solution consists of defining a complex velocity
operator, whose non-relativistic version is (Nottale, 2004)

V̂ = V − iD ∇ . (2.10)

The covariant derivative is now written as an expression that keeps the standard
(first order) form of the decomposition of a total derivative into partial derivatives,
namely

d́

dt
=

∂

∂t
+ V̂ .∇ . (2.11)
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More generally, one defines the operator:

d̂́ f

dt
=
d́ f

dt
− iD ∇f.∇ . (2.12)

The covariant derivative of a product now writes d́ (fg)/dt = g ̂d́ f/dt+ f ̂d́ g/dt
i.e., one recovers the form of the first order Leibniz rule for products. Thanks
to this formal tool, the standard form of the equations is preserved, i.e., a full
covariance under the generalized transformations considered here is ensured.

2.3 Newton-Schrödinger equation

Standard classical mechanics can now be generalized using this covariant tool. The
application of a Lagrangian formalism yields the scale relativistic Euler-Lagrange
equations (Nottale, 1993), i.e.,

(1) For the case of inertial motion, a geodesics equation: d́ V/dt = 0.
(2) For the case when the external structuring field is a scalar potential Φ, a

Newton-type equation of dynamics: md́ V/dt = −∇Φ.
A complex wave function is introduced, which is another expression for the

complex action S: ψ = eiS/S0 . We substitute it into the Euler-Lagrange equation,
as well as the complex velocity which is the gradient of the complex action: V =
∇S/m. The choice S0 = 2mD finally allows to write this equation as a gradient,
which, after integration, yields the Newton-Schrödinger equation (Nottale, 1993),

D
2∆ψ + iD

∂

∂t
ψ =

Φ

2m
ψ . (2.13)

3 Conclusion

We have recalled how, under three general conditions involving non-differentiability
and fractality, the fundamental equation of dynamics can be transformed to take
the form of a generalized Schrödinger equation. Such an equation is naturally
structuring, since, once the potential, the symmetry and limiting conditions are
specified, its solutions yield probability densities that describe the tendency for the
system to make structures (Nottale, 1997). Various applications of this approach
are given in other contributions to the present issue.
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STRUCTURE FORMATION BY THE HARTREE EQUATION
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Abstract. The Scale Relativity theory predicts that the formation of
structures in gravitational interaction can be described by a Hartree equation
or equivalently by a set of coupled Schrödinger and Poisson equations. This
system is similar to the one used in quantum gravity (with matter only being
quantized, not the field), but with the substitution of (h̄/m) by a parameter
depending of the system under study. As applications we show the formation
of structures in a medium with a homogenous density and the formation of a
disk around a central star. We describe also the phase of nonlinear dynamical
evolution which is thought to converge asymptotically in time towards the
equilibrium linear solutions.

1 Introduction

In scale relativity (see e.g., Célérier & Nottale, 2004 and this issue), in order
to describe gravitational structure formation one is led to write an Hartree-like
equation, similar to the one encountered in quantum gravity systems as :

iD
∂ψ

∂t
+ D2∆ψ −

(φ+ φext)

2m
ψ = 0, (1.1)

∆φ = 4πGmρ = 4πGm |ψ|
2
, (1.2)

where D depends of the size of the considered system (within a multifractal de-
scription). In Eqs (1.1-1.2) ψ(x, t) is the wave function of an auto-gravitating
system of mass m with a gravitational potential energy φ in presence of a possible
external potential energy φext. Matter is quantized by the choice ρ = |ψ|

2
. In such

a description, structure formation is expected to be the signature of quantum-like
effects at the macroscopic level (which take their origin in the fractality of space,
see Nottale, 1993). Two main situations will be considered :

a) φext = −GmM/r (Kepler potential) with a main star of mass M , suitable
to describe accretion disk formation;

1 LUTH, UMR8102 CNRS, Observatoire de Paris-Meudon, 92195 Meudon
2 Lab. Math., Equipe EDP et Analyse numérique, Univ. de Paris XI, Orsay
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b) φext = Ar2 (harmonic potential) suitable to describe large scale structures
from a cosmological background density ρb, with A = 2πGmρb/3.

Two-dimensional spatial versions of a) and b) have been also studied, with in
case a) φext behaving as ln r.

In a previous study (da Rocha & Nottale, 2003) linear eigensolutions of the
system (i.e., without equation (1.2)) for the wave function in presence of the ex-
ternal potential have been only given. These solutions predict structures which
are strikingly similar to observations (da Rocha & Nottale, 2003; Galopeau et al.,
this issue). Here we investigate numerically the nonlinear stage of these equations.

2 Short description of the numerical code and some mathematical properties

We have designed a code to solve the coupled Schrödinger and Poisson (or Hartree)
equations. This code uses both a spatial (1D, 2D or 3D) and temporal finite
differences written in Cartesian units (a radial 1D code is also available) and it
computes the time evolution of the solution for a given initial condition (Cauchy
problem), ψ(x, t) = 0.We use a Crank-Nicolson symmetrical implicit scheme which
is unconditionally stable. At each time step, a nonlinear discrete algebraic system
is solved by a fixed point method. Tests are showing a good conservation by the
discretization procedure of the mass, the energy and the angular momentum.

Some mathematical results are known about the Hartree equations (in partic-
ular without external potential) and we give only some of them here :

−Contrary to the nonlinear Schrödinger equation (which is close to the Hartree
equation by taking a singular limit) with a focusing nonlinearity the solutions are
global in time for regular enough initial conditions.

−Theorems also prove the existence of bound states for this equation since the
energy of the system is bounded by below; these nonlinear bound states can be
of the soliton type and are the equivalent of the eigen-energy levels for the linear
Schrödinger equation in a confining external potential.

−The energy ε and the mass M are fundamental invariants of the system and
we have dε/dt = 0 and dM/dt = 0, where

M =

∫
|ψ|2dnx, ε =

∫
(∇ψ.∇ψ∗ +

1

2
Φ|ψ|2)dnx. (2.1)

−The T kinetic energy and the Vp potential energy are defined by

T =

∫
∇|ψ|2dnx, Vp =

∫
ϕ|ψ|2dnx, ε = T +

1

2
Vp. (2.2)

− In the stationnary case of energy eigenvalue E we have a nonlinear virial
theorem as T = − 1

3
E, Vp = 4

3
E, ε = 1

3
E. It is the equivalent of the familiar

linear virial equipartition theorem for which < T >= n
2
< V > if V ∼ rn.

In particular all the energy eigenvalues are negative for the bound states.
− A property of dispersion of the wave function has been shown as follows: for

the momentum Q =
∫
|x|2|ψ|2dnx, if the initial data are smooth enough for Q to
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be defined, one gets the relation Q′′ = 8ε− 2Vp. If φ is everywhere negative then
Vp is negative also. If also ε is positive, then Q will grow quadratically with time:
a solution with a positive energy will be hence dispersive contrary to the bound
states of negative energy.

3 Numerical procedures and results

Solutions without external potential (purely autogravitating sytems).
−Bound states: We have looked first for the bound localized radial (stationnary
states) of the Hartree equation by means of the shooting method. Solutions are
searched in the form ψ(x, t) = eıωtu(x) with ψ(x, 0) = u0(x), with normalization
of the equations such that D = 1 and 4πG = 1 in Eqs (1.1-1.2) with φext = 0.

We have to solve the equations (for ω given):

−ωu+ ∆u− φu = 0, ∆φ = uu∗, lim
‖x‖→+∞

u(x) = 0. (3.1)

This step is achieved using a simpler code involving a radial ordinary differential
equation. For example, we have found the solutions in 3D for the fundamental
radial ground state and for the excited state. Results have been also obtained for
1D and 2D spatial dimensions.
−Time evolving solutions: The stationnary above solution for ψ is injected in the
time dependent code and we have checked that its remains stable with time; results
were obtained in 2D and 3D spatial dimensions for various initial conditions.

The Keplerian case. We first look for the stationnary states in 3D of the
normalized equations (1.1-1.2) with a φext scaling in w0/r where D = GM/2w0,
w0 being a velocity, typically w0 = 144 km/s for the inner solar system and the
presently discovered extrasolar planetary systems (see Galopeau et al., this issue).

We have found bound states in this case and we have implemented them as
initial conditions in the time evolving code showing the stability in time of the
solution, see Fig. 1. Note that the radial width of the localized state becomes
only slightly shrinked and yields a typical size structure.

-2D case: various sub-cases have been studied with an initial mass ring and
a central star for a 1/r potential but also for a true 2D ln r Coulomb potential.
Both cases (not presented here but in a future publication) show a tendency to
accretion and disk formation.

-3D case : we have tried various conditions like an initial 3D torus or with an
initial crown of matter. In both cases outer matter is attracted towards the center
forming structures.

The harmonic potential case. In this case due to the growth of the external
potential in r2 at infinity we have not yet found possible stationnary solutions. But
we have implemented the time dependent equations with a Gaussian radial initial
solution since the solutions of the corresponding linear Schrödinger equation are
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Fig. 1. ψ(x, t) for autogravity and 1/r Kepler potential of equal strength.

the Hermitte polynomials. Here a charateristic size is given by a = (2D/ω)1/2 with
ω = (3/2πGρb)

1/2, while the coefficient D can be deduced from the observations.
The figure 2, for example, shows a simulation in 3D with a conservation of the

initial central Gaussian shape versus time.

Fig. 2. ψ(x, t) for autogravity and r2 harmonic potential of equal strength.

4 Conclusions

We have shown that the Hartree equation can lead to structure formation in its
nonlinear stage. The bound states are found to be stable in time. This confirms
previous studies using the linear Schrödinger equation on the possible time asymp-
totic states and their relevant morphology in connection with the observations.
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SCALE RELATIVITY AND DARK POTENTIAL

Nottale, L.1

Abstract. In the framework of the theory of scale relativity, one con-
siders a geometry that is not only curved, but also non-differentiable and
therefore fractal, i.e. structured along scales. The equation of dynamics (i.e.
of geodesics) in such a space can be integrated in terms of a generalized
Schrödinger equation. Then one can show that, in analogy with the curva-
ture manifesting itself as the Newton potential (to first approximation), the
fractality leads to the appearance of a new potential energy. This result al-
lows one to suggest a new alternative solution, of geometrical nature, to the
problem of the effects that are usually attributed to unseen, non baryonic
dark matter.

1 Introduction

Recall that up to now two hypotheses have been formulated in order to account for
the numerous effects which are unexplainable by the sole action of the gravitational
force of visible matter (flat rotation curves of spiral galaxies, large velocity dis-
persion of clusters of galaxies, cosmological energy balance, gravitational lensing,
formation and evolution of structures, ...):

(i) The existence of a very large amount of unseen matter in the Universe:
however, despite intense and continuous efforts, it has escaped detection.

(ii) A modification of Newton’s law of force: however, such an ad hoc hypothesis
seems impossible to reconcile with the geometric origin of gravitation in general
relativity, which lets no latitude for modification.

An alternative proposal (Nottale, 2001, 2003; Da Rocha & Nottale, 2003) is
recalled in this contribution. In the scale-relativity approach, the space-time ge-
ometry is not only curved, but also fractal (beyond some relative transition scale).
This fractality manifests itself in terms of an additional potential energy. We can
therefore consider the new possibility that this “dark potential” be the cause of the
non-Newtonian effects. In such a proposal, there would be no need for additional
non-baryonic matter, and Newton’s potential would be unchanged since it remains
linked to the mere curvature.

1 LUTH, CNRS, Observatoire de Paris-Meudon, 92195 Meudon, France.
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2 New scalar field manifesting the fractality of space-time

Recall that, starting from three minimal conditions arising from non-differentiability,
namely, {(i) infinity of geodesics; (ii) decomposition of each elementary displace-
ment in terms of the sum of a classical variable and a fractal variable of fractal
dimension 2; (iii) two-valuedness of the velocity vector due to irreversibility in the
reflexion (dt↔ −dt)}, the geodesics equation in a curved and fractal space(-time),

m
d́ V
dt

+ ∇φ = 0, (2.1)

can be integrated in the form of a generalized Schrödinger equation (see e.g.
Célérier & Nottale, this issue) that writes at the Newtonian limit:

D2∆ψ + iD ∂

∂t
ψ =

φ

2m
ψ, (2.2)

where D characterizes the fractal fluctuation, and φ is the Newtonian potential
energy, which is a solution of the Poisson equation:

∆φ = 4πGmρ. (2.3)

From our description of the motion in terms of an infinite family of geodesics, the
meaning of P = ψψ† is imposed as giving the probability density of the particle
positions, in agreement with Born’s postulate (Célérier & Nottale, 2004). Indeed,
separating the real and imaginary parts of the Schrödinger equation and writing it
in terms of P and of the classical velocity V (which is the real part of the complex
velocity V), we obtain respectively a generalized Euler-Newton equation and a
continuity equation (Nottale et al., 2000):

(

∂

∂t
+ V · ∇

)

V = −∇
(

φ+Q

m

)

, (2.4)

∂P

∂t
+ div(PV ) = 0. (2.5)

This system of equations is equivalent to the classical one used in the standard
approach of gravitational structure formation, except for the appearance of an
additional potential energy Q which reads:

Q = −2mD2
∆
√
P√
P

. (2.6)

This potential energy is a manifestation of the fractality of space, in the same way
as the Newtonian potential is a manifestation of space-time curvature. Therefore
this system of equations is similar to that used under the dark matter hypothe-
sis, since in that case one also adds to the potential φ due to visible matter (and
to small amounts of baryonic dark matter), an additional potential φDM which
is linked through a Poisson equation to the postulated non-baryonic dark mat-
ter density. However, there is a fundamental difference (in addition to the fact
that here the new potential energy Q is not postulated, but derived from first
principles), since now the link of Q to the density is not Poissonian.
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3 Energy balance

We are therefore led to investigate the possibility that its existence may contribute
explaining the various dynamical effects presently attributed to unseen dark mat-
ter. Indeed, let us come back to the Schrödinger form of these equations. Two
extreme situations (and any intermediate case between them) can be considered:

(i) The particles fill the probability density distribution, so that the density of
matter is proportional to the density of probability, ρ ∝ P . In this case the sys-
tem of equations is a coupled Schrödinger-Poisson (Hartree) system. The general
existence of steady-state solutions with conserved total energy has been demon-
strated for this system (see refs. in Nottale, 2003). This case corresponds to a
self-gravitating body, such as a cluster of galaxies.

(ii) There are only very few test-particles, so that from the view-point of matter
density, we deal with the vacuum. This case corresponds e.g. to the outer regions
of spiral galaxies (in the absence of large amounts of dark matter as assumed here).
Therefore φ is a solution of ∆φ = 0, i.e. φ = −GmΣi(Mi/ri). The Schrödinger
equation with such a potential does have general stationary solutions.

Therefore in both cases, we can write a time-independent Schrödinger equation:

2mD2∆ψ + (E − φ)ψ = 0, (3.1)

where φ is the steady-state solution for the potential. In the gravitational macro-
scopic case considered here, this equation is subjected to the principle of equiv-
alence (contrarily to the standard microscopic quantum mechanics, where D =
h̄/2m), and therefore it does not depend on the inertial mass m of the bodies
whose distribution is described. For steady-state solutions, one finds the general
energy balance relation:

E = φ+Q+
1

2
mV 2(x, y, z), (3.2)

which is therefore increased with respect to the standard description by the con-
tribution of the new potential energy.

4 Applications

Let us briefly apply this method to two typical cases of astrophysical situations
where anomalous dynamical effects (usually accounted for in terms of dark matter)
have been identified.

4.1 Flat rotation curves of spiral galaxies

Let us consider a very simplified argument. Under the hyspothesis that there is no
matter beyond the visible radius r0, the virial theorem yields φ = −2Ec, so that
v =

√

GM/r, where M is the galaxy mass, while a constant velocity v = v0 is
observed. Now, in a Kepler potential the additional potential energy (that comes
from the fractality of trajectories, see Fig. 1) readsQ = −(GMm/2rB)(1−2rB/r),
so that one obtains a constant velocity beyond r0, provided r0 = 2rB .
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Fig. 1. Example of numerical simulation of trajectory in a Kepler central potential, based

on the basic scale-relativity equations.

4.2 Velocity dispersion of clusters of galaxies

The description of clusters of galaxies comes under the Hartree system, which
should be solved numerically. However, one can use the fact that the solution
will be subjected to a generalized Heisenberg relation that reads σx × σv ≈ 2D =
GM/2w0, where w0 is a universal constant which characterizes the fractal fluc-
tuation (see e.g. Da Rocha & Nottale 2003). Its value has been found to be
w0 = 144 km/s in several systems at several various scales. In this case a typical
velocity dispersion for large clusters of ≈ 800 km/s can be obtained for a small
cluster mass M ≈ 5 × 1013 M� that does not include excedentary non-baryonic
dark matter, since we get the numerical relation: (1 Mpc) × (800 km/s) = G
×(5 × 1013 M�)/2× (144 km/s).

5 Conclusion and prospect

This new road of research about the ‘dark matter problem’ has given encouraging
preliminary results, so that we intend to develop it along the following lines: (i)
research of analytical and numerical solutions of the Schrödinger-Poisson system
(see Lehner et al, this issue); (ii) meaning of the new potential Q and of the
fluctuation coefficient D; (iii) application to gravitational lensing; (iv) application
to the cosmological energy balance.
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DISTRIBUTION OF ORBITAL ELEMENTS OF PLANETS

AND EXOPLANETS IN SCALE RELATIVITY
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Abstract. In the framework of scale relativity, we describe the motion
of planetesimals in the protoplanetary nebula in terms of a fractal and irre-
versible process. As a consequence the equation of dynamics can be trans-
formed to take a Schrödinger-like form. Its solutions yield a planetesimal
distribution showing peaks of probability for particular values of conservative
quantities such as the energy and the Runge-Lenz vector. After accretion,
this results in expected probability peaks of the semi-major axis distribution
at an = (GM/w2)n2, and of the eccentricity distribution at e = k/n, where k
and n are integer numbers, M is the star mass and w is a constant having the
dimension of a velocity. The current observational data in our solar system
and extrasolar planetary systems support these predictions in a statistically
significant way: we show that these systems are hierarchically organized in
terms of a sequence of constants which are multiples and submultiples of
w = 144.7 ± 0.5 km/s. New validations of the theoretical predictions are
given concerning the very inner solar system including the Sun itself, the
distant Kuiper belt and exoplanets recently discovered very close to their
star (at about 0.02 AU/M�).

1 Distribution of Semi-Major Axes and Eccentricities of Planets

Several features of the newly discovered exoplanets are in good agreement with
the predictions derived from the theory, in particular: (i) the accumulation of
exoplanets around the same a/M values as the planets of our own solar system
(notably around 0.043 UA/M� which corresponds to a Keplerian velocity of w0 =
144 km/s); (ii) the existence of large eccentricities and probability density peaks
for their possible values; (iii) the existence of imbricated levels of organization
for planetary systems (in correspondence with the intramercurial, inner and outer
systems in our solar system).

1 CETP, CNRS, IPSL, Vélizy, France
2 LUTH, CNRS, Observatoire de Paris-Meudon, France
3 Observatoire de la Côte dAzur, Département Fresnel, Grasse, France
4 LERMA, CNRS, Observatoire de Paris-Meudon, France
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Fig. 1. Histogram of n = w0(P/2πGM?)1/3 for exoplanets and inner solar system.

Fig. 2. Left: histogram of the semi-major axes for the outer solar system. Right: his-

togram of the distribution of n = w(P/2πGM?)1/3 for the very outer solar system (Sedna

and scattered Kuiper belt objects) with base w = 144/(5 × 7) = 4.11 km/s.

2 Period of Solar Activity Cycle

We expect the solar surface activity to be subjected to a fundamental period (which
is nothing but the macroscopic equivalent of a de Broglie period for the Sun) given
by: τ = 2πmD/E = 4πD/(v2

rot
+ v2

turb
) = 2πGM�/w�(v2

rot
+ v2

turb
) where the

energy E results from the rotational velocity vrot and the turbulent velocity vturb

and D = GM�/2w�. The average sideral rotation period for the Sun is 25.38
days, yielding a velocity vrot = 2.01 km/s, the turbulent velocity has been found
to be vturb = 1.4 ± 0.2 km/s. Taking w� = 3 × 144 km/s (which corresponds to
the Keplerian velocity near the Sun radius), we find: τ = 10.2±1.0 yr whereas the
observed period of the solar activity cycle is τobs = 11.0 yr.
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