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Abstract

We apply the theory of scale relativity [1], [2], [3] to the equations
of rotational motion of solid bodies. We predict in the new framework
that the obliquities and inclinations of planets and satellites in the solar
system must be quantized. Namely, we expect their distribution to be
no longer uniform between 0 and π, but instead to display well defined
peaks of probability density at angles θk = kπ/n. We show in the present
letter that the observational data agree very well with our prediction for
n = 7, including the retrograde bodies and those which are heeled over
the ecliptic plane. In particular, the value 23◦27′ of the obliquity of the
Earth, which partly determines its climate, is not a random one, but lies
in one of the main probability peaks at θ = π/7. Copyright 1998 Elsevier
Science Ltd. All rights reserved

1 Introduction

The theory of scale relativity is founded on the giving up of the implicit hypoth-
esis of the differentiability of space-time. Let us briefly recall the main steps of
its construction. A more detailed account can be found in the book [1], in the
more recent review paper [2] and in references therein.

(i) We give up differentiability of space-time coordinates while keeping their
continuity. This implies their explicit dependence on resolutions. In a frac-
tal space-time, the various physical quantities, then the equations of physics,
become scale-dependent.

(ii) We re-interpret resolutions as essential, intrinsic variables that charac-
terize the relative state of scale of the reference system, in the same way as
velocities characterize its state of motion.

(iii) We extend Einstein’s principle of relativity and principle of covariance,
in order to include the new scale transformations.
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(iv) The scale laws to be constructed are found to combine a standard frac-
tal (power-law) behavior at small and large scales, and a transition to scale-
independence at intermediate scales (scale symmetry breaking). In other words,
space-time, that is Riemannian at intermediate scales, becomes fractal toward
very small and very large scales.

(v) In the fractal domains, scale-covariance transforms classical mechanics
into a quantum-like mechanics. In what follows, we shall apply this result to
the rotational motion of a solid body.

Scale relativity, when combined with the laws of gravitation, provides us
with a general theory of the structuring of gravitational systems. We have al-
ready shown [1], [4], [5] that the theory accounts in a very constrained way for
several structures observed in the Solar System, including planet distances, ec-
centricities, and mass distribution. More recently, we have demonstrated that it
also applies to all extra-solar planetary systems, in terms of the same universal
constant as in our own Solar System [3]. In particular, the system of three plan-
ets discovered around the pulsar PSR B1257+12 agree with our prediction with
a very high precision of some 10−4 [3], [6]. The theory also explains the various
Tifft’s effects [7], [8] of redshift quantizations in the galactic and extragalactic
domains [2], [6], [9] and predicts new quantization effects [10].

Now the ability of the theory to predict structures (in terms of peaks of
probability density) must be true not only for translational motion, but also
for rotational motion. It is the aim of the present letter to check this claim
by applying the theory to the distribution of obliquities and inclinations in the
Solar System. We predict that this distribution must show peaks of probability
density distributed in a periodical way, then we show that the available data
agree with this theoretical prediction.

2 Theory

The classical equations of motion of a solid body can be given the form of Euler-
Lagrange equations, and therefore come in a very easy way under our theory,
since our ”quantization” procedure applies in a general way to these equations
[1]. We adopt throughout this section the tensorial notation (a summation is
meant on all couples of identical indices).

Let us first recall how the problem is posed in classical mechanics. The role
of the variables (x, v, t) is now played by (ϕ,Ω, t), where ϕ stands for the three
rotational Euler angles and Ω for the angular velocity. The Lagrange equation
writes :

d

dt

∂L

∂Ω
=
∂L

∂ϕ
, (1)

with respect to the rotational coordinates. The Lagrange function writes:
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L =
1

2
mv2 +

1

2
IikΩiΩk − U, (2)

where Iik is the tensor of inertia of the body. In general, one choses for simplicity
to define the rest frame by the principal axes of inertia of the solid body. In this
reference frame, the tensor of inertia is diagonal, Iik → Ik. For a solid body, the
right-hand member of Eq. 1 writes:

∂L

∂ϕ
= −

∂U

∂ϕ
= K =

∑
r × F, (3)

which identifies with the total torque, i.e., the sum of the moments of all forces
acting on the body [11]. In the left-hand member one recognizes the angular
momentum about the center of mass,

Mk =
∂L

∂Ωk

= Ikj Ωj, (4)

and we finally recover a rotational equation of dynamics similar to Newton’s:

Ijk
dΩk

dt
= Kj. (5)

In the scale relativity framework, the above classical mechanics equations
become wrong on large time scales. We shall now see that they must be replaced
by quantum-mechanical like equations (whose interpretation is, however, partly
different from that of standard quantum mechanics).

Let us assume that the rotational motion of the solid body under consider-
ation is highly chaotic, either because of external perturbations by the environ-
ment, or because of the fractal and non-differentiable geometry of space-time
(that plays the role of a universal perturbation), or both, and let us place our-
selves on time-scales large with respect to the chaos time. We are in the same
conditions as in the theory of translational motion, but now the position an-
gles have replaced the coordinates, and the tensor of inertia have replaced the
mass, which implies a generalization of our equations. In our nondeterministic
approach, we definitively give up the hope to make strict predictions about the
values of these angles, and we now work in terms of probability amplitude for
these values. By this way we become able to predict structures, since all values
of the angles will no longer be equivalent, but instead some of them will be
favored, corresponding to peaks of probability density.

Following the same road as for position coordinates, we describe the effect
on angles of the fractal structure of space-time in terms of fractal fluctuations
of dimension 2 and two-valuedness of the angular velocity [1],[2]. That leads to
introducing a complex angular velocity Ω̃, then a complex Lagrange function
L̃(ϕ, Ω̃, t). The two effects of the non-differentiability and fractality of space can
be combined in terms of a scale-covariant derivative acting on the mean angles
(for which differentiability is preserved):
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d́

dt
=

∂

∂t
+ Ω̃k · ∂k − iDjk∂j∂k, (6)

where the indices j and k = 1 to 3 run on the three rotational Euler angles
and where Djk is a fundamental rotational tensor which characterizes the effect
of the fractal geometry of space-time, and can be, in the first approximation,
identified with a diffusion matrix.

The quantization of Eq. 5 is straighforward using this scale-covariant deriva-
tive. It writes:

Ijk
d́ Ω̃k

dt
= −∂jU. (7)

We finally introduce a complex probability amplitude as another expression for
the complex action S =

∫
L̃dt:

ψ = eiS/S0 , (8)

where S0 is introduced for dimensional reasons. Provided the constant S0 be
given in terms of Djk and Ijk by the relation

S0 = 2 IjkDjk , (9)

(which generalizes the relation S0 = 2mD obtained in the case of translational
motion [1]), Eq. 7 can be integrated to yield a Schrödinger-like equation acting
on Euler angles, in terms of the probability amplitude ψ:

S0(Djk∂j∂kψ + i
∂

∂t
ψ) = U ψ. (10)

The physical meaning of this equation can be specified by writing its imaginary
part in the form of a continuity equation. This can be done by first jumping to
the reference system where Djk is diagonal, i.e., Djk = Dk, then by performing a

new change of angle coordinates, introducing reduced angles dζk = dϕk/(Dk)
1/2.

In terms of these reduced angles and of the corresponding rotational velocities,
the imaginary part of Eq. 10 becomes an equation of continuity, in which the
probability density is given by the square of the modulus of the probability
amplitude, P (ζk) = ψψ†. As in the case of translational motion, we shall
interpret the existence of peaks of probability density (which are consequences
of the shape of the potential and/or of the limiting conditions) as a tendency
for the system to make structures (here, angular structures).

We shall now apply this equation to our own Solar System, and show that its
solutions allow one to explain some observed characteristics of the distribution
of planet obliquities and of the inclination of their orbits.
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3 Application to planet obliquities

Let us look for the solutions of our generalized Schrödinger equation in the
simplest case. Namely, being interested here in obliquities and inclinations,
we treat either the planet or satellite, or the couple planet/satellite-orbit as
a spinning top. We shall consider in what follows only the problem of free
rotational motion, focusing on the first Euler angle θ. It is only in that particular
and simplified case that obliquities and inclinations can be treated together as
solutions of the same equation. The scale-relativistic equation of evolution of
the angle θ writes:

d́
2
θ

dt2
= 0. (11)

Looking for stationary solutions, Eq. 11 takes after integration the form of a
one-dimensional time-independent Schrödinger equation:

d2ψ

dθ2
+A2ψ = 0, (12)

where A = E/2I = Ω/2D since the rotational energy is E = 1
2
I Ω2.

The solutions which have a peak at θ = 0 (as observed and as predicted by
the classical theory) and which satisfy the periodic condition P (θ + π) = P (θ),
write:

P (θ) = a cos2(nθ) (13)

with n integer.

4 Comparison with observational data

The peaks in the observed distribution of both obliquities and inclinations of
planets and satellites in the Solar System agree remarkably well with the pre-
dicted periodicity of Eq. 13, in terms of a unique value n = 7 for the whole
system. This can be seen in Figs. 1 and 2 (the data is taken from Beatty and
Chaikin [12], Encrenaz et al. [13] and Lang [14]; we mix values of the inclination
relative to the planet equator with those relative to the orbital plane, since a
common quantization law is predicted for all these values). Note that, at the
still rough level of our analysis (free rotational motion description) our predic-
tion concerns only the periodicity of the most probable values of the angles, but
not the amplitude of the peaks. This result allows one to explain some very
striking features shared by the observed inclinations and obliquities in our Solar
System, in particular:

(i) The value 23◦.45 of the obliquity of the Earth is considered in the classical
description to be the chance result of the last collision at the end of the formation
epoch. This collision has probably given rise to the Earth-Moon couple, then
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Figure 1: Comparison between the observed obliquities and inclinations of plan-
ets and satellites in the solar system (black points: some of them have been
displaced vertically for the readibility of the diagram) with the periodicity pre-
dicted by the scale-relativistic approach. The peak in θ = 0 is already expected
in the classical theory.

the Earth obliquity has been stabilized to its value by the Moon [15]. Moreover,
all of the terrestrial planets have probably experienced large, chaotic variations
of their obliquities at some time in the past. In particular the obliquity of
Mars is still in a large chaotic region [16]. This classical description is probably
globally correct, but cannot explain why a large number of bodies in the Solar
System have values of their obliquities and inclinations very close to the Earth
value (see Fig. 1). Indeed the obliquities of Mars, Saturn and Neptune are
respectively 23.98◦, 26.73◦, and 29.6◦, (mean 25.9± 1.4◦ for 4 points), and the
inclinations of Jupiter’s satellites Leda, Himalia, Lysithea and Elara, and of
Neptune’s satellite Nereid are respectively 26.1◦, 27.6◦, 28.8◦, 24.8◦ and 27.5◦

(full mean 26.5± 0.7◦ for 9 points). Both average values lie within one sigma of
our first non-zero predicted probability peak at 180◦/7 = 25.7◦ (see Fig. 1).

(ii) The obliquity of Uranus, which is heeled over its orbital plane, is actually
98◦, within 5◦ of the predicted peak at θ = 102.8◦ (k = 4). The inclination
≈ 100◦ of Charon’s orbit around Pluto also agrees with this peak.

(iii) The retrograde rotations of Venus on itself (θ = 178◦), which is one of
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the puzzling feature of the Solar System [16] and of Saturn’s satellite Phoebe on
its orbit (θ = 177◦) also come under our prediction, since they agree with the
probability peak at 180◦. The same is true of the orbital inclination of four of
the Jupiter satellites and of Neptune’s satellite Triton, which yield a mean value
153.6◦ ± 3.6◦, to be compared with the predicted peak k = 6 at θ = 154.3◦.

Figure 2: Distribution of the differences between the observed obliquities and
inclinations of planets and satellites in the solar system and the nearest predicted
probability peak (given by kπ/7) for k 6= 0. There is an additional sharp peak
at zero obliquity and inclination (33 points), which is excluded from this plot
for its readibility. From a χ2 test, the probability to obtain such a discrepancy
with a uniform distribution is P � 10−4. The observed distribution is then
compared with our theoretical prediction (sine curve).

5 Discussion and conclusion

Before concluding, it may be useful to be more specific about the physical mean-
ing of our theory and of our results. We stress once again the fact that, although
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some of the mathematical tools of scale relativity are in common with standard
quantum mechanics (probability amplitude, Schrödinger equation), we do not
recover the whole quantum mechanical interpretation when scale relativity is
applied to macrophysics as in the present work. In particular we do not ex-
pect the Bell inequalities to be violated. Indeed, contrarily to what happens in
the microphysical case, the differentiability of coordinates is recovered at small
time scales, for which, as a consequence, the classical theory still holds.Therefore
our macroscopic quantum-like theory is a kind of ”hidden parameter” theory,
contrarily to the standard quantum mechanics.

In this regard, we do not think that our results contradict those obtained
from standard celestial mechanics, which are valid below the prediction horizon,
while our theory applies beyond the horizon. Both approaches are therefore
complementary. Peaks of probability such as those we predict can be obtained
from chaotic classical motion (case of Mars) at small time scales if, e.g., the time
elapsed in the peaks is far larger than the time needed to jump from one peak
to another. In the case of the Earth obliquity, the argument of its stabilization
by the Moon [15] remains valid, but our theory adds a prediction of the value
at which it can be stabilized (namely, around 25◦).

Recall also that our results are obtained in the framework of a very simplified
description (free rotational motion). It has however already predictive power:
Two probability peaks at 54.4◦ and 77.1◦ are still empty and could be filled
by future observations. Hence the peak at 128.6◦ was empty until the recent
measurement of Pluton’s obliquity at 122.5◦. In works to come, we shall try
to improve our model and to answer questions that remain open, concerning in
particular the origin of the empirical value n = 7.

Let us conclude by remarking that our theory reinforces greatly the probabil-
ity that a large number of Earth-like planets exist in the universe, stable enough
for life to develop and survive. Indeed, we predict that around solar-type stars,
the orbit n = 5 will always have a semi-major axis of ≈ 1 AU and be nearly
circular [1], [3], [5], and that its obliquity can be ≈ 25◦ with high probability.

Acknowledgements: I gratefully acknowledge help from Dr. E.T. Lefèvre in
the processing of this paper.
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