
The Pioneer anomalous acceleration:

a measurement of the cosmological constant at

the scale of the solar system∗

L. Nottale

CNRS, LUTH, Observatoire de Paris-Meudon,

F-92195 Meudon Cedex, France

November 3, 2003

Abstract

An anomalous constant acceleration of (8.7 ± 1.3) × 10−8 cm.s−2

directed toward the Sun has been discovered by Anderson et al. in
the motion of the Pioneer 10/11 and Galileo spacecrafts. In par-
allel, the WMAP results have definitively established the existence
of a cosmological constant Λ = 1/L2

U , and therefore of an invariant
cosmic length-scale LU = 2.85 ± 0.25 Gpc. We show that the exis-
tence of this invariant scale definitively implements Mach’s principle
in Einstein’s theory of general relativity. Then we demonstrate, in the
framework of an exact cosmological solution of Einstein’s field equa-
tions which is valid both locally and globally, that the definition of
inertial systems ultimately depends on this length-scale. As a conse-
quence, usual local coordinates are not inertial, so that the motion of
a free body is expected to contain an additional constant acceleration
aP = c2/

√
3 LU = (5.9± 0.5)× 10−8 cm.s−2. Such an effect represents

a major contribution to the Pioneer acceleration.

The recent definitive proof of the existence, in Einstein’s general relativ-
ity equations, of a cosmological constant term ΩΛ = 0.73 ± 0.05 [1] (or of
an equivalent contribution coming e.g. from vacuum energy) can be consid-
ered as a corner stone in the history of cosmology. We shall in this paper
investigate one of its possible consequences: namely, its very existence allows
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the full theory of general relativity to come under Mach’s principle, as was
initially required by Einstein in its construction.

The effects of the cosmological constant were up to now considered to hold
only at the very large scales. Provided it plays, as we show here, a key role
in the determination of inertial systems, it should also manifest itself at local
scales. We suggest that the Pioneer-Galileo anomalous constant acceleration
[2] results from an inertial force which is determined by the cosmological
constant.

Let us first give a short reminder about Mach’s principle. Basing himself
on the rotating bucket experiment, in which the existence of a rotational
motion can be inferred from the local apparition of inertial forces, Newton
concluded to the existence of an absolute space. Two centuries later, Mach
proposed another solution, according to which the bucket is in relative mo-
tion with respect to the distant bodies of the Universe. Mach’s principle
was subsequently incorporated as a basic stone in Einstein’s construction of
general relativity.

Two levels of Mach’s principle were considered by Einstein. The first con-
cerns the nature of inertial systems. The theory of general relativity solves
this problem: namely, inertial systems are those that move at constant veloc-
ity and without rotation relative to the frames in which the universe appears
spherically symmetric [3]. The second level is the question of the nature
and of the amplitude of inertial forces. In a Machian general relativistic
framework, they are understood as effects of gravitational induction [4, 5, 6].

In 1917, Einstein [4] arrived to the conclusion that this second level of
Mach’s principle would be achieved only provided there exists, at the scale
of the Universe, a relation between its characteristic length scale RU and its
characteristic mass-energy MU that reads:

G

c2
MU

RU

= 1. (1)

A very simple argument has been given by Sciama [5] that allows one to
recover fastly this result. In a Machian universe, any body submitted only to
gravitation should be considered as free. Therefore its total energy, including
its own energy and that of its gravitational coupling with the remaining
universe, should be zero. This reads mc2+

∑

i(−Gmmi/ri) = 0 in a reference
frame where it is at rest, so that one obtains:

G

c2
∑

i

mi

ri

=
G

c2
MU

RU

= 1. (2)

Since all solutions based on the cosmological principle are characterized, at
the present epoch (well described by dust models), by a conservative rela-
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tion MU = (4/3)πρba
3 = cst, (ρb is the background density and a = a(t) is

the scale factor) Einstein reached the conlusion that the Universe had to be
static in order implement Mach’s principle [4]. This led him to introduce the
cosmological constant in the field equations: indeed, in its absence all cos-
mological solutions are non-static, while its existence allows a unique static
solution, the spherical Einstein model.

However, in the following years the expansion of the Universe was dis-
covered and the Einstein model was found to be only metastable. Moreover,
in the absence of a cosmological constant, all spherical models reach a max-
imal radius, which can be identified with the Machian length RU . Therefore
Einstein finally concluded that Mach’s principle simply led to the constraint
that the actual Universe should be closed.

Such a conclusion has been considered unsatisfying, owing to Einstein’s
initial hope that the whole theory of general relativity be Machian in its
essence. Several authors attempted, either to complete general relativity in
order to render it Machian, or to unveil its possible hidden Machian structure
[7].

There is however a simple solution to this question [8], to which the
recent measurement of the cosmological constant has given weight. Indeed,
the cosmological constant is a curvature scalar, and it is therefore the inverse
of the square of a length:

Λ =
1

L2
U

. (3)

In standard general relativity, Λ is a strict constant, so that the cosmic length
LU is an invariant length that is defined at the scale of the Universe. The
recently determined values of the Hubble constant, H0 = 71 ± 4 km/s.Mpc
and of the scaled cosmological constant, ΩΛ = 0.73 ± 0.05 [1], yield Λ =
(1.29 ± 0.23) × 10−56cm−2, i.e.,

LU = (2.85 ± 0.25) Gpc. (4)

Therefore, the mere existence of the cosmological constant allows, whatever
the model, to render general relativity Machian, since a universal relation
that reads

MU

LU
=

(4/3)πρb a
3

LU
= cst (5)

does hold for all dust models.
Let us now address the question of a possible experimental verification of

this proposal at the scale of our Solar system. If this point of view is correct,
the definition of inertial systems should ultimately be made in relation with
the length-scale LU , and therefore one should observe inertial forces whose
amplitude should be related to the value of the cosmological constant.
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Einstein’s equations with a cosmological constant read

Rµν −
1

2
R gµν − Λgµν = χTµν , (6)

where Rµν is the Ricci tensor, R the curvature scalar, Λ the cosmological
constant, gµν the metrics potentials, Tµν the energy-momentum tensor, and
χ = −8πG/c4. Let us first consider their solution in vacuum around a
massive body. It takes the form of Schwarzschild’s metric with cosmological
constant, namely (we make c = 1 and we omit the r2dΩ2 term in order to
simplify the writing):

ds2 =
(

1 −
2m

r
−

Λ

3
r2

)

dT 2 −
(

1 −
2m

r
−

Λ

3
r2

)−1

dr2, (7)

where m = GM/c2. An equivalent form of the Schwarzschild metric is ob-
tained by replacing dT 2 by ψ2(τ)dτ 2. This generalization will be useful in
the following. Note that r ≈

√
3LU is an horizon, since there is an apparent

singularity in the metric coefficients when they are written in Schwarzschild
coordinates, while it can be suppressed by another choice of coordinates (see
e.g. [9]). Now, the Schwarzschild metric is only a local solution that does not
take into account the large scale Universe, while its intervention is necessary
if one wants to implement Mach’s principle.

The Universe can be described at large scales by a FRW solution of Ein-
stein’s cosmological equations,

ds2 = dt2 − a2(t)(dx2 + S2(x)dΩ2), (8)

where S(x) = sin x, x, sinh x when the space is respectively spherical, flat
and hyperbolic (k = 1, 0, −1). The scale factor is solution of an equation of
dynamics:

d2a

dt2
=
(

Λ

3
−

4πGρb

3

)

a. (9)

Let us introduce the Hubble ‘constant’ H = ȧ/a and define the scaled quan-
tities ΩΛ = Λc2/3H2, ΩM = 8πGρb/3H

2. We now set:

2µ =
8πGρba

3

3
=
c3 ΩM

H

(

k

ΩΛ + ΩM − 1

)3/2

(10)

which is a constant. Equation (9) now reads

d2a

dt2
=

Λ

3
a−

µ

a2
. (11)
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It is integrated in terms of an energy equation:

ȧ2 =
Λ

3
a2 +

2µ

a
− k. (12)

We recognize in the two first terms the cosmological equivalent of the expres-
sion that appears in the Schwarzschild metric, Λ

3
r2 + 2m

r
. In an equivalent

way, it means that the Hubble constant is given by

H2 =
Λ

3
+

8πGρb

3
−

k

a2
. (13)

None of the two above models can be considered as satisfactory for im-
plementing the Mach principle. Indeed, the Schwarzschild model is locally
correct but it fails to incorporate the large scale matter and field distribution
which defines the inertial reference frames. The analysis of the Pioneer-
Galileo effect has been performed in its framework (without cosmological
constant), and it has failed to explain the additional acceleration [10].

The cosmological model is correct at global scales (provided the cosmo-
logical principle be true on very large scales), but it is not at all adapted
to scales smaller than our Galaxy radius, and a fortiori at the scale of our
solar system. Nevertheless, an analysis of the Pioneer-Galileo effect has been
performed in its framework by Rosales and Sanchez-Gomez (RS) [11]. Their
argument amounts to the following: The inertial reference frames are defined
as free falling with respect to the Universe as a whole, so they should be de-
fined with respect to the FRW metric (Eq. 8). A free-falling object in such
a metric is at rest in a comoving coordinate system, and it is subjected to
Hubble’s law v = H0d = H0c × t. The inertial frame therefore accelerates
from the center of coordinates, implying an inertial force directed toward it,
corresponding to a constant acceleration H0c.

However, the appearance of an inertial force is instantaneous and it must
be determined from the knowledge of the true metric at the point of its
occurence. Therefore the RSG99 result is based on the assumption that the
FRW metric (and the expansion of the universe) remains valid at the scale
of the solar system: namely, they interpret the Pioneer effect as a detection
of the cosmological expansion in the solar system. This is a very doubtful
hypothesis. Indeed, the energy-momentum tensor that leads to the FRW
metric is that of a perfect fluid, whose ‘particles’ are identified with the
galaxies: this is a thermodynamical description that becomes wrong at the
scales of the fluid particle sizes, and even more inside them. Then there is
no reason for the cosmic expansion to apply inside galaxies, and a fortiori at
planetary scales that are yet 107 times smaller.
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In order to address this problem in a satisfying way, we therefore need
an exact solution of Einstein’s equation that should be valid both locally
and globally. This is the Einstein-Strauss problem, which is solved by a con-
tinuous matching between the Schwarzschild line element (Eq. 7) and the
cosmological one at the limit of a ‘vacuole’. Such a matching (with a Λ term)
has been performed by Balbinot et al [12]. It implies a ‘null apparent mass
condition’ [13], according to which the mass retired from the cosmological
fluid equals exactly the central Schwarzschild mass. This condition expresses
the fact that the background is actually an average description of a large
scale distribution of such individual masses. Vacuole models have already
been used, for example, in order to find exact solutions of the optical scalar
equations, allowing an exact treatment of the gravitational lensing and gravi-
tational redshift and time-delay problems [14]. This method has in particular
put to the light the existence of a new general relativistic factor 2 [15] in the
Rees-Sciama effect, which has been confirmed by subsequent studies using
the potential approximation [16].

The matching conditions become particularly simple when the inner and
outer metric elements are written in terms of the same coordinate system.
We shall therefore perform a change of coordinate system from comoving co-
ordinates to curvature coordinates [17]. The matching is done on the vacuole
limit r = rv(τ). The comparison of the angular parts of the metrics implies
that r = a S.

The matching conditions (continuity of the metric potentials and of their
derivative) yield the null apparent mass condition, that writes:

M =
4

3
πρb r

3

v =
4

3
πρb a

3

v S
3

v . (14)

The cosmic time can be expressed in terms of the new coordinates, namely
t = t(r, τ). The cosmological line element in curvature coordinates is diagonal
when [12]

∂t

∂r
= −

Hr

1 − (H2 + k
a2 ) r2

, (15)

where a = a[t(r, τ)] and ȧ/a = H[t(r, τ)]. The grr coefficient of the metric
then takes the simple form:

gcos

rr = −
{

1 −
(

H2 +
k

a2

)

r2

}−1

. (16)

Now using Eq. (13), it takes a Schwarzschild-like form:

gcos

rr =

(

1 −
2µS3

r
−

Λ

3
r2

)−1

. (17)
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The matching with the corresponding coefficient of the Schwarzschild metric
is therefore simply performed, since on the matching hypersurface one has
2µS3

v = 2m.
The time coefficient of the cosmological metric reads:

gcos

ττ =

{

1 −
(

H2 +
k

a2

)

r2

}(

(∂t/∂τ)2

1 − k
a2 r2

)

. (18)

Up to now the results given were exact. In what follows, we shall now use
power expansions up to order 2 in r and τ , which is sufficient for our purpose.
Indeed, we consider small time intervals and small distances with respect to
the cosmological times and distances. The cosmological scale factor writes
to second order:

a(t) = a0

(

1 +H0t−
1

2
q0H

2

0
t2 + ...

)

, (19)

where q0 = 1

2
ΩM − ΩΛ. We find for the time transformation the following

expansion (here to third order in (r, τ), since we need to know its derivative
to second order):

t(r, τ) = τ +
1

2
H0r

2 +
1

2

(

H2

0
−

Λ

3

)

r2τ + .... (20)

Therefore we find (∂t/∂τ)2 = 1 +H2
0 (q0 + 1) r2 to the order two, so that

(∂t/∂τ)2

1 − k
a2 r2

= 1 + 4πGρb r
2 + ... . (21)

Finally, it is found that the outer element reads in curvature coordinates (to
the second order as concerns gττ ):

ds2

cos
=
{

1 −
(

Λ

3
−

4

3
πGρb

)

r2

}

dτ 2 −
{

1 −
(

Λ

3
+

8

3
πGρb

)

r2

}−1

dr2. (22)

This metric is valid for r ≥ rv. Remark that, even in this outer cosmological
domain, the g00 coefficient is not given, in curvature coordinate, by 1−H2

0
r2

[see Eq. (13)]. The matching of the inner and outer line elements is completed
by writing the equality of the gττ coefficients on the hypersurface r = rv(τ).
One obtains:

ψ2(τ) = 1 + 4πGρb(τ)r
2

v(τ) = 1 +
3m

rv(τ)
. (23)

The function rv(τ) is solution of the equation rv = Sv a(rv, τ) with Sv = cst,
where a(r, τ) is given by

a(r, τ) = 1 +H0τ −
1

2
q0H

2

0τ
2 −

1

2
H2

0r
2 + ... . (24)
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Then rv(τ) = r0
v(1+H0τ) to the first order. Therefore we obtain the following

inner metric form, valid for r ≤ rv:

ds2

Sch
=
(

1 +
3m

rv

)(

1 −
2m

r
−

Λ

3
r2

)

dτ 2 −
(

1 −
2m

r
−

Λ

3
r2

)−1

dr2. (25)

Two new terms are present in this metric in addition to those which have
already been taken into account in the Anderson et al. analysis of the Pioneer
effect [10]. The first is the τ dependence of the gττ metric potential. It yields
a constant acceleration (3m/rv)H0c which is negligible, since m/rv ≈ 10−15

for m = GM�/c
2.

The main new term is the cosmological constant term, which is common
to the inner and outer metrics. The mean matter density of the universe
(that contributes to the Hubble constant, see Eq. (13)) appears only in the
outer metric. It is tranformed in the Newtonian potential term of the Sun in
the inner part, whose contribution (with that of planets and satellites), has
already been taken into account by Anderson et al.

However, this form of the metric (Eq. 25) cannot yet be directly used for
analysing the effect. Indeed, the coordinate r no longer keeps its previous
meaning for defining the distance because of the grr metric coefficient. In
agreement with the Pioneer-Galileo measurements, the distance is correctly
defined by the travel time of photons. This time should be such that ds = dt
for the spacecraft.

Therefore we shall now jump to an inner coordinate system that is co-
moving with the spacecraft (xsc = cst). This can be done by first applying
to the line element (Eq. 25) the inverse de Sitter transformation,

r = x eKt; τ = t−
1

2K
ln
(

1 −
Λ

3
x2e2Kt

)

, (26)

in which we have set K =
√

Λ/3. This yields (to leading order) the following
form of the metric:

ds2

Schw =
(

1 +
3m

rv
−

2m

r

)

dt2 −
1

1 − 2m
r

e2K t dx2, (27)

where r is the function of x and t given in Eq. (26). The next-to-leading
order terms give negligible contributions.

This form of the metric therefore allows us to separate in a perturbative
way the usual solar system contributions and the cosmological contribution,
which is clearly reduced to that of the cosmological constant. Therefore, after
account of all other effects, the spacecraft is in free fall motion in the space-
time geometry described by the metric ds2 = dt2 − a2

Λ
dx2, with aΛ = eKt.
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We may now relate the effective distance l = ct measured on the light cone
to the local radial coordinate, in the RS manner [11], but with H replaced
by K. The distance l is such that dl = aΛdx, while x = r/aΛ, so that
aΛ dx = dr− (ȧΛ/aΛ)rdt. Then dl = dr/(1+Kr), which is finally integrated
(to second order) as l = r − 1

2
Kr2.

Therefore we finally find an apparent constant acceleration directed to-
ward the Sun:

aP = c2
√

Λ

3
=

c2√
3LU

= Ω
1/2

Λ H0c. (28)

The meaning of this result is that the usual local coordinates do not represent
the true inertial frame: indeed, the inertial frame is actually determined by
the global Universe which manifests itself locally in terms of the horizon scale√

3LU . Note also that, as shown by RS [11], such an effect does not affect
the motion of planets (although our conclusion is different from the RS one,
this result is conserved).

With the recently determined values ΩΛ = 0.73 ± 0.05 and H0 = 0.71 ±
0.04, one finds

aP = (5.88 ± 0.54) × 10−8 cm.s−2. (29)

This theoretical expectation is marginally consistent with the observed ef-
fect aobs

P = (8.74 ± 1.33) × 10−8 cm.s−2 (it agrees at the two sigma level).
Future studies are needed to determine whether additional contributions to
the theoretical expectation may still come from fundamental physical effects,
or whether the observational effect has been overestimated. In any case, the
contribution from the cosmological constant is expected to stand out as the
dominant contribution.
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