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Detection of gravitational waves

LIGO: USA, Louisiana LIGO: USA, Washington

VIRGO: France/Italy (Pisa)

the arms of these
Michelson-type LASERS
are 3 km (VIRGO) and 4
km (LIGO) long ... with
almost perfect vacuum.
⇒Starting to acquire
data, with the first
scientific run with 3(4)
detectors.
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Astrophysical sources of gravitational
radiation

Gravitational luminosity from the linearized version of Einstein
equations:

L ∼ G

c5
s2ω6M2R4

(s being a factor related to non-sphericity of the matter
distribution);changing the formula to

L ∼ c5

G
s2

(
2GM

Rc2

)2 (v

c

)6

allows to see that good sources are

non-spherical (and dynamically changing);

compact ((2GM)/(Rc2) ∼ 1);

in relativistic motion.

⇒neutron stars and black holes in relativistic motion
⇒neutron star oscillations and supernovæ.
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Simplified physical model of
core-collapse

The phenomenon of supernova is too rich to be fully-modeled
on a computer

relativistic hydrodynamics (v/c ∼ 0.3), including shocks,
turbulence and rotation,

strong gravitational field ⇒General Relativity?

neutrino transport (matter deleptonization)

nuclear equation of state (EOS)

radiative transfer and ionization of higher layers

magnetic field?

⇒to track gravitational waves, some features must be
neglected...and we use an effective model (not trying to make
them explode)
Initial model is a rotating polytrope with an effective adiabatic
index γ . 4/3. During the collapse, when the density reaches
the nuclear level, γ → γ2 & 2 (Van Riper, 1978).
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Approximate gravity and extraction of
gravitational waves

Einstein equations represent a set of 10 coupled non-linear
second-order PDEs of mixed type (hyperbolic /
elliptic).⇒when studying core-collapse, one may neglect the
effect of gravitational waves onto hydrodynamics...and on the
gravitational field itself!

⇒Conformally-Flat Condition (CFC)

gravitational waves are completely discarded, no more
dynamical degree of freedom in the gravitational field
equations;

with the evolution of matter, they can be
(approximatively) calculated from the Newtonian
quadrupole formula.

Note: even full general-relativistic codes use such formula because

the signal, extracted from the the gravitation field itself, is too weak .



Combined
spec-

tral/Godunov
code
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Equations and computational needs
hydrodynamics

General relativistic hydrodynamics are written as a
flux-conservative first order hyperbolic system:

1√
−g

[
∂
√

γU

∂t
+

∂
√
−gF i

∂xi

]
= Q,

with U = (ρW, ρhW 2vi, ρhW 2 − P −D) the conserved
variables.
The system is known to produce shocks, observed in supernova
explosions!
⇒need for an algorithm able to treat shocks correctly.
In addition, some long-term physical instabilities can show up
(much longer time-scale than the hydro one, see talk by
Th.Foglizzo)
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Equations and computational needs
gravitational field

The CFC system results in 5 coupled non-linear elliptic
equations, which sources are with non-compact support:

∆̂ lnφ =−4πφ4

(
ρhW 2 − P +

KijK
ij

16π

)
−∇̂i lnφ ∇̂i lnφ,

∆̂ lnαφ = 2πφ4

(
ρh(3W 2 − 2) + 5P +

7KijK
ij

16π

)
−∇̂i lnαφ ∇̂i lnαφ,

∆̂βi +
1

3
∇̂i∇̂kβ

k = 16παφ4Si + 2φ10Kij∇̂j

(
α

φ6

)
.

with Kij =
1

2α

(
∇iβj +∇jβi −

2

3
fij∇kβ

k

)
.

⇒Either a general elliptic solver of a fast linear Poisson solver
used in a iterative scheme, able to deal with spatial infinity.
All fields here are smooth, or at least C2.
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Combination of two numerical
techniques

hydrodynamics ⇒High-Resolution Shock-Capturing
schemes (HRSC), also known as Godunov methods, here
implemented in General Relativity;

gravity ⇒multi-domain spectral solver using spherical
harmonics and Chebyshev polynomials, with a
compactification of type u = 1/r.

Use of two numerical grids with interpolation:

matter sources: Godunov (HRSC) grid → spectral grid;

gravitational fields: spectral grid → Godunov grid.

First achieved in the case of spherical symmetry, in
tensor-scalar theory of gravity (Novak & Ibáñez 2000).
Spares a lot of CPU time in the gravitational sector, that can
be used for other physical ingredients.
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Filtering and optimization

Godunov grid stops at a finite distance ⇒no matter
outside;

Grid setting

2000 2500 3000
r [km]

r
fd

ghost zones

   domain 5
(fourth shell)

domain 6
(compactified, extending to radial infinity)

0 100 200 300 400 500
r [km]

r
d1

 = r
d

r
d2

domain 1
(nucleus)

domain 2
(first shell)

domain 3
(second shell)

//

interpolation to spectral grid
using piecewise parabolic
formula (many tested);

filtering of radial coefficients
(Chebyshev) by canceling the
last N ones for the matter
fields;

fewest possible manipulations
of these fields on spectral
grid;

partial summation technique
(Orszag 1980) to gain CPU in
the spectral summation.
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Tests of the code
Dimmelmeier et al. (2005)

The 3D code is able to reproduce:

the results and waveforms of core collapse from the
axisymmetric code by Dimmelmeier et al. (2002);
the frequencies of the fundamental mode, and its first
harmonic, for the oscillations of rotating neutron star are
recovered;
a strongly 3D-perturbed rotating neutron star can be
followed for several rotating periods.
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Collapse with deleptonization and
realistic EOS
Ott et al. (2007)

Together with the use of a purely finite-differences code in full
GR, first results of realistic collapse of rotating stellar iron cores
in GR

with finite temperature EOS;
(approximate) treatment of deleptonization.
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⇒complete check that CFC is a good approximation in the
case of core-collapse.
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Neutron star oscillations
Dimmelmeier et al. (2006)

Study of non-linear axisymmetric pulsations of rotating
relativistic stars
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uniformly and differentially rotating relativistic
polytropes ⇒differential rotation significantly
shifts frequencies to smaller values;

mass-shedding-induced damping of pulsations,
close to maximal rotation frequency.

most powerful modes could be seen
by current detectors if the source is
about ∼ 10 kpc;

if 4 modes are detected, information
about cold nuclear matter equation
of state could be extracted
⇒gravitational asterosismology. 0.0 1.0 2.0 3.0 4.0 5.0
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Summary and outlook

valid 3D code for the simulation of gravitational waves
from core-collapse combining two very different numerical
techniques;

most realistic simulations today and spectrum of
oscillations for rotating relativistic stars;

improve extraction of gravitational wave signal, with the
implementation of full general-relativistic equations using
spectral methods (Bonazzola et al. 2004 formulation);

better inclusion of micro-physics: more realistic neutrino
transport, magnetic field...
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