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Introduction

the arms of these
Michelson-type LASERS
are 3 km (VIRGO) and 4
km (LIGO) long ... with
almost perfect vacuum.
=-Starting to acquire
data, with the first
scientific run with 3(4)
detectors.




r ASTROPHYSICAL SOURCES OF GRAVITATIONAL
RADIATION

Combined Gravitational luminosity from the linearized version of Einstein

spec-
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Introduction

(s being a factor related to non-sphericity of the matter
distribution);changing the formula to

vt (R ) ()

allows to see that good sources are

@ non-spherical (and dynamically changing);
e compact ((2GM)/(Rc?) ~ 1);
@ in relativistic motion.

=-neutron stars and black holes in relativistic motion
=>neutron star oscillations and supernovee.



SIMPLIFIED PHYSICAL MODEL OF
CORE-COLLAPSE

The phenomenon of supernova is too rich to be fully-modeled

on a computer

relativistic hydrodynamics (v/c ~ 0.3), including shocks,
turbulence and rotation,

strong gravitational field = General Relativity?
neutrino transport (matter deleptonization)
nuclear equation of state (EOS)

radiative transfer and ionization of higher layers
magnetic field?

=to track gravitational waves, some features must be
neglected...and we use an effective model (not trying to make
them explode)

Initial model is a rotating polytrope with an effective adiabatic
index 7 < 4/3. During the collapse, when the density reaches
the nuclear level, v — 72 2 2 (Van Riper, 1978).



-y APPROXIMATE GRAVITY AND EXTRACTION OF
GRAVITATIONAL WAVES

Combined ) ) ) .
spec- Einstein equations represent a set of 10 coupled non-linear

Wl ccond-order PDEs of mixed type (hyperbolic /
RN  elliptic).=when studying core-collapse, one may neglect the
effect of gravitational waves onto hydrodynamics...and on the
Physical gravitational field itself!

hede) = Conformally-Flat Condition (CFC)

@ gravitational waves are completely discarded, no more
dynamical degree of freedom in the gravitational field
equations;

@ with the evolution of matter, they can be
(approximatively) calculated from the Newtonian
quadrupole formula.

Note: even full general-relativistic codes use such formula because
the signal, extracted from the the gravitation field itself, is too weak .



EQUATIONS AND COMPUTATIONAL NEEDS

HYDRODYNAMICS

General relativistic hydrodynamics are written as a
flux-conservative first order hyperbolic system:
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with U = (pW, phW?v;, phW? — P — D) the conserved
variables.

The system is known to produce shocks, observed in supernova
explosions!

=-need for an algorithm able to treat shocks correctly.

In addition, some long-term physical instabilities can show up

(much longer time-scale than the hydro one, see talk by
Th.Foglizzo)




EQUATIONS AND COMPUTATIONAL NEEDS

GRAVITATIONAL FIELD

The CFC system results in 5 coupled non-linear elliptic
equations, which sources are with non-compact support:
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with Kij = i (Viﬂj + Vjﬁi — ifkaﬁk>

=-Either a general elliptic solver of a fast linear Poisson solver
used in a iterative scheme, able to deal with spatial infinity.
All fields here are smooth, or at least C°.



COMBINATION OF TWO NUMERICAL
TECHNIQUES

‘.@vgp‘he LUTH

Combined
tray,i{%%mov o hydrodynamics =-High-Resolution Shock-Capturing
schemes (HRSC), also known as Godunov methods, here

implemented in General Relativity;

Jérome Novak

@ gravity =multi-domain spectral solver using spherical
harmonics and Chebyshev polynomials, with a
Numerical compactification of type u = 1/r.

model

Use of two numerical grids with interpolation:
e matter sources: Godunov (HRSC) grid — spectral grid;
e gravitational fields: spectral grid — Godunov grid.

First achieved in the case of spherical symmetry, in
tensor-scalar theory of gravity (Novak & Ibafiez 2000).
Spares a lot of CPU time in the gravitational sector, that can
be used for other physical ingredients.
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Combined
spec-

tral/Godunov @ Godunov grid stops at a finite distance =-no matter

code

outside; @ interpolation to spectral grid

GRID SETTING using piecewise parabolic

S ——————— formula (many tested);
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WS b o= o filtering of radial coefficients
Numerical =1, e (Chebyshev) by canceling the
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L ; o fewest possible manipulations
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: @ partial summation technique

I
2000 2500 3000

rie y (Orszag 1980) to gain CPU in
the spectral summation.
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DIMMELMEIER et al. (2005)

Combined The 3D code is able to reproduce:

tfa'x"si%zewv @ the results and waveforms of core collapse from the

e Nowak axisymmetric code by Dimmelmeier et al. (2002);

@ the frequencies of the fundamental mode, and its first
harmonic, for the oscillations of rotating neutron star are
recovered;

@ a strongly 3D-perturbed rotating neutron star can be

followed for several rotating periods.
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COLLAPSE WITH DELEPTONIZATION AND

REALISTIC EOS
OTT et al. (2007)

—

Combined Together with the use of a purely finite-differences code in full
tral/Godunov GR, first results of realistic collapse of rotating stellar iron cores
in GR
@ with finite temperature EQS;

o (approximate) treatment of deleptonization.
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=complete check that CFC is a gooﬁ approximation in the
case of core-collapse.
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p. e NEUTRON STAR OSCILLATIONS

DIMMELMEIER et al. (2006)

Coméimzi Study of non-linear axisymmetric pulsations of rotating

spec-

tral/Godunov relativistic stars
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code

e (el @ uniformly and differentially rotating relativistic
polytropes =-differential rotation significantly
shifts frequencies to smaller values;

@ mass-shedding-induced damping of pulsations,
close to maximal rotation frequency.

Results T T
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@ most powerful modes could be seen
by current detectors if the source is
about ~ 10 kpc;

o if 4 modes are detected, information
about cold nuclear matter equation
of state could be extracted
=>gravitational asterosismology.
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Jérdme Novak valid 3D code for the simulation of gravitational waves
from core-collapse combining two very different numerical
techniques;

@ most realistic simulations today and spectrum of
oscillations for rotating relativistic stars;

@ improve extraction of gravitational wave signal, with the
implementation of full general-relativistic equations using
spectral methods (Bonazzola et al. 2004 formulation);

Outlook

@ better inclusion of micro-physics: more realistic neutrino
transport, magnetic field...
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