

Les ondes gravitationnelles

Jérôme Nova

Généralités

courbure Effets et existence Production

Sources

astropnysique

Étoiles à neutrons e

Calculs analytiques et

Conclusions -

# Sources astrophysiques d'ondes gravitationnelles

#### Jérôme Novak

Jerome.Novak(at)obspm.fr

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris

Séminaire à deux voix au CEA, 21 juin 2005



#### OUTLINE

Les ondes gravitationnelles

Jérôme Nova

Généralités
Gravitation of courbure
Effets et existence
Production

#### Sources astrophysique

Binaires Étoiles à neutrons et supernovae Calculs analytiques e numériques

Conclusions -Perspectives

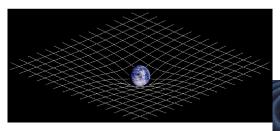
#### Ondes gravitationnelles – Généralités

- Gravitation et courbure
- Effets et existence
- Production d'ondes gravitationnelles

#### 2 Sources astrophysiques

- Binaires
- Étoiles à neutrons et supernovae
- Approximations analytiques et simulations numériques




#### GRAVITATION ET COURBURE

Les ondes gravitationnelles

Généralités
Gravitation et courbure
Effets et existence
Production

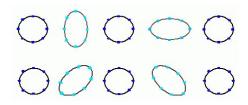
Binaires
Étoiles à
neutrons et
supernovae
Calcula
analytiques e
numériques

Conclusions -Perspectives D'après la Relativité Générale d'Einstein (et aussi des tests et des observations), les masses courbent l'espace-temps.

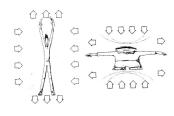


Quand les masses bougent, cette courbure se propage, comme des vagues à la surface de l'eau ⇒ondes gravitationnelles

Loin des masses, ces plis d'espace-temps se déplacent à la vitesse de la lumière.




#### EFFETS DES ONDES GRAVITATIONNELLES


Les ondes gravitationnelles Jérôme Novak

Généralités Gravitation e courbure Effets et existence

Sources astrophysiques Binaires Étoiles à neutrons et supernovae Calculs analytiques e numériques L'espace-temps est légèrement modifié  $\Rightarrow$ les distances changent pendant un bref moment.

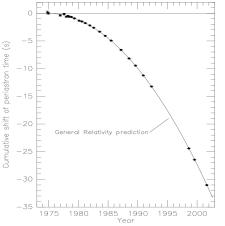


Après le passage de l'onde, tout redevient "comme avant", comme au passage d'une vague unique au milieu de l'eau.

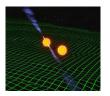


Les amplitudes sont **énormément** grossies...




#### Preuve observationnelle d'existence

Les ondes gravitationnelles


Généralités
Gravitation e
courbure
Effets et
existence
Production

Sources astrophysiques Binaires Étoiles à neutrons et supernovae Calculs analytiques et numériques

Conclusions Perspectives



Le rapprochement des deux étoiles à neutrons (pulsars) de PSR1913+16 correspond, avec une précision extrême, à ce qui est prédit si ces deux étoiles émettent des ondes gravitationnelles.



⇒Prix Nobel de Physique pour Hulse et Taylor en 1993



#### ESTIMATION DE L'ÉMISSION

Les ondes gravitationnelles

Jérôme Nova

Généralités
Gravitation e
courbure
Effets et
existence
Production

Sources astrophysiques Binaires Étoiles à neutrons et supernovae Calculs analytiques e

Conclusions -Perspectives En utilisant les équations d'Einstein

$$R^{\mu\nu} - \frac{1}{2}Rg^{\mu\nu} = \frac{8\pi G}{c^4}T^{\mu\nu}$$

- au premier ordre linéaire, on trouve une équation d'onde pour  $h \sim \ddot{Q}$  (moment quadrupolaire de la source);
- l'effet d'une onde gravitationnelle sur deux particules de masses négligeables est la variation de leur distance au cours du temps  $\Delta l/l \simeq h$ ;
- le flux émis à une fréquence f (fréquence mécanique) est

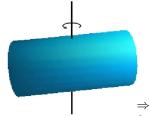
$$F = 0.3 \left(\frac{f}{1 \text{ kHz}}\right)^2 \left(\frac{h}{10^{-21}}\right)^2 \quad \text{Wm}^{-2}$$

 la puissance (ou luminosité) gravitationnelle rayonnée par une source est

$$L \sim \frac{G}{c^5} s^2 \omega^6 M^2 R^4$$



#### Ondes gravitationnelles en laboratoire


Les ondes gravitationnelles

Généralités
Gravitation o
courbure
Effets et
existence
Production

Sources astrophysiques Binaires Étoiles à neutrons et supernovae Calculs analytiques e numériques Au XIX<sup>e</sup> siècle, le physicien allemand Hertz prouve l'existence des ondes électromagnétiques en les produisant dans son laboratoire. Peut-on faire la même chose pour les ondes gravitationnelles?

- les ondes électromagnétiques sont produites par la variation du moment dipolaire des charges électriques,
- les ondes gravitationnelles sont produites par la variation du moment quadrupolaire des masses.

Le plus efficace pour accélérer un objet, c'est de le faire tourner : Soit un cylindre d'acier



- d'un mètre de diamètre et de vingt mètres de long,
- qui pèse 490 tonnes,
- qui peut tourner à plus de 260 tours/mn (limite de rupture de l'acier),

⇒aucun espoir de détection (émission trop faible).

### QUELLES SOURCES ALORS?

Les ondes gravitationnelles

Jérôme Nova

Généralités
Gravitation et courbure
Effets et existence
Production

Sources astrophysique Binaires

Binaires Étoiles à neutrons et supernovae Calculs analytiques et numériques

Conclusions Perspectives Problème : le facteur constant dans

$$L \sim \frac{G}{c^5} s^2 \omega^6 M^2 R^4$$

En introduisant le rayon de Schwarzschild (rayon du trou noir de même masse)

$$R_S = \frac{2GM}{c^2},$$

on obtient :

$$L \sim \frac{c^5}{G} s^2 \left(\frac{R_S}{R}\right)^2 \left(\frac{v}{c}\right)^6$$

⇒Objets compacts en mouvement relativiste et non sphériques



#### Sources astrophysiques

Les ondes gravitationnelles

Production

On peut donc estimer que les ondes gravitationnelles les plus fortes peuvent être émises par des masses accélérées :

- qui possèdent un très fort champ gravitationnel,
- qui vont à une vitesse proche de celle de la lumière,
- qui n'ont pas une forme sphérique.

Dans les objets astrophysiques connus, les plus efficaces semblent être :

les étoiles à neutrons.



et les trous noirs.

... surtout s'ils sont à deux, tournant l'un autour de l'autre...



#### Sources attendues LES BINAIRES

Les ondes gravitationnelles

Rinaires

# DEUX ÉTOILES À NEUTRONS ...





tournant l'un autour de l'autre, se rapprochant jusqu'à fusionner...

- événements catastrophiques rares, mais très riches en ondes gravitationnelles,
- informations sur le nombres de tels "couples" et ainsi sur la vie des étoiles.



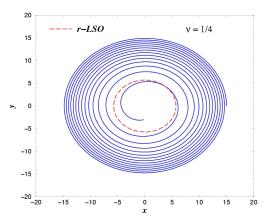
#### Sources attendues

Les binaires d'astres compacts

Les ondes gravitationnelles

Jérôme Nova

Généralité


Courbure
Effets et
existence
Production

actrophysiau

Binaires

neutrons et supernovae Calculs

numériques



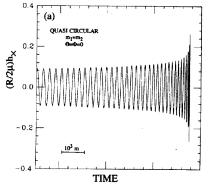
#### La phase spirallante s'arrête quand :

- il y a contact pour les étoiles à neutrons ,
- on arrive à la dernière orbite stable pour les trous noirs.



#### SIGNAL ATTENDU DES BINAIRES

Les ondes gravitationnelles


Jérôme Nova

# Généralités Gravitation occurbure Effets et existence Production

#### astrophysique

Binaires Étoiles à neutrons et supernovae Calculs analytiques

Conclusions -



#### CALCUL ANALYTIQUE

⇒masses ponctuelles

$$h \sim 10^{-21} rac{1 {
m Mpc}}{r} \left[rac{M}{M_{\odot}}
ight]^{5/3} \ imes \left[rac{f}{1\,kHz}
ight]^{2/3}$$

En intégrant sur n cycles, le rapport signal/bruit croît comme  $\sqrt{n}$ .

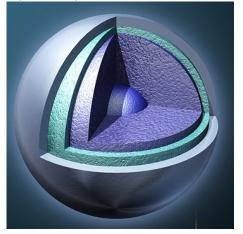
⇒intérêt des détecteurs à basses fréquences

Signaux très puissants, mais combien de sources possibles?



## SOURCES ATTENDUES ÉTOILES À NEUTRONS

Les ondes gravitationnelles


Jérôme Nova

Généralités Gravitation courbure Effets et existence Production

astrophysique
Binaires
Étoiles à
neutrons et
supernovae
Calculs
analytiques e

Conclusions -

Les densités (supra-)nucléaires de ces astres et leur faible température rendent leur composition incertaine : la physique nucléaire terrestre (ou solaire) est très différente de celle de ces astres.



- comment vibre une étoile à neutrons?
- comment se comporte la matière ultra-dense?



#### Sources attendues

Les ondes gravitationnelles

Jérôme Nova

Généralités
Gravitation e
courbure
Effets et
existence
Production

Sources
astrophysiques
Binaires
Étoiles à
neutrons et
supernovae
Calculs
analytiques et

Conclusions -Perspectives

#### ÉTOILES À NEUTRONS EN ROTATION RAPIDE

- un certains nombres de ces astres sont observés en tant que pulsars en radio ou en X
- on connaît ainsi leur fréquence de rotation : du mHz au kHz
- il faut pourtant avoir une variation temporelle du quadrupole
   ⇒déformation / axe

#### Sources de déformation

- Le champ magnétique (qqs GT) : dans les modèles de pulsars, le moment magnétique n'est pas aligné avec l'axe de rotation.
- Instabilités du cœur : la perte de moment cinétique par émission d'ondes gravitationnelles induit la croissance de certains modes oscillatoires pour les étoiles en rotation (modes r).
- Ré-arrangements de l'écorce (phénomènes de glitch).

Sources nombreuses, mais quelle efficacité?



#### Sources attendues

Les ondes gravitationnelles

Jérôme Nova

Généralités Gravitation courbure Effets et existence Production

astrophysiques
Binaires

Étoiles à neutrons et supernovae Calculs

analytiques et numériques

Conclusions -Perspectives

#### SUPERNOVÆ

- étape ultime de la vie d'une étoile massive ( $\gtrsim 12 M_{\odot}$ ), elle donne naissance à une étoile à neutrons ou un trou noir
- phénomène relativiste impliquant un astre compact
- les ondes gravitationnelles ne sont pas absorbées par la matière, elles peuvent donc arriver depuis le cœur dense des *supernovæ*

Première source étudiée car l'énergie libérée  $\sim 0.1 M_{\odot}c^2$  (essentiellement sous forme de neutrinos). Sources très nombreuses, mais quelle efficacité?



Les ondes gravitationnelles

Jérôme Nova

Généralités Gravitation e courbure Effets et existence

Sources astrophysiques Binaires Étoiles à neutrons et

neutrons et supernovae Calculs analytiques e numériques

Conclusion Perspectiv On ne sait toujours pas <u>"faire exploser"</u> une *supernova* sur ordinateur.

- que se passe-t-il au cœur d'une supernova?
- comment naissent les étoiles à neutrons ou les trous noirs?



⇒éléments de réponse grâce aux ondes gravitationnelles.



#### APPROXIMATIONS ANALYTIQUES

Les ondes gravitationnelles

Jérôme Nova

Généralités Gravitation courbure Effets et existence Production

Sources astrophysiques Binaires Étoiles à neutrons et supernovae Calculs analytiques et

**numériques** Conclusions -Perspectives Pour (par exemple) le calcul de l'évolution orbitale des systèmes binaires d'astres compacts :

- les astres sont modélisés par des masses ponctuelles
- ullet développement en puissances de v/c (post-Newtonien) près de la source
- raccord avec un développement en puissances de G (post-Minkowskien) dans la zone d'onde
- itérations en utilisant les équations d'Einstein

 $\Rightarrow$ non valide pour des sources à des vitesses proches de c et pour des distances entre les astres comparables à leur rayon



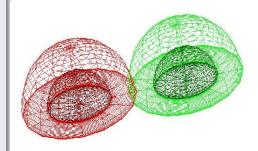
## SIMULATIONS NUMÉRIQUES À L'OBSERVATOIRE DE PARIS

Les ondes gravitationnelles

Jérôme Nova

Généralités Gravitation courbure Effets et existence Production

Sources astrophysiqu Binaires


Étoiles à neutrons et supernovae

analytiques et numériques

Conclusion Perspectiv

#### Modèle

- système de 10 équations (couplées) aux dérivées partielles du second ordre, non-linéaires et dépendant de  $(t, r, \theta, \varphi)$ ;
- système hydrodynamique + conservation des particules (5 EDP);
- une équation d'état.



⇒utilisation des méthodes spectrales en coordonnées sphériques.



#### Bilan – Perspectives

Les ondes gravitationnelles

Généralités Gravitation e courbure Effets et existence Production

Binaires
Étoiles à
neutrons et
supernovae
Calculs
analytiques e
numériques

Conclusions -Perspectives

- nouveaux messagers provenant des objets les moins bien connus de l'Univers
- La modélisation, analytique ou numérique, de signaux fiables est une absolue nécessité pour la détection des ondes gravitationnelles
- à l'avenir : détecteur spatial LISA (prévu pour 2013) à basses fréquences
- début d'une véritable astrophysique gravitationnelle

... et peut-être des surprises ...

