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Gravitational waves:
an introduction



Gravitational waves
definition

Gravitational waves are predicted in Einstein’s relativistic
theory of gravity: general relativity

Einstein’s equations

Rµν −
1

2
Rgµν = 8πTµν

Linearizing around the flat (Minkowski) solution in vacuum
gµν = ηµν + hµν :

¤

(
hµν −

1

2
hηµν

)
= −16πTµν .



Gravitational waves
effects and amplitudes

The effect of a gravitational wave of (dimensionless) amplitude
h is a brief change of the relative distances

∆L

L
∼ h.

Mode
+

Mode
+

temps

Two polarization modes “+”
and “×”: corresponding to the
two dynamical degrees of
freedom of the gravitational
field.

Using the linearized Einstein equations:
⇒at first order h ∼ Q̈ (mass quadrupole momentum of the
source), the total gravitational power of a source is

L ∼ G

c5
s2ω6M2R4.



Gravitational waves
a laboratory experiment?

The proof of the existence of electromagnetic waves has been
achieved by producing them in a laboratory and detecting them.
Can we do this with gravitational waves?

electromagnetic waves are produced by accelerating electric
charges,

gravitational waves are produced by accelerating masses.

Trying to accelerate a mass by rotating it
Consider a cylinder made of steel

one meter in diameter and twenty
meters long,

weighting about 490 tons,

rotating at a maximal velocity of 260
rotations/minute (before breaking apart),

⇒ABSOLUTELY NO HOPE of detection, the emission is
much too low.



Gravitational waves
astrophysical sources

The problem stems from the constant factor in

L ∼ G

c5
s2ω6M2R4

Introducing the Schwarzschild radius (radius of a black hole

having the same mass) RS =
2GM

c2
, one gets

L ∼ c5

G
s2

(
RS

R

)2 (v

c

)6

⇒accelerated masses:

with strong gravitational field ⇐⇒ compact: neutron
stars & black holes,
at relativistic speeds,
far from spherical symmetry (s . 1).

Binary systems of compact objects, neutrons stars &
supernovae.



Gravitational waves
ground detectors

LIGO: USA, Louisiana LIGO: USA, Washington

VIRGO: France/Italy near
Pisa Michelson-type

interferometers with
3 km (VIRGO) and
4 km (LIGO) long arms
and almost perfect
vacuum! Frequency
range 10 → 10000 Hz.

⇒Have been acquiring data together since a couple of years.



Gravitational waves
space project LISA

On Earth, the vibrations propagating on the crust (seismic
noise, human activities, . . . ) are limiting the detectors’
sensitivity.

⇒LISA project (ESA / NASA) should be
launched in 2019: 3 satellites at 5 millions
kilometers one from another, in orbit
around the Sun, 20 degrees behind the
Earth. Frequency range 10−4 → 1 Hz.

Many more sources to be detected, with even a few
certain ones.



Gravitational waves
compute waveforms!
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The signal at the
output of the
detector
σ(t) = h(t) + n(t),
with h(t) ≤ n(t).

The probability of detection is greatly enhanced in case of
matched filtering: convolution with a priori known signal.

⇒ Need of full database of possible waveforms, to be
computed by any means: analytic (post-Newtonian, . . . )
or numeric (our group).



Formulation of Einstein equations



3+1 formalism
Decomposition of spacetime and of Einstein equations

Evolution equations:
∂Kij

∂t
−LβKij =

−DiDjN + NRij − 2NKikK
k
j +

N [KKij + 4π((S − E)γij − 2Sij)]

Kij =
1

2N

(
∂γij

∂t
+ Diβj + Djβi

)
.

Constraint equations:

R + K2 −KijK
ij = 16πE,

DjK
ij −DiK = 8πJ i.

gµν dxµ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)



Constrained / free

formulations
As in electromagnetism, if the constraints are satisfied
initially, they remain so for a solution of the evolution
equations.

free evolution
start with initial data verifying the constraints,
solve only the 6 evolution equations,
recover a solution of all Einstein equations.

⇒apparition of constraint violating modes from round-off
errors. Considered cures:

Using of constraint damping terms and adapted gauges.
Solving the constraints at every time-step: e.g.
fully-constrained formalism in Dirac gauge (2004).



Conformal-flatness

condition
Uniqueness issue

4 constraints and the choice of time-slicing (gauge)
⇒elliptic system of 5 non-linear equations can be formed

Elliptic part of Einstein equations in the constrained
scheme,
Conformal-Flatness Condition (CFC): no evolution, no
gravitational waves. used for computing initial data.

Because of non-linear terms, the
elliptic system may not converge
⇒the case appears for dynamical,
very compact matter and GW
configurations (before appearance
of the black hole).
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Summary of Einstein

equations
constrained scheme

evolution

∂Aij

∂t
= ∇k∇kγ̃

ij + . . .

∂γ̃ij

∂t
= 2NΨ−6Aij + . . .

with

det γ̃ij = 1,

∇(f)
j γ̃ij = 0.

constraints

∇jA
ij = 8πΨ10Si,

∆Ψ = −2πΨ−1E

−Ψ−7AijAij

8
,

∆NΨ = 2πNΨ−1 + . . .

Aij = Ψ10Kij

with
lim
r→∞

γ̃ij = f ij, lim
r→∞

Ψ = lim
r→∞

N = 1.



Spectral methods
for numerical relativity



Simplified picture
(see also Grandclément & JN 2009)

How to deal with functions on a computer?
⇒a computer can manage only integers
In order to represent a function φ(x) (e.g. interpolate), one
can use:

a finite set of its values {φi}i=0...N on a grid {xi}i=0...N ,
a finite set of its coefficients in a functional basis
φ(x) '

∑N
i=0 ciΨi(x).

In order to manipulate a function (e.g. derive), each
approach leads to:

finite differences schemes

φ′(xi) '
φ(xi+1)− φ(xi)

xi+1 − xi

spectral methods
φ′(x) '

N∑
i=0

ciΨ
′
i(x)



Convergence of Fourier

series
φ(x) =

√
1.5 + cos(x) + sin7 x

φ(x) '
N∑

i=0

aiΨi(x) with Ψ2k = cos(kx), Ψ2k+1 = sin(kx)



Use of orthogonal polynomials

The solutions (λi, ui)i∈N of a singular Sturm-Liouville
problem on the interval x ∈ [−1, 1]:

− (pu′)
′
+ qu = λwu,

with p > 0, C1, p(±1) = 0

are orthogonal with respect to the measure w:

(ui, uj) =

∫ 1

−1

ui(x)uj(x)w(x)dx = 0 for m 6= n,

form a spectral basis such that, if f(x) is smooth (C∞)

f(x) '
N∑

i=0

ciui(x)

converges faster than any power of N (usually as e−N).

Gauss quadrature to compute the integrals giving the ci’s.
Chebyshev, Legendre and, more generally any type of
Jacobi polynomial enters this category.



Method of weighted residuals

General form of an ODE of unknown u(x):

∀x ∈ [a, b], Lu(x) = s(x), and Bu(x)|x=a,b = 0,

The approximate solution is sought in the form

ū(x) =
N∑

i=0

ciΨi(x).

The {Ψi}i=0...N are called trial functions: they belong to a
finite-dimension sub-space of some Hilbert space H[a,b].
ū is said to be a numerical solution if:

Bū = 0 for x = a, b,
Rū = Lū− s is “small”.

Defining a set of test functions {ξi}i=0...N and a scalar
product on H[a,b], R is small iff:

∀i = 0 . . . N, (ξi, R) = 0.

It is expected that limN→∞ ū = u, “true” solution of the ODE.



Inversion of linear ODEs
Thanks to the well-known recurrence relations of Legendre
and Chebyshev polynomials, it is possible to express the
coefficients {bi}i=0...N of

Lu(x) =
N∑

i=0

bi

∣∣∣∣ Pi(x)
Ti(x)

, with u(x) =
N∑

i=0

ai

∣∣∣∣ Pi(x)
Ti(x)

.

If L = d/dx, x×, . . . , and u(x) is represented by the vector
{ai}i=0...N , L can be approximated by a matrix.

Resolution of a linear ODE

m

inversion of an (N + 1)× (N + 1) matrix

With non-trivial ODE kernels, one must add the boundary
conditions to the matrix to make it invertible!



Some singular operators

u(x) 7→ u(x)

x
is a linear operator, inverse of u(x) 7→ xu(x).

Its action on the coefficients {ai}i=0...N representing the
N -order approximation to a function u(x) can be computed
as the product by a regular matrix.⇒The computation in
the coefficient space of u(x)/x, on the interval [−1, 1]
always gives a finite result (both with Chebyshev and
Legendre polynomials).
⇒The actual operator which is thus computed is

u(x) 7→ u(x)− u(0)

x
.

⇒Compute operators in spherical coordinates, with
coordinate singularities

e.g. ∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆θϕ



Explicit / implicit schemes
Let us look for the numerical solution of (L acts only on x):

∀t ≥ 0, ∀x ∈ [−1, 1],
∂u(x, t)

∂t
= Lu(x, t),

with good boundary conditions. Then, with δt the
time-step: ∀J ∈ N, uJ(x) = u(x, J × δt), it is possible to
discretize the PDE as

uJ+1(x) = uJ(x) + δt LuJ(x): explicit time scheme
(forward Euler); easy to implement, fast but limited by
the CFL condition.

uJ+1(x)− δt LuJ+1(x) = uJ(x): implicit time scheme
(backward Euler); one must solve an equation (ODE)
to get uJ+1, the matrix approximating it here is
I − δt L. Allows longer time-steps but slower and
limited to second-order schemes.



Multi-domain approach

Multi-domain technique : several touching, or overlapping,
domains (intervals), each one mapped on [−1, 1].

Domain 1 Domain 2
x

1
=-1 x

1
=1 x

2
=-1 x

2
=1

y=a
y = y

0

y=b

boundary between two domains can be the place of a
discontinuity ⇒recover spectral convergence,

one can set a domain with more coefficients
(collocation points) in a region where much resolution
is needed ⇒fixed mesh refinement,

2D or 3D, allows to build a complex domain from
several simpler ones,

Depending on the PDE, matching conditions are imposed
at y = y0 ⇐⇒ boundary conditions in each domain.



Mappings and multi-D
In two spatial dimensions, the usual
technique is to write a function as:

f : Ω̂ = [−1, 1]× [−1, 1] → R

f(x, y) =
Nx∑
i=0

Ny∑
j=0

cijPi(x)Pj(y)

Π
ΩΩ

The domain Ω̂ is then mapped to the real physical domain,
trough some mapping Π : (x, y) 7→ (X, Y ) ∈ Ω.
⇒When computing derivatives, the Jacobian of Π is used.

compactification
A very convenient mapping in spherical coordinates is

x ∈ [−1, 1] 7→ r =
1

α(x− 1)
,

to impose boundary condition for r →∞ at x = 1.



Example:
3D Poisson equation, with non-compact support

To solve ∆φ(r, θ, ϕ) = s(r, θ, ϕ), with s extending to infinity.

Nucleus
r = αξ, 0 ≤ ξ ≤ 1

T
2i

(ξ) for l even

T
2i+1

(ξ) for l odd

Compactified domain

r =   1

β(ξ − 1)
, 0 ≤ ξ ≤ 1

T_i(ξ)

setup two domains in the radial
direction: one to deal with the
singularity at r = 0, the other
with a compactified mapping.

In each domain decompose the
angular part of both fields onto
spherical harmonics:

φ(ξ, θ, ϕ) '
`max∑
`=0

m=∑̀
m=−`

φ`m(ξ)Y m
` (θ, ϕ),

∀(`, m) solve the ODE:
d2φ`m

dξ2
+

2
ξ

dφ`m

dξ
− `(` + 1)φ`m

ξ2
= s`m(ξ),

match between domains, with regularity conditions at
r = 0, and boundary conditions at r →∞.



Application
to binary compact stars



Inspiralling binaries

Astrophysical scenario: binary systems of compact objects
evolve toward the final coalescence by emission of
gravitational waves and angular momentum loss.
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Stiff problem: the orbital and
coalescence timescales are
very different.
Post-Newtonian
(perturbative) computations
assume point-mass particles
⇒valid until separation is
comparable to size.

⇒ numerical simulation of initial data and evolution.



Binary neutron stars
binary quark stars

Initial data:
irrotational flow
and
conformal-flatness
approximation,

two adapted-grid
system, to take
into account tidal
effects,

use of realistic equations of state for cold nuclear
matter,

exploration of strange-quark equations of state.



Binary black hole
Stellar masses (for VIRGO) or galactic masses (for LISA).

First realistic initial data (2002), with excision
techniques,

Good agreement with post-Newtonian computations,

Determination of the last stable orbit, important for
gravitational wave data analysis.



Stellar core-collapse simulations



Simplified physical model

of core-collapse

The phenomenon of supernova is too rich to be
fully-modeled on a computer

relativistic hydrodynamics (v/c ∼ 0.3), including
shocks, turbulence and rotation,

strong gravitational field ⇒General Relativity?

neutrino transport (matter deleptonization)

nuclear equation of state (EOS)

radiative transfer and ionization of higher layers

magnetic field?

⇒to track gravitational waves, some features must be
neglected...and we use an effective model (not trying to
make them explode).



Simplified physical model

of core-collapse

General-relativistic hydrodynamics: 5 hyperbolic
PDEs in conservation form,

Conformal-flatness condition for the relativistic
gravity: 5 elliptic PDEs to be solved at each time-step,

Initial model is a rotating polytrope with an effective
adiabatic index γ . 4/3. During the collapse, when
the density reaches the nuclear level, γ → γ2 & 2,

Passive magnetic field,

Lepton fraction deduced from density, following
spherically-symmetric simulations with more detailed
neutrino transport.



Combination of two

numerical techniques
hydrodynamics ⇒High-Resolution Shock-Capturing
schemes (HRSC), also known as Godunov methods, here
implemented in General Relativity;

gravity ⇒multi-domain spectral solver using spherical
harmonics and Chebyshev polynomials, with a
compactification of type u = 1/r.

Use of two numerical grids with interpolation:

matter sources: Godunov (HRSC) grid → spectral grid;

gravitational fields: spectral grid → Godunov grid.

First achieved in the case of spherical symmetry, in
tensor-scalar theory of gravity (JN & Ibáñez 2000).
Spares a lot of CPU time in the gravitational sector, that
can be used for other physical ingredients.



Toward a realistic

relativistic collapse
Together with the use of a purely finite-differences code in
full GR, first results of realistic collapse of rotating stellar
iron cores in GR

with finite
temperature EOS;

(approximate)
treatment of
deleptonization.
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⇒complete check that CFC is a good approximation in
the case of core-collapse.



Neutron star oscillations
Study of non-linear axisymmetric pulsations of rotating
relativistic stars
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uniformly and differentially rotating
relativistic polytropes ⇒differential rotation
significantly shifts frequencies to smaller
values;

mass-shedding-induced damping of pulsations,
close to maximal rotation frequency.

most powerful modes could be seen
by current detectors if the source is
about ∼ 10 kpc;

if 4 modes are detected, information
about cold nuclear matter equation
of state could be extracted
⇒gravitational asterosismology.
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Summary – Perspectives
Numerical simulations of sources of gravitational waves
are of highest importance for the detection
Use of spectral methods can bring high accuracy with
moderate computational means (exploration of
parameter space)
Spectral methods can be associated with other types,
as in the core-collapse code presented here
Core-collapse code: going beyond conformal-flatness
approximation ⇒better extraction of waves
Improvement of this code: realistic EOS, temperature
effects for very massive star collapses (hypernovae).
Neutrinos? Ongoing work with M. Oertel
Study of the electro-weak processes: electron capture
rate, nucleon effective masses and EOS. Work by
A. Fantina, P. Blottiau, J. Margueron,
P. Pizzochero, . . .
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