Modélisation de sources astrophysiques d'ondes gravitationnelles

Jérôme Novak

LUTH : Laboratoire de l'Univers et de ses THéories

CNRS / Observatoire de Paris F-92195 Meudon Cedex, France http://www.luth.obspm.fr/

Au sein de l'équipe "relativité numérique" : Silvano Bonazzola, Éric Gourgoulhon, Philippe Grandclément…

CESR, 24 février 2005

Intérêt des ondes gravitationnelles :

- test de la théorie de la gravitation (Relativité Générale), mais déjà fait de manière indirecte (pulsars binaires)
- nouveau vecteur d'informations pour l'astrophysique, orthogonal aux photons ⇒ astrophysique gravitationnelle

(correspondent à la fréquence *mécanique* du système émetteur).

Projet de détecteur interférométrique dans l'espace : LISA

3 satellites en triangle de 5 millions de km, orbite héliocentrique, 20 jours derrière la Terre

ESA/NASA, prévu pour un lancement pour 2013.

Sensibilité entre 10^{-4} Hz et 1 Hz \Rightarrow basses fréquences.

Estimations de l'émission

En utilisant les équations d'Einstein linéarisées :

- au premier ordre $h \sim \ddot{Q}$ (moment quadrupolaire de la source), ou encore $h \sim \frac{G}{c^4} \frac{E^{NS}}{r}$;
- l'effet d'une onde gravitationnelle sur deux particules de masses négligeables est la variation de leur distance au cours du temps $\Delta l/l \simeq h$;
- le flux reçu à une fréquence f est

$$F = 0.3 \left(\frac{f}{1 \text{ kHz}}\right)^2 \left(\frac{h}{10^{-21}}\right)^2 \quad \text{Wm}^{-2}.$$

- la puissance (ou luminosité) gravitationnelle rayonnée par une source est

$$L \sim \frac{G}{c^5} s^2 \omega^6 M^2 R^4.$$

 \Rightarrow Objets *compacts* en mouvement relativiste et non sphériques.

Pour les hautes fréquences (10 Hz \rightarrow 10 kHz) :

- systèmes binaires d'astres compacts en coalescence (étoiles à neutrons ou trous noirs), issus de l'évolution d'étoiles binaires massives;
- instabilités et déformations des (proto)-étoiles à neutrons (glitchs, champ magnétique, astérosismologie,...) ⇒intégration du signal sur de nombreuses périodes;
- supernovæ (??)
- Pour les basses fréquences $(10^{-4} \text{ Hz} \rightarrow 1 \text{ Hz})$
- binaires de trous noirs massifs (galactiques);
- binaires de naines blanches / binaires serrées;
- astres compacts capturés par un trou noir galactique;
- fond diffu (???)

Systèmes binaires d'astres compacts

Ce sont des systèmes relativistes, avec un champ gravitationnel intense et fortement asymétriques.^{20.0}

Calculs post-newtoniens supposent des masses ponctuelles.

La dernière étape (fortement dynamique) devrait émettre le plus d'ondes détectables.

 \Rightarrow données initiales (quasi-stationnaires) puis évolution dynamique.

Déformations produites par :

- Le champ magnétique (qqs GT) : dans les modèles de pulsars, le moment magnétique n'est pas aligné avec l'axe de rotation.
- Instabilités du cœur : la perte de moment cinétique par émission d'ondes gravitationnelles induit la croissance de certains modes oscillatoires pour les étoiles en rotation (modes r).
- Réarrangements de l'écorce (phénomènes de glitch).

 \Rightarrow Recherche du *spectre* d'oscillation suivant les équations d'état (quarks s, superfluidité, ...) ou de l'amplitude des déformations.

supernovæ

Les ondes gravitationnelles ne sont pas absorbées par la matière, elles peuvent donc arrriver depuis le cœur dense des *supernovæ*.

Première source étudiée car l'énergie libérée $\sim 0.1 M_{\odot}c^2$ (essentiellement sous forme de neutrinos).

 \Rightarrow modèles *effectifs* d'effondrements pour estimer les ondes gravitationnelles (et non modéliser le phénomène de *supernova*).

Modèles physiques

- champ gravitationnel : théorie de la relativité générale ;
- champ électromagnétique couplé au champ gravitationnel : équations d'Einstein-Maxwell;
- matière : fluide(s) parfait(s), mais de nombreuses équations d'état de la matière dense sont utilisées (éventuellement prise en compte de la superfluidité) + conducteur parfait

Lors de études passées, les hypothèses sur la partie physique ont été :

- symétries les étoiles isolées sont supposées invariantes par rotation autour de leur axe (éventuellement perturbations),
- **quasi-stationnarité** la perte de moment cinétiques par les binaires est supposée se produire sur un temps caractéristique bien plus long que la période orbitale (néglige les ondes gravitationnelles).

Formulation des équations d'Einstein

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

⇒système de 10 EDP d'ordre 2, non-linéaires et couplées,

 \Rightarrow le champ $g_{\mu\nu}(t, r, \theta, \varphi)$ décrit la métrique de l'espace-temps, vu comme variété de dimension 4.

Utilisation du formalisme "3+1" pour se ramener à un problème de Cauchy :

Choix de jauge

Dans les cas (quasi-)stationnaires, système purement elliptique : 4 équations (étoiles isolées en rotation) ou 5 (système binaire avec l'approximation IWM).

⇒Calcul des *conditions initiales* pour l'évolution dynamique.

En général, le système "3+1" est un système hyperbolique avec contraintes. D'autres formulations ont été proposées pour rendre les équations d'Einstein complètement hyperboliques (eventuels problèmes à la limite classique).

Il existe aussi beaucoup de liberté sur le choix du système de coordonnées sur la variété :

⇒recherche de variables et coordonnées telles, que le système soit maximalement contraint (2 degrés de liberté pour les ondes gravitationnelles). *S.Bonazzola, E.Gourgoulhon, P.Grandclément et J.N., Phys. Rev. D* 70 (2004).

Méthodes numériques

Caractéristiques en relativité numérique :

- contrairement aux champs liés à la matière, le champ gravitationnel est toujours continu;
- problèmes intéressants sont 3D...
- étude d'objets de type stellaire et isolés.
- \Rightarrow méthodes spectrales (décomposition des champs sur des bases de fonctions);
- \Rightarrow coordonnées et composantes sphériques;
- \Rightarrow changement de variable de type u = 1/r pour les équations elliptiques (conditions aux bords bien définies à l'infini...).

Ces méthodes ont commencé à être appliquées aux simulations astrophysiques par Silvano Bonazzola et Jean-Alain Marck au milieu des années 1980, à l'Observatoire de Meudon.

Aujourd'hui : bibliothèque LORENE : http ://www.lorene.obspm.fr.

Précision

 $f(x) = \cos^3\left(\frac{\pi}{2}x\right) - \frac{1}{8}\left(x+1\right)^3$ sur [-1;1], représentée par une série de N polynômes de Tchebychev $(T_n(x) = \cos(n \ \arccos x))$

Décroissance en e^{-N} ; pour comparaison : plus de 10^5 points nécessaires avec un schéma d'ordre 3 en différences finies...

Décomposition multidomaine

Méthodes spectrales multigrille + coordonnées sphériques :

Décomposition :

sphériques.

Polynômes de Tchebychev en ξ , Fourier ou Y_l^m pour la partie angulaire (θ, ϕ) , + utilisation des symétries et conditions de régularité des champs en coordonnées

Résolution d'EDP : équations de Poisson et de d'Alembert

 $\Delta\phi=\sigma$

$$\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{l(l+1)}{r^2} \phi_{lm}(r) = \sigma_{lm}(r)$$

Erreur minimale $\sim 10^{-14}$.

$$\Box \phi = \sigma$$

$$\left[1 - \frac{\delta t^2}{2} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{l(l+1)}{r^2}\right)\right]\phi_{lm}^{J+1} = \sigma_{lm}^{J}$$

Erreur $\sim 10^{-10}$ (différences finies).

Inversion des opérateurs \iff inversion de matrices $\sim 30 \times 30$

Les parties non-linéaires sont évaluées dans l'espace physique et contribuent aux sources des équations.

 \Rightarrow équations de Poisson vectorielle et tensorielle en composantes sphériques.

Ensemble de domaines pour décrire un système binaire

Possibilité d'adapter les grilles à

la surface des étoiles par le mapping suivant :

 $r = \alpha[\xi + A(\xi)F(\theta',\varphi') + B(\xi)G(\theta',\varphi')] + \beta, \quad \theta = \theta', \quad \varphi = \varphi'$

Utilisation avec d'autres méthodes numériques

L'évolution hydrodynamique du système (en relativité générale) peut se faire avec des méthodes spectrales,

mais limitation lorsque présence de chocs ou de discontinuités (phénomène de Gibbs).

Les méthodes spectrales ont été employées pour modéliser le champ gravitationnel, en collaboration avec d'autres méthodes numériques :

- méthodes SPH, pour l'évolution d'un système binaire d'étoiles à neutrons (P.Grandclément & J.Faber, Northwestern university);
- différences finies, pour la détermination des modes d'oscillation des étoiles à neutrons (E.Gourgoulhon & I.Jones, university of Southampton)
- méthodes de Godunov capture de chocs (en relativité générale), pour la simulation des supernovæ (J.Novak & H.Dimmelmeier, Max-Planck-Institut für Astrophysik)

Résultats : ondes gravitationnelles et astres compacts

Champ magnétique des magnétars $\rightarrow 10^{13}$ T.

Modèles stationnaires d'étoiles en rotation rapide + axe magnétique aligné

Déformation due à la pression magnétique importante que dans le cas des magnétars : *M.Bocquet, S.Bonazzola, E.Gourgoulhon et J.N., Astron. & Astrophys.* **301**,(1995). Possibilité d'émission d'ondes gravitationnelles : *S.Bonazzola et E.Gourgoulhon, Astron. & Astrophys.* **312**,(1996).

Rapport gyromagnétique : J.N. et E.Marcq, Class. Quant. Grav. 20, (2003).

Superfluidité dans les étoiles à neutrons

- Modèles à deux fluides : les neutrons (superfluides) et le reste (normal) avec un entraînement superfluide,
- Recherche de solutions stationnaires avec une équation d'état simplifiée (double polytrope)
- Données initiales pour la recherche d'instabilités de type deux-fluides (plasmas)

Comparaisons avec des solutions "exactes" dans le cas de rotation lente et en gravité newtonienne.

R.Prix, J.N., G.Comer, t, Phys. Rev. D, sous presse.

- Hypothèses d'irrotationalité et de quasi-stationnarité
- 5 équations d'Einstein résolues / 10
- Pas d'ondes gravitationnelles, mais informations sur l'évolution du système.

K. Taniguchi et E. Gourgoulhon, Phys. Rev. D 66 (2002).

F.Limousin, D.Gondek-Rosinska et E.Gourgoulhon, Phys. Rev. D, soumis

Utilisation d'équations d'état réalistes ainsi que possibilité d'étoiles de quarks.

Trous noirs binaires

Trous noirs stellaires (VIRGO) comme galactiques (LISA) sont intéressants.

- Première simulation "réaliste"
- Bon accord avec les calculs post-newtoniens
- Localisation de la dernière orbite stable primordiale pour le traitement du signal.

P.Grandclément, E.Gourgoulhon et S.Bonazzola, Phys. Rev. D 65 (2002).

T.Damour, E.Gourgoulhon te P.Grandclément, Phys. Rev. D 66 (2002).

Effondrements stellaires

Modèle physique très riche et trop complexe...

Commence par modélisation hydro + champ gravitationnel relativiste (Einstein) :

- méthodes spectrales pour modéliser la gravité (faibles besoins informatiques),
- méthodes de type Godunov (capture de chocs) pour traiter les discontinuités hydrodynamiques.

Le code 3D est actuellement opérationnel... étude des instabilités rotationnelles en cours.

H.Dimmelmeier, J.N., J.A. Font-Roda, J.M. Ibañez et E. Müller, Phys. Rev. D, soumis.

Onde gravitationnelle seule

Conditions initiales : h est donné par ses deux degrés de liberté pour le mode l = m = 2. En prenant $\dot{h} = 0$, on peut résoudre les contraintes au pas de temps initial.

 \Rightarrow évolution des équations complètes par le schéma contraint en 3D (symétrie par rapport au plan équatorial).

 \Rightarrow les équations de contraintes sont bien résolues (!), mais aussi les équations d'évolution qui ne sont pas imposées numériquement.

⇒l'onde quitte la grille sans interférences avec le bord. *J.N. et S.Bonazzola, J. Comp. Phys.* **197** (2004).

Conclusions/perspectives

- modèles très complets d'*étoiles relativistes en rotation rapide*, afin de servir de points de départ aux simulations dynamiques et estimer les déformations;
- calculs de *modèles quasi-stationnaires de binaires* (étoiles à neutrons / quarks ou trous noirs);
- formalisme et premières simulations *"complètes"*...

⇒ simulation de phénomènes dynamiques (instationnaires) afin d'estimer le rayonnement gravitationnel : améliorer la partie métrique (excision de la singularité centrale des trous noirs) et développer l'hydrodynamique relativiste.

+ champ magnétique (?)

Intéressés par de multiples problèmes astrophysiques, pas uniquement à la recherche d'ondes gravitationnelles.

LIGO opérationnel, VIRGO presque ... il faut être prêt !