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Introduction:
The need for relativistic gravity



CoCoNuT
What for?

Core Collapse using Nu Technologies

Evolution of self-gravitating stellar bodies: degenerate
stellar cores, neutron stars and black holes.
Need to model fluid evolution (hydrodynamics) and
gravitational interaction;
Newtonian or relativistic?

⇒Black Holes: obviously relativistic!!

⇒Neutron stars: compaction parameter Ξ =
2GM

Rc2
∼ 0.2,

existence of maximal mass. . .
⇒What about core collapse?



Study by Dimmelmeier et al. (2006)

Model Method N Method R Method A Method CFC Method CFC+ GR
M5a1 3.8 (0.58) 6.1 (0.92) 5.6 (0.85) 6.6 (1.00) 6.6 (1.00) 6.6
M5c2 1.1 (0.22) 3.3 (0.66) 2.9 (0.58) 4.9 (0.98) 4.9 (0.98) 5.0
M7a4 5.6 — — — 14 — 14 — 14 — —
M7b1 0.10 (0.13) 0.40 (0.51) 0.31 (0.39) 0.83 (1.05) 0.85 (1.08) 0.79
M7c3 1.2 (0.13) 5.3 (0.58) 4.2 (0.46) 9.2 (1.00) 9.2 (1.00) 9.2
M8a1 4.5 — — — 17 — — — — — —
M8c2 0.19 (0.04) 1.5 (0.28) 9.0 (0.17) 5.3 (0.98) 5.2 (0.96) 5.4
M8c4 1.2 (0.08) 7.1 (0.47) 5.1 (0.34) 17 (1.13) 12 (0.80) 15

Maximum density ρmax b in units of 1014 g cm−3 during core bounce

Model Method N Method R Method A Method CFC Method CFC+ GR

M5a1 NS NS NS NS NS NS

M5c2 O-B O-A O-A O-A → NS O-A → NS O-A → NS

M7a4 NS BH NS NS NS NS / BH

M7b1 O-B O-B O-B O-B O-B O-B

M7c3 O-B NS O-A → NS NS NS NS

M8a1 NS BH NS BH BH BH

M8c2 O-B O-B O-B O-A O-A O-A

M8c4 O-B NS NS NS NS NS

Collapse type of the investigated rotating core collapse models



Do we need relativity
for the simulation of core-collapse?

Answer:

In order to have a correct (even qualitatively)
description of the core-collapse phenomenon, one

needs a relativistic model:

hydrodynamics (see Pablo’s presentations)

gravity (here)

Einstein’s equations

Rµν −
1
2
gµνR =

8πG

c4
Tµν



3+1 approach and
Fully-Constrained Formulation
FCF should soon appear in CoCoNuT. . .



3+1 formalism

Decomposition of spacetime and of Einstein equations

Evolution equations:

∂Kij

∂t
−LβKij =

−DiDjN + NRij − 2NKikKk
j +

N [KKij + 4π((S − E)γij − 2Sij)]

Kij =
1

2N

(
∂γij

∂t
+ Diβj + Djβi

)
.

Constraint equations:

R + K2 −KijK
ij = 16πE,

DjK
ij −DiK = 8πJ i.

gµν dxµ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)



Constraint violation
If the constraints are verified for initial data, evolution should
preserve them. Therefore, one could in principle solve Einstein
equations without solving the constraints

⇓

Appearance of constraint violating modes

However, some cures are known :
solving the constraints at (almost) every time-step . . .
using an evolution scheme for which constraint-violating
modes remain at a reasonable level (e.g. BSSN)
constraints as evolution equations
constraint-damping terms and constraint-preserving
boundary conditions
constraint projection
. . .



Some reasons not to solve
constraints

Why free evolution schemes are so popular

computational cost of usual elliptic solvers ...

few results of well-posedness for mixed systems versus solid
mathematical theory for pure-hyperbolic systems

definition of boundary conditions at finite distance and at black
hole excision boundary



Motivations for a
fully-constrained scheme

“Alternate” approach (although most straightforward)

partially constrained schemes: Bardeen & Piran (1983),
Stark & Piran (1985), Evans (1986)
fully constrained schemes: Evans (1989), Shapiro &
Teukolsky (1992), Abrahams et al. (1994), Choptuik et al.
(2003), Rinne (2008).

⇒Rather popular for 2D applications, but disregarded in 3D
Still, many advantages:

constraints are verified!
elliptic systems have good stability properties
easy to make link with initial data
evolution of only two scalar-like fields ...



Usual conformal decomposition

Conformal 3-metric (e.g. BSSN:)

γ̃ij := Ψ−4 γij or γij =: Ψ4 γ̃ij

with
Ψ :=

(
γ
f

)1/12

f := det fij

fij (with
∂fij

∂t
= 0) as the asymptotic structure of γij , and Di

the associated covariant derivative.
Finally,

γ̃ij = f ij + hij

is the deviation of the 3-metric from conformal flatness.
⇒hij carries the dynamical degrees of freedom of the
gravitational field (York, 1972)



Generalized Dirac gauge
Bonazzola et al. (2004)

One can generalize the gauge introduced by Dirac (1959) to any
type of coordinates:

divergence-free condition on γ̃ij

Dj γ̃
ij = Djh

ij = 0

where Dj denotes the covariant derivative with respect to the
flat metric fij .

Compare
minimal distortion (Smarr & York 1978) : Dj

(
∂γ̃ij/∂t

)
= 0

pseudo-minimal distortion (Nakamura 1994) :
Dj (∂γ̃ij/∂t) = 0

Notice: Dirac gauge ⇐⇒ BSSN connection functions vanish:
Γ̃i = 0



Generalized Dirac gauge
properties

hij is transverse
from the requirement det γ̃ij = 1, hij is asymptotically
traceless
3Rij is a simple Laplacian in terms of hij

3R does not contain any second-order derivative of hij

with constant mean curvature (K = t) and spatial
harmonic coordinates (Dj

[
(γ/f)1/2 γij

]
= 0), Anderson &

Moncrief (2003) have shown that the Cauchy problem is
locally strongly well posed
the Conformally-Flat Condition (CFC) verifies the Dirac
gauge ⇒possibility to easily use many available initial data.



Einstein equations
Dirac gauge and maximal slicing (K = 0)

Hamiltonian constraint

∆(Ψ2N) = Ψ6N

(
4πS +

3
4
ÃklA

kl

)
− hklDkDl(Ψ2N) + Ψ2

[
N

( 1
16

γ̃klDkh
ijDlγ̃ij

−1
8
γ̃klDkh

ijDj γ̃il + 2D̃k ln Ψ D̃k ln Ψ
)

+ 2D̃k ln Ψ D̃kN

]

Momentum constraint

∆βi +
1
3
Di

(
Djβ

j
)

= 2AijDjN + 16πNΨ4J i − 12NAijDj ln Ψ− 2∆i
klNAkl

−hklDkDlβ
i − 1

3
hikDkDlβ

l

Trace of dynamical equations

∆N = Ψ4N
[
4π(E + S) + ÃklA

kl
]
− hklDkDlN − 2D̃k ln Ψ D̃kN



Einstein equations
Dirac gauge and maximal slicing (K = 0)

Evolution equations

∂2hij

∂t2
− N2

Ψ4
∆hij − 2£β

∂hij

∂t
+ £β£βhij = Sij

6 components - 3 Dirac gauge conditions -
(
det γ̃ij = 1

)
2 degrees of freedom

−∂2W

∂t2
+ ∆W = SW

−∂2X

∂t2
+ ∆X = SX

with W and X two scalar potentials related to hθθ − hϕϕ and
hθϕ.



Conformally-Flat Condition:

old and extended formulations



CFC: first version in CoCoNuT
see Dimmelmeier et al. (2005)

The CFC reads hij = 0 ⇒discarding all gravitational waves!
The Einstein system results in 5 coupled non-linear elliptic
equations, which sources are with non-compact support:

∆ lnΨ =−4πΨ4

(
ρhW 2 − P +

KijK
ij

16π

)
−Di ln Ψ Di ln Ψ,

∆ lnNΨ = 2πΨ4

(
ρh(3W 2 − 2) + 5P +

7KijK
ij

16π

)
−Di ln NΨ Di ln NΨ,

∆βi +
1
3
DiDkβ

k = 16πNΨ4Si + 2Ψ10KijDj

(
N

Ψ6

)
.

⇒originally devised by Isenberg (1978), Wilson & Mathews
(1989).



Problem with the original
formulation

Local uniqueness theorem

Consider the elliptic equation

∆u + h up = g (∗)

where p ∈ R and h and g are independent of u.
If ph ≤ 0, any solution of (∗) is locally unique.

in the CFC system, this theorem cannot be applied for the
equations for Ψ and NΨ;
During a collapse to a black hole or even during the migration
test, the solution of the metric system would jump to a
“wrong” one.

This is not due to the CFC approximation! It is happening even in
spherical symmetry, where CFC is exact (isotropic gauge)



New (extended) CFC approach
Cordero et al. (2008)

In addition to setting hij = 0, write

Âij := Ψ10Kij = DiXj +DjXi − 2
3
DkX

kf ij + Âij
TT×

Mom. constraint ⇒∆Xi +
1
3
DiDjX

j = 8πĴ i

Ham. constraint ⇒∆Ψ = −2π
Ê

Ψ
− filfjmÂlmÂij

8Ψ7

(trace dyn. + Ham. constr.)

⇒∆(NΨ) =

[
2πΨ−2(Ê + 2Ŝ) +

7filfjmÂlmÂij

8Ψ8

]
(NΨ)

(def. Kij + mom. constr.)

⇒∆βi +
1
3
DiDlβ

l =
N

Ψ6

(
16πĴ i

)
+ 2ÂijDj

(
N

Ψ6

)



Gravitational collapse to a
black hole in XCFC
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Numerical computation with the XCFC version of CoCoNuT code

Due to the non-uniqueness issue, such a calculation was not
possible in CFC, even in spherical symmetry



Rotating relativistic star
initial data



Physical model of rotating
neutron stars

Code (available in Lorene) developed for
self-gravitating perfect fluid in general relativity
two Killing vector fields (axisymmetry + stationarity)
Dirac gauge
equilibrium between matter and gravitational field
equation of state of a relativistic polytrope Γ = 2

Considered model here:

central density ρc = 2.9ρnuc

rotation frequency f = 641.47 Hz ' fMass shedding

gravitational mass Mg ' 1.51M¯

baryon mass Mb ' 1.60M¯

Equations are the same as in the dynamical case, replacing
time derivatives terms by zero



Comparison with rotstar
Lin & Novak (2006)

Other code using quasi-isotropic gauge has been used for a long
time and successfully compared to different codes in Nozawa et al.
(1998).

Global quantities

Quantity q-isotropic Dirac rel. diff.
N(r = 0) 0.727515 0.727522 10−5

Mg [M¯] 1.60142 1.60121 10−4

Mb [M¯] 1.50870 1.50852 10−4

Rcirc [km] 23.1675 23.1585 4× 10−4

J
[
GM2

¯/c
]

1.61077 1.61032 3× 10−4

Virial 2D 1.4× 10−4 1.5× 10−4

Virial 3D 2.5× 10−4 2.1× 10−4

Virial identities (2 & 3D) are covariant relations that should be
fulfilled by any stationary spacetime; they are not imposed
numerically.



Stationary axisymmetric models
Deviation from conformal flatness

For all components (except hrϕ and hθϕ,
which are null), hij

max ∼ 0.005 (up to
∼ 0.02 in more compact cases)
⇒comparable with γθθ − γϕϕ in
quasi-isotropic gauge



Trapped surfaces and
apparent horizon finder



Trapped surfaces
S : closed (i.e. compact without boundary) spacelike
2-dimensional surface embedded in spacetime (M, g)

∃ two future-directed null
directions (light rays)
orthogonal to S:
` = outgoing, expansion θ(`)

k = ingoing, expansion θ(k)

In flat space, θ(k) < 0 and
θ(`) > 0

S is trapped ⇐⇒ θ(k) ≤ 0 and θ(`) ≤ 0
S is marginally trapped ⇐⇒ θ(k) ≤ 0 and θ(`) = 0

trapped surface = local concept characterizing very strong
gravitational fields



Connection with singularities
and black holes

Penrose (1965): provided that the weak energy condition holds,
∃ a trapped surface S =⇒ ∃ a singularity in (M, g) (in the form
of a future inextendible null geodesic)

Hawking & Ellis (1973): provided that the cosmic censorship
conjecture holds, ∃ a trapped surface S =⇒ ∃ a black hole B
and S ⊂ B

⇒local characterization of black holes



AH finder
Lin & Novak (2007)

For any closed smooth 2-surface S on a time-slice, one thus
computes:

the outward pointing normal unit 3-vector si

the outgoing expansion Θ := θ(`) = ∇is
i −K + Kijs

isj

An apparent horizon is the outermost marginally trapped
surface, therefore the outermost closed 2-surface for which
Θ = 0.
Numerically, the AH is defined by
r = h(θ, ϕ) =

∑
`,m h`mY m

` (θ, ϕ).

Θ = 0 ⇐⇒ ∆θϕh− 2h = σ(h, γij , K
ij)

which is solved iteratively

h`m =
−1

` (` + 1) + 2

∫
S

Y m∗
` σdΩ
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