THE GRAVITATIONAL FIELD EQUATIONS IN **COCONUT**

Jérôme Novak (Jerome.Novak@obspm.fr)

[L](http://www.luth.obspm.fr)aboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

in collaboration with: Pablo Cerdá, Isabel Cordero, Harald Dimmelmeier, Éric Gourgoulhon, José-Luis Jaramillo, Lap-Ming Lin, ...

CoCoNuT school, November, 4^{th} 2008

Introduction: The need for relativistic gravity

 $\frac{1}{Rc^2} \sim 0.2,$

Core Collapse using Nu Technologies

- Evolution of self-gravitating stellar bodies: degenerate stellar cores, neutron stars and black holes.
- Need to model fluid evolution (hydrodynamics) and gravitational interaction;
- Newtonian or relativistic?

⇒Black Holes: obviously relativistic!! \Rightarrow Neutron stars: compaction parameter Ξ existence of maximal mass. . . ⇒What about core collapse?

$$
\text{Y} \text{Doseyvatioire} \textcolor{red}{\leftarrow} \text{LUTH}
$$

STUDY BY DIMMELMEIER et al. (2006)

Maximum density $\rho_{\text{max b}}$ in units of 10^{14} g cm⁻³ during core bounce

Collapse type of the investigated rotating core collapse models

DO WE NEED RELATIVITY

for the simulation of core-collapse?

Answer:

In order to have a correct (even qualitatively) description of the core-collapse phenomenon, one needs a relativistic model:

• hydrodynamics (see Pablo's presentations) • gravity (here)

Einstein's equations

$$
R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}
$$

3+1 approach and Fully-Constrained Formulation

FCF should soon appear in CoCoNuT...

3+1 formalism

Decomposition of spacetime and of Einstein equations

EVOLUTION EQUATIONS:

 $\frac{\partial K_{ij}}{\partial t}-\mathcal{L}_{\boldsymbol{\beta}}K_{ij}=$ $-D_iD_jN + NR_{ij} - 2NK_{ik}K^k_{\ j} +$ $N [KK_{ij} + 4\pi ((S - E)\gamma_{ij} - 2S_{ij})]$ $K^{ij}=\frac{1}{2i}$ $2N$ $\left(\frac{\partial \gamma^{ij}}{\partial t}+D^i\beta^j+D^j\beta^i\right).$

CONSTRAINT EQUATIONS:

 $R + K^2 - K_{ij}K^{ij} = 16\pi E,$ $D_j K^{ij} - D^i K = 8\pi J^i.$

 $g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$

CONSTRAINT VIOLATION

If the constraints are verified for initial data, evolution should preserve them. Therefore, one could in principle solve Einstein equations without solving the constraints

Appearance of constraint violating modes

⇓

However, some cures are known :

- solving the constraints at (almost) every time-step . . .
- using an evolution scheme for which constraint-violating modes remain at a reasonable level (e.g. BSSN)
- constraints as evolution equations
- constraint-damping terms and constraint-preserving boundary conditions
- constraint projection

. . . \bullet

SOME REASONS NOT TO SOLVE **CONSTRAINTS**

WHY FREE EVOLUTION SCHEMES ARE SO POPULAR

computational cost of usual elliptic solvers ...

few results of well-posedness for mixed systems versus solid mathematical theory for pure-hyperbolic systems

definition of boundary conditions at finite distance and at black hole excision boundary

MOTIVATIONS FOR A fully-constrained scheme

"Alternate" approach (although most straightforward)

- partially constrained schemes: Bardeen & Piran (1983), Stark & Piran (1985), Evans (1986)
- fully constrained schemes: Evans (1989), Shapiro & Teukolsky (1992), Abrahams et al. (1994), Choptuik et al. (2003), Rinne (2008).

⇒Rather popular for 2D applications, but disregarded in 3D Still, many advantages:

- constraints are verified!
- elliptic systems have good stability properties
- easy to make link with initial data
- evolution of only two scalar-like fields ...

Usual conformal decomposition

CONFORMAL 3-METRIC (e.g. BSSN:)

$$
\tilde{\gamma}_{ij} := \Psi^{-4} \gamma_{ij} \text{ or } \gamma_{ij} =: \Psi^{4} \tilde{\gamma}_{ij}
$$
\nwith\n
$$
\Psi := \left(\frac{\gamma}{f}\right)^{1/12}
$$
\n
$$
f := \det f_{ij}
$$

 f_{ij} (with $\frac{\partial f_{ij}}{\partial t} = 0$) as the asymptotic structure of γ_{ij} , and \mathcal{D}_i the associated covariant derivative. Finally,

$$
\tilde{\gamma}^{ij} = f^{ij} + h^{ij}
$$

is the deviation of the 3-metric from conformal flatness. $\Rightarrow h^{ij}$ carries the dynamical degrees of freedom of the gravitational field (York, 1972)

Generalized Dirac gauge Bonazzola et al. (2004)

One can generalize the gauge introduced by Dirac (1959) to any type of coordinates:

DIVERGENCE-FREE CONDITION ON

 $\mathcal{D}_{j} \tilde{\gamma}^{ij} = \mathcal{D}_{j} h^{ij} = 0$

where \mathcal{D}_i denotes the covariant derivative with respect to the flat metric f_{ii} .

Compare

- minimal distortion (Smarr & York 1978) : $D_j \left(\frac{\partial \tilde{\gamma}^{ij}}{\partial t} \right) = 0$
- pseudo-minimal distortion (Nakamura 1994) : $\mathcal{D}^j\left(\partial \tilde{\gamma}_{ij}/\partial t\right)=0$

Notice: Dirac gauge \Longleftrightarrow BSSN connection functions vanish: $\tilde{\Gamma}^i=0$

Generalized Dirac gauge **PROPERTIES**

- h^{ij} is transverse
- from the requirement $\det \tilde{\gamma}_{ij} = 1$, h^{ij} is asymptotically traceless
- ${}^{3}R_{ij}$ is a simple Laplacian in terms of h^{ij}
- ${}^{3}R$ does not contain any second-order derivative of h^{ij}
- with constant mean curvature $(K = t)$ and spatial harmonic coordinates $(\mathcal{D}_j \left[(\gamma/f)^{1/2} \gamma^{ij} \right] = 0)$, Anderson & Moncrief (2003) have shown that the Cauchy problem is locally strongly well posed
- the Conformally-Flat Condition (CFC) verifies the Dirac gauge ⇒possibility to easily use many available initial data.

Einstein equations

DIRAC GAUGE AND MAXIMAL SLICING $(K = 0)$

Hamiltonian constraint

$$
\Delta(\Psi^2 N) = \Psi^6 N \left(4\pi S + \frac{3}{4} \tilde{A}_{kl} A^{kl} \right) - h^{kl} \mathcal{D}_k \mathcal{D}_l (\Psi^2 N) + \Psi^2 \left[N \left(\frac{1}{16} \tilde{\gamma}^{kl} \mathcal{D}_k h^{ij} \mathcal{D}_l \tilde{\gamma}_l \right) \right.
$$

$$
- \frac{1}{8} \tilde{\gamma}^{kl} \mathcal{D}_k h^{ij} \mathcal{D}_j \tilde{\gamma}_{il} + 2 \tilde{D}_k \ln \Psi \tilde{D}^k \ln \Psi \right) + 2 \tilde{D}_k \ln \Psi \tilde{D}^k N \right]
$$

Momentum constraint

$$
\begin{array}{rcl} \Delta \beta^i + \frac{1}{3} \mathcal{D}^i \left(\mathcal{D}_j \beta^j \right) & = & 2 A^{ij} \mathcal{D}_j N + 16 \pi N \Psi^4 J^i - 12 N A^{ij} \mathcal{D}_j \ln \Psi - 2 \Delta^i_{\ \ kl} N A^{kl} \\ & & \\ & & - h^{kl} \mathcal{D}_k \mathcal{D}_l \beta^i - \frac{1}{3} h^{ik} \mathcal{D}_k \mathcal{D}_l \beta^l \end{array}
$$

Trace of dynamical equations

$$
\Delta N = \Psi^4 N \left[4 \pi (E + S) + \tilde{A}_{kl} A^{kl} \right] - h^{kl} \mathcal{D}_k \mathcal{D}_l N - 2 \tilde{D}_k \ln \Psi \, \tilde{D}^k N
$$

Einstein equations

 $-LUTH$

DIRAC GAUGE AND MAXIMAL SLICING $(K = 0)$

Evolution equations

$$
\frac{\partial^2 h^{ij}}{\partial t^2} - \frac{N^2}{\Psi^4} \Delta h^{ij} - 2 \pounds_{\beta} \frac{\partial h^{ij}}{\partial t} + \pounds_{\beta} \pounds_{\beta} h^{ij} = \mathcal{S}^{ij}
$$

6 components - 3 Dirac gauge conditions - $(\det \tilde{\gamma}^{ij} = 1)$

DEGREES OF FREEDOM

$$
-\frac{\partial^2 W}{\partial t^2} + \Delta W = S_W
$$

$$
-\frac{\partial^2 X}{\partial t^2} + \Delta X = S_X
$$

with W and X two scalar potentials related to $h^{\theta\theta} - h^{\varphi\varphi}$ and $h^{\theta \varphi}.$

Conformally-Flat Condition: old and extended formulations

CFC: first version in CoCoNuT see Dimmelmeier et al. (2005)

The CFC reads $h^{ij} = 0 \Rightarrow$ discarding all gravitational waves! The Einstein system results in 5 coupled non-linear elliptic equations, which sources are with non-compact support:

$$
\Delta \ln \Psi = -4\pi \Psi^4 \left(\rho h W^2 - P + \frac{K_{ij} K^{ij}}{16\pi} \right)
$$

$$
- \mathcal{D}^i \ln \Psi \mathcal{D}_i \ln \Psi,
$$

$$
\Delta \ln N\Psi = 2\pi \Psi^4 \left(\rho h (3W^2 - 2) + 5P + \frac{7K_{ij}K^{ij}}{16\pi} \right)
$$

$$
-D^i \ln N\Psi D_i \ln N\Psi,
$$

 $\Delta\beta^i + \frac{1}{2}$ $\frac{1}{3}\mathcal{D}^i\mathcal{D}_k\beta^k = 16\pi N\Psi^4S^i + 2\Psi^{10}K^{ij}\mathcal{D}_j\left(\frac{N}{\Psi^0}\right)$ Ψ^6 \setminus . ⇒originally devised by Isenberg (1978), Wilson & Mathews (1989).

PROBLEM WITH THE ORIGINAL **FORMULATION**

Local uniqueness theorem

Consider the elliptic equation

$$
\Delta u + h u^p = g \qquad (*)
$$

where $p \in \mathbb{R}$ and h and q are independent of u. If $ph \leq 0$, any solution of $(*)$ is locally unique.

- in the CFC system, this theorem cannot be applied for the equations for Ψ and $N\Psi$;
- During a collapse to a black hole or even during the migration test, the solution of the metric system would jump to a "wrong" one.

This is not due to the CFC approximation! It is happening even in spherical symmetry, where CFC is exact (isotropic gauge)

NEW (EXTENDED) CFC APPROACH CORDERO $et \ al.$ (2008)

In addition to setting $h^{ij} = 0$, write

 $\hat{A}^{ij} := \Psi^{10} K^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{2}$ $\frac{2}{3}\mathcal{D}_k X^k f^{ij} + \cancel{N}_1$

Mom. constraint $\Rightarrow \Delta X^i + \frac{1}{2}$ $\frac{1}{3} \mathcal{D}^i \mathcal{D}_j X^j = 8\pi \hat{J}^i$

• Ham. constraint
$$
\Rightarrow \Delta \Psi = -2\pi \frac{\hat{E}}{\Psi} - \frac{f_{il}f_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8\Psi^7}
$$

• (trace dyn. + Ham. constr.)
\n
$$
\Rightarrow \Delta(N\Psi) = \left[2\pi\Psi^{-2}(\hat{E} + 2\hat{S}) + \frac{7f_{il}f_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8\Psi^{8}}\right] (N\Psi)
$$

• (def.
$$
K^{ij}
$$
 + mom. constr.)
\n
$$
\Rightarrow \Delta \beta^{i} + \frac{1}{3} \mathcal{D}^{i} \mathcal{D}_{l} \beta^{l} = \frac{N}{\Psi^{6}} \left(16 \pi \hat{J}^{i} \right) + 2 \hat{A}^{ij} \mathcal{D}_{j} \left(\frac{N}{\Psi^{6}} \right)
$$

Numerical computation with the XCFC version of CoCoNuT code

Due to the non-uniqueness issue, such a calculation was not possible in CFC, even in spherical symmetry

Rotating relativistic star initial data

PHYSICAL MODEL OF ROTATING NEUTRON STARS

Code (available in Lorene) developed for

- self-gravitating perfect fluid in general relativity
- \bullet two Killing vector fields (axisymmetry $+$ stationarity)
- Dirac gauge
- equilibrium between matter and gravitational field
- **e** equation of state of a relativistic polytrope $\Gamma = 2$

Considered model here:

- central density $\rho_c = 2.9 \rho_{\text{nuc}}$
- rotation frequency $f = 641.47 \text{ Hz } \simeq f_{\text{Mass shadeding}}$
- gravitational mass $M_q \simeq 1.51 M_{\odot}$
- baryon mass $M_b \simeq 1.60 M_{\odot}$

Equations are the same as in the dynamical case, replacing $\mathcal{L}_{\text{Dosevative}}$ time derivatives terms by zero

COMPARISON WITH ROTSTAR

Lin & Novak (2006)

Other code using quasi-isotropic gauge has been used for a long time and successfully compared to different codes in Nozawa et al. (1998).

Virial identities (2 & 3D) are covariant relations that should be fulfilled by any stationary spacetime; they are not imposed numerically.

STATIONARY AXISYMMETRIC MODELS

DEVIATION FROM CONFORMAL FLATNESS

For all components (except $h^{r\varphi}$ and $h^{\theta\varphi}$, which are null), $h_{\text{max}}^{ij} \sim 0.005$ (up to ~ 0.02 in more compact cases) \Rightarrow comparable with $\gamma_{\theta\theta} - \gamma_{\varphi\varphi}$ in quasi-isotropic gauge

Trapped surfaces and apparent horizon finder

TRAPPED SURFACES

 $S: closed$ (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathcal{M}, \mathbf{q})$

∃ two future-directed null directions (light rays) orthogonal to \mathcal{S} : ℓ = outgoing, expansion $\theta^{(\ell)}$ $k =$ ingoing, expansion $\theta^{(k)}$ In flat space, $\theta^{(k)} < 0$ and $\theta^{(\boldsymbol{\ell})}>0$

 $\mathcal{S} \text{ is trapped } \Longleftrightarrow \theta^{(\boldsymbol{k})} \leq 0 \text{ and } \theta^{(\boldsymbol{\ell})} \leq 0$

S is marginally trapped $\iff \theta^{(\mathbf{k})} \leq 0$ and $\theta^{(\mathbf{\ell})} = 0$

trapped surface $=$ **local** concept characterizing very strong gravitational fields

Connection with singularities and black holes

Penrose (1965): provided that the weak energy condition holds, \exists a trapped surface $\mathcal{S} \implies \exists$ a singularity in (\mathcal{M}, q) (in the form of a future inextendible null geodesic)

Hawking & Ellis (1973): provided that the cosmic censorship conjecture holds, \exists a trapped surface $\mathcal{S} \implies \exists$ a black hole \mathcal{B} and $S \subset \mathcal{B}$

⇒local characterization of black holes

AH FINDER

Lin & Novak (2007)

For any closed smooth 2-surface $\mathcal S$ on a time-slice, one thus computes:

- the outward pointing normal unit 3-vector s^i
- the outgoing expansion $\Theta := \theta^{(\ell)} = \nabla_i s^i K + K_{ij} s^i s^j$

An apparent horizon is the outermost marginally trapped surface, therefore the outermost closed 2-surface for which $\Theta = 0.$

Numerically, the AH is defined by $r = h(\theta, \varphi) = \sum_{\ell,m} h_{\ell m} Y_{\ell}^{m}(\theta, \varphi).$

$$
\Theta = 0 \iff \Delta_{\theta\varphi}h - 2h = \sigma(h, \gamma_{ij}, K^{ij})
$$

which is solved iteratively

$$
h_{\ell m}=\frac{-1}{\ell\left(\ell+1\right)+2}\int_{\mathcal{S}}Y_{\ell}^{m*}\sigma d\Omega
$$

REFERENCES

- F Bonazzola, S., Gourgoulhon, E., Grandclément, Ph., and Novak, J., "Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates", *Phys. Rev. D*, **70**, 104007, (2004) .
- Ħ Cordero-Carrión, I., Cerdá-Durán, P., Dimmelmeier, H., Jaramillo, J.L., Novak, J. & Gourgoulhon, E. "An improved constrained scheme for the Einstein equations: an approach to the uniqueness issue", http://arxiv.org/abs/0809.2325
- F Dimmelmeier, H., Cerdá-Durán P., Marek, A. and Faye, G., "New Methods for Approximating General Relativity in Numerical Simulations of Stellar Core Collapse", AIP Conf. Ser., 861, pp. 600-607, (2006).
- F Dimmelmeier, H., Novak, J., Font, J. A., Ibáñez, J. M., and Müller, E., "Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations", Phys. Rev. D, 71(6), 064023, (2005).
- 晶 Lin, L.-M. and Novak J., "Rotating star initial data for a constrained scheme in numerical relativity" Class. Quantum Grav., 23, 4545-4561 (2006).
- F
	- Lin, L.-M. and Novak J., "A new spectral apparent horizon finder $f_{\text{W}_{\text{obs}}^{\text{in}}$ numerical relativity", Class. Quantum Grav., 24, 2665-2676 (2007).