
Lorene4CoCoNuT

Jérôme Novak (Jerome.Novak@obspm.fr)

Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris-Diderot

in collaboration with:
Éric Gourgoulhon & Philippe Grandclément

CoCoNuT school, November, 4th 2008

http://www.luth.obspm.fr

C++: syntax and overview

C++:
variables and functions

Variables in C++

Simple types are declared as follows: int year = 2008;
double epsilon = 1.e-16 ; char* text = "Hello!";
float alpha = 1.e-8 ; bool cond = true ;
They can be declared at any place in the code.
They have a local scope: only in the region {...} where
they are declared.

Functions in C++

All functions must be declared before their use, as follows:
double Chebyshev(double x, int deg=2) ;

If the function does not return anything/takes no argument:
void display();

Mathematical functions for standard types are declared in
<math.h>

C++:
Instructions

cout << "The value of n is: " << n << endl ;

for(i=0; i<MAX; i++) { ...}
if (condition) { ...} else { ...}
while (condition) { ...}
do { ...} while (condition)

switch(some integer variable) case 1: { ...

break ;}
case 2: { ...

break ;}
...

default: { ...

break ;}
Where a condition is a bool variable or any expression of
the form: (a==1)&&(b<1e-5)

C++:
Pointers and arrays

Pointers

A pointer on a variable is the address of that variable in the
computer memory: int g;
int *point = &g;
point contains the address of g (usually a hexadecimal integer
of the form 0x0045a3f9).
In C++ and contrary to C, all pointers have a well-defined
type: a int * is not compatible with a double *
By default, all pointers point on 0x0 (null pointer).

Arrays

An array is a pointer on its first element.
int tab[nx]; ⇒tab’s type is int * and contains the address
of tab[0]
Indices range from 0 to nx-1
nx must be a constant determined at compilation time
⇒static memory allocation.

C++:
Dynamical allocation and references

Dynamical memory allocation

In order to have arrays which size is defined at runtime:
double *dyn tab = new double[ny];
where any type can be used.This memory MUST be freed
before the end of the code:
delete [] dyn tab;
No control on the access to the array elements!

References

A reference on a variable is a symbolic link to this variable:
double a; double& ref a = a;
References are used as arguments, if the variable is “big” in
size or if the return value is needed.
Any modification of the reference modifies the variable too. . .
The inverse holds too!!

C++:
classes

Classes are central to C++; they can be seen from 2 points:
each class is a new type defined by the programmer, with a
redefinition of some standard operators :operator+(...),
operator<<(...), . . .
a class is a collection of data and functions, which can
access these data: all are called members.

Example: class Map af

Map af mapping(...) ; //call to the constructor
const Coord& rr = mapping.r ; //member data ’r’
double radius p = mapping.val r jk(1, 1., 0, 0) ;

With a pointer:
Map af *map = &mapping ;

const Coord& xx = map->x ;
double radius eq = map->val r jk(1, 1., 16, 0) ;

Lorene: grid and mapping

Common features for many
classes

Most of classes (object types) in Lorene share some common
functionalities:

protected data, with readonly accessors often called .get XXX
and read/write accessors .set XXX,
an overload of the “<<” operator to display objects,
a method for saving data into files and a constructor from a
file,
for container-like objects (arrays, fields...) a state (etat in
French) flag indicating whether memory has been allocated:

ETATQCQ: ordinary state, memory allocated ⇒set etat qcq();
ETATZERO: null state, memory not allocated
⇒set etat zero();
ETATNONDEF: undefined state, memory not allocated
⇒set etat nondef() ;
+ a method annule hard() to fill with 0s;

external arithmetic operators (+, -, *, /) and mathematical
functions (sin, exp, sqrt, abs, max, ...).

3D multi-grid
Mg3d is intended to represent a 3D multi-domain spherical grid.

const int nz = 3 ; // Number of domains
int nr = 9 ; // Number of collocation points in r in each domain
int nt = 5 ; // Number of collocation points in theta in each domain
int np = 6 ; // Number of collocation points in phi in each domain
int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
int symmetry_phi = NONSYM ; // no symmetry in phi

Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, true) ;

Mappings
Class Map af

A mapping relates, in each domain, the numerical grid
coordinates (ξ, θ′, ϕ′) to the physical ones (r, θ, ϕ).
The simplest class is Map af for which the relation between
ξ and r is linear (nucleus + shells) or inverse (CED).
To a mapping are attached coordinate fields Coord:
r, θ, ϕ, x, y, z, cos θ, · · · ; vector orthogonal triads and flat
metrics.

Mappings
Class Map af

double Rmax = 3. ; // outer boundary of the last shell
Tbl r_limits(nz+1) ; // construction of an array (Lorene-type)
r_limits.set_etat_qcq() ; //allocation of the memory
for (int i=0; i<nz; i++) // Boundaries of each domains

r_limits.set(i) = i*Rmax/double(nz-1) ;
r_limits.set(nz) = __infinity ;//from #include "nbr_spx.h"

Map_af map(mgrid, r_limits) ;

const Coord& r = map.r ; // The coordinate fields
const Coord& x = map.x ; // attached to the mapping
const Coord& y = map.y ;
const Coord& z = map.z ;

The dzpuis flag
In the compactified external domain (CED), the variable
u = 1/r is used (up to a factor α). ⇒when computing the radial
derivative (i.e. using the method dsdr()) of a field f , one gets

∂f

∂u
= −r2∂f

∂r
.

For the inversion Laplace operator, since

∆r = u4∆u,

it is interesting to have the source multiplied by r4 in the CED.
⇒use of an integer flag dzpuis for a scalar field f , which means
that in the CED, one does not have f , but

rdzpuisf

stored.
For instance, if f is constant equal to one in the CED, but with
a dzpuis set to 4, it means that f = 1/r4 in the CED.

Lorene:symmetries and
spectral basis

Spectral basis
In the nucleus

f(r, θ, ϕ)

↙ ↘
` even

Radial base θ base ϕ base
Even Chebyshev Even Fourier Fourier
Even Chebyshev Even Legendre Fourier

` odd
Radial base θ base ϕ base

Odd Chebyshev Odd Fourier Fourier
Odd Chebyshev Odd Legendre Fourier

Fourier series in θ ⇒computation of derivatives or 1/ sin θ
operators;
associated Legendre polynomial in cos θ ⇒spherical
harmonics ⇒computation of the angular Laplace operator

∆θϕ ≡
∂2

∂θ2
+

1
tan θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

and inversion of the Laplace or d’Alembert operators.

Symmetries

Additional symmetries can be taken into account:
the θ-symmetry : symmetry with respect to the equatorial
plane (z = 0). ⇒` and m have the same parity.
the ϕ-symmetry : invariance under the (x, y) 7→ (−x,−y)
transform. ⇒only even m are considered.

When required, only the angular functions which satisfy these
symmetries are used for the decomposition and the grid is
reduced in size.
The regularity condition on the z-axis is automatically taken
into account by the spherical harmonics basis.

Lorene: Scalar and Tensor
fields

Scalar fields
Class Scalar

The class Scalar gathers a Valeur and a
mapping, it represents a scalar field
defined on the spectral grid, or a
component of a vector/tensor.

A way to construct a Scalar is to
1 use the standard constructor, which needs a mapping; the

associated Valeur being then constructed in an undefined
state (ETATNONDEF);

2 assign it an expression using Coords: e.g. x*y + exp(z).

Important methods of the class
Scalar

Accessors and modifier of the Valeur

get spectral va() readonly
set spectral va() read/write; it can be used to compute
spectral coefficients, or to access directly to the coefficients
(Mtbl cf).

Spectral base manipulation

std spectral base() sets the standard spectral base for a
scalar field;
std spectral base odd() sets the spectral base for the radial
derivative of a scalar field;
get spectral base() returns the Base val of the considered
Scalar;
set spectral base(Base val) sets a given Base val as the
spectral base.

Vector fields
Lorene can handle a vector field V (class Vector) expressed in
either of two types of components (i.e. using two orthonormal
triads, of type Base vect):

the spherical triad (Vr, Vθ, Vϕ)
Map af::get bvect spher(),
the Cartesian triad (Vx, Vy, Vz)
Map af::get bvect cart().

Note that the choice of triad is independent from that of
coordinates: one can use Vy(r, θ, ϕ).

The Cartesian components of a regular vector field in
spherical coordinates follow the same rules that a regular
scalar field, except for symmetries;
The spherical components have more complicated rules
since the spherical triad is singular (additional singularity).

⇒Not easy to define a regular vector field in spherical
coordinates. . .

Simple example
Classes Scalar and Vector

Scalar rho(map) ; // Constructor of a Scalar
rho = x*x/(r*r +1); // fills with coordinate fields
rho.std_spectral_base() ; // sets the standard basis

/*Defines a Vector with contravariant index,
in spherical triad*/

Vector vec(map, CON, map.get_bvect_spher()) ;

/* Defines the flat metric in spherical cooridnates */
const Metric_flat& mets = map.flat_met_spher() ;

vec = rho.derive_con(mets) ; // Simple gradient...
rho = vec.divergence(mets) ;
Vector vec_down = vec.up_down(mets) ;//lowers the indices
rho += contract(vec, 0, vec_down, 0) ;

“Mariage des maillages” in
practice

Units in Lorene and CoCoNuT

Lorene’s Units

speed unit = [c]
length unit = [10 km]
ρ unit = [1 ρL

nuc] := 1.66× 1017 kg ·m−3

CoCoNuT’s Units

speed unit = [c]
length unit = [1 cm]
“G = 1” unit

⇒see Lorene’s reference manual in the “namespace” section.
Units are taken care of in the fortran part metric.F, where several
calls to the C++ part are done, depending on the situation:

At the first time, initialization of various quantities is done, and
the “old” CFC system is integrated, because one only knows about
“normal” sources (not conformally rescaled).

Then, the XCFC system is integrated in two steps:
first for Xi and the conformal factor ψ, which is sent to the
fortran part to get the pressure,
once the pressure is known, one can solve the equation for Nψ and
for βi.

fortran/C++ interface
C++ functions are called from fortran routines:

The fortran routine calls a C function, which then calls the
C++ one. . .
The C function name has 0, 1 or 2 underscores appended, with
respect to fortran (us X in the Makefile).
Seen from the C viewpoint, fortran admits only pointers as
arguments (e.g. integer ≡ int *). Arrays are pointers on
double(precision), but with indices in reverse order.

The spectral/C++ part makes use of two additional classes:
Tbl val: is part of Lorene and represents fields defined of the
finite-differences grid: the array of data can be directly taken
from the fortran code and cast into this object through
Tbl val::append array(double *).
Coco: specific to CoCoNuT, built from the FD grid and
parameters file; stores the spectral grid, mapping, and metric
quantities to be re-used from one step of the spectral solver to
the other: (Xi, ψ) and (Nψ, βi) computations; or for the
AH finder.

Spectral solver
spectral metric.C

Called from the fortran code, with hydro sources (in)
and metric arrays (out) as arguments.
These sources are appended to C++ objects of type
Tbl val.
Scalar Tbl val::to spectral(Map, int) is used for
interpolation to the spectral grid.
Spectral basis are set, the triad is changed to the
orthonormal one.
Eventual filtering of the sources is performed.
The sources are used to solve the (X)CFC elliptic system
by iteration.
void Tbl val::from spectral(Scalar, int) is used to
interpolate solutions to FD grid.
The arrays of resulting Tbl val are sent to fortran code.

spectral metric.C

namespace { // Static variables (anonymous namespace)
Coco *nut = 0x0 ; }

void calculate_spectral_metric_first_step(...) {
// Recovery of variables from the static object
int n_domains = nut->spectral_grid().get_nzone() ;
...
// hydro_source_1:source for conformal factor
Tbl_val hydro_source_1(finite_difference_grid);
hydro_source_1.append_array(hydro_source) ;
...
nut->adapt_mapping(hydro_source_1) ;
// Interpolation of hydro sources from the FD grid to the spectral
Scalar hydro_source_spectral_1

= hydro_source_1.to_spectral(mapping, domain_number_minus_one);
hydro_source_spectral_1.std_spectral_base();
//fill with 0s the compactified domain:
hydro_source_spectral_1.annule_domain(domain_number_minus_one);
...

spectral metric.C
(continued)

...
// Filtering using exponential filter
hydro_source_spectral_1.exponential_filter_r(min_filter_domain,

max_filter_domain, filter_order) ;
...
//recovery of conformal factor at previous time-step
Scalar& log_conf_factor = nut->set_log_cfactor() ;
// Iteration on the conformal factor
...
Scalar phi = exp(log_conf_factor);
phi.std_spectral_base();
// Conformal factor on the finite difference grid is obtained by spectral summation
Tbl_val phi_hydro(finite_difference_grid);
phi_hydro.append_array(metric) ;
phi_hydro.from_spectral(phi, n_domains); }

Adaptation of domain boundaries
(evolution)

The outer radius of the nucleus is defined as the maximum of
the radii obtained by the two conditions:

There must be at least a given
number of points of the FD grid
inside this first spectral domain.
The radius corresponds to a given
contrast in the quantity
D∗ = ψ6D, between the center
and the north pole.

The inner radius of the compactified domain (or outer radius of
the last shell), is determined by a second given contrast for D∗,
between the center and the direction θ = ϕ = 0.
The radii of the intermediate shells are determined so that the
ratio Rout/Rin be a constant.
See also the member function Coco::adapt mapping(const Tbl val&)

and the file parameters.

parameters file
spectral part (end)

#@ Data for spectral solver (please leave the ’#@’ at the beginning of this line)
##
5 nz: total number of domains
1 1 nt: number of points in theta and equatorial plane symmetry type (0:NONSYM, 1:SYM)
1 1 np: number of points in phi and (x,y) -> (-x, -y) symmetry type
Number of points in r and inner boundary of each domain, as fraction of r_boundary
33 0. <- nr & min(r) in domain 0 (nucleus)
33 0.1 <- nr & min(r) in domain 1
33 0.2 <- nr & min(r) in domain 2
33 0.4 <- nr & min(r) in domain 3
33 0.8 <- nr & min(r) in domain 4
Note: r_boundary is the radius of the finite-difference grid
6 poisson_vect_method : see Vector::poisson(double, int) for documentation
0.3 relaxation factor for spectral metric solver
2000 maximal number of iterations in spectral metric solver
2 order for spectral filtering (0 means no filtering)
0 0 min and max of domains where filtering is done
1 domain adaptation during collapse (0: no, 1: yes); if 1 then:
20 minimal number of FD grid points in first domain
0.05 fraction of central value of D^* defining the radius of first domain
1.e-8 fraction of central value of D^* defining the radius of the last shell
2. threshold on the conformal factor central value for the call to the AH finder

	C++: syntax and overview
	Lorene: grid and mapping
	Lorene:symmetries and spectral basis
	Lorene: Scalar and Tensor fields
	``Mariage des maillages'' in practice

