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Introduction:
Representation of functions



Functions on a computer
Simplified picture

How to deal with functions on a computer?
⇒a computer can manage only integers
In order to represent a function φ(x) (e.g. interpolate), one can
use:

a finite set of its values {φi}i=0...N on a grid {xi}i=0...N ,
a finite set of its coefficients in a functional basis
φ(x) '

∑N
i=0 ciΨi(x).

In order to manipulate a function (e.g. derive), each approach
leads to:

finite differences schemes

φ′(xi) '
φ(xi+1)− φ(xi)

xi+1 − xi

spectral methods
φ′(x) '

N∑
i=0

ciΨ′
i(x)



Convergence of Fourier series
φ(x) =

p
1.5 + cos(x) + sin7 x

φ(x) '
N∑

i=0

aiΨi(x) with Ψ2k = cos(kx), Ψ2k+1 = sin(kx)



Convergence of Fourier series
φ(x) =

p
1.5 + cos(x) + sin7 x

0 10 20 30 40 50 60 70
Number of coefficients N

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0,0001

0,01

1

R
el

at
iv

e 
ac

cu
ra

cy
 (

m
ax

-n
or

m
)



Convergence to the derivative
φ(x) =

p
1.5 + cos(x) + sin7 x

φ′(x) '
N∑

i=0

aiΨ′
i(x) with Ψ′

2k = −k sin(kx), Ψ′
2k+1 = k cos(kx)



Convergence to the derivative
φ(x) =

p
1.5 + cos(x) + sin7 x
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Gibbs phenomenon
no convergence for discontinuous (or non-periodic)

functions!

φ(x) =
{

x for x ∈ [0, π]
x− 2π for x ∈ (π, 2π)



Polynomial interpolation
From the Weierstrass theorem, it is known that any continuous
function can be approximated to arbitrary accuracy by a
polynomial function.
In practice, with the function known on a grid {xi}i=0...N , one
uses the Lagrange cardinal polynomials:
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Uniform interpolant

N=13

li(x) =
N∏

j=0,j 6=i

x− xj

xi − xj

But a uniform grid is
not a good choice
⇒Runge phenomenon



Orthogonal polynomials

The solutions (λi, ui)i∈N of a singular Sturm-Liouville problem
on the interval x ∈ [−1, 1]:

−
(
pu′

)′ + qu = λwu,

with p > 0, C1, p(±1) = 0
are orthogonal with respect to the measure w:

(ui, uj) =
∫ 1

−1
ui(x)uj(x)w(x)dx = 0 for m 6= n,

form a spectral basis such that, if f(x) is smooth (C∞)

f(x) '
N∑

i=0

ciui(x)

converges faster than any power of N .
Chebyshev, Legendre and, more generally any type of Jacobi
polynomial enters this category.



Gauss quadrature

To get a convergent representation {ci}i=0...N of a function
f(x), it is sufficient to be able to compute

∀i, ci =

∫ 1
−1 f(x)ui(x)w(x)dx∫ 1
−1 (ui(x))2 w(x)dx

.

In practice, one can use the Gauss quadrature (here
Gauss-Lobatto): for a given w(x) and N , one can find
{wi}k=0...N and {xi}k=0...N ∈ [−1, 1] such that

∀g ∈ P2N−1,

∫ 1

−1
g(x)w(x)dx =

N∑
k=0

g(xk)wk.



Example with Chebyshev
polynomials

φ(x) = (1 + 2 sin(5x)) /(1 + x2)

φ(x) '
N∑

i=0

aiΨi(x) with Ψk = Tk(x) = cos(k arccos(x))



Example with Chebyshev
polynomials

φ(x) = (1 + 2 sin(5x)) /(1 + x2)
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Linear Ordinary Differential

Equations



Differential equations
Position of the problem

We consider the general form of an Ordinary Differential
Equation (ODE) on an interval, for the unknown function u(x):

Lu(x) = s(x), ∀x ∈ [a, b]
Bu(x) = 0, for x = a, b,

with L, B being two linear differential operators and s(x) a
given source.The approximate solution is sought in the form

ū(x) =
N∑

i=0

ciΨi(x).

The {Ψi}i=0...N are called trial functions: they belong to a
finite-dimension sub-space of some Hilbert space H[a,b].



Method of weighted residuals

A function ū is said to be a numerical solution of the ODE if:
Bū = 0 for x = a, b,
Rū = Lū− s is “small”.

Defining a set of test functions {ξi}i=0...N and a scalar product
on H[a,b], R is small iff:

∀i = 0 . . . N, (ξi, R) = 0.

It is expected that
lim

N→∞
ū = u,

the “true” solution of the ODE.



Various numerical methods

type of trial functions Ψ

finite-differences methods for local, overlapping
polynomials of low order,
finite-elements methods for local, smooth functions, which
are non-zero only on a sub-domain of [a, b],
spectral methods for global smooth functions on [a, b].

type of test functions ξ for spectral methods

tau method: ξi(x) = Ψi(x), but some of the test conditions
are replaced by the boundary conditions.
collocation method (pseudospectral): ξi(x) = δ(x− xi), at
collocation points. Some of the test conditions are replaced
by the boundary conditions.
Galerkin method: the test and trial functions are chosen
to fulfill the boundary conditions.



Spectral solution of an ODE
Fourier Galerkin method

Let u(x) be the solution on [0, 2π) of
d2u

dx2
+ 3

du

dx
+ 2u = s(x),

with periodic boundary conditions. If one decomposes

ū(x) =
N∑

n=0

an cos(nx)+bn sin(nx) and s̄(x) =
N∑

n=0

αn cos(nx)+βn sin(nx),

then, the condition on the residuals translates into{
−n2an + 3nbn + 2an = αn

−n2bn − 3nan + 2bn = βn

⇐⇒

{
an = (2−n2)αn+3nβn

(n2+1)(n2+4)

bn = 3nαn+(2−n2)βn

(n2+1)(n2+4)



Convergence properties
Fourier Galerkin methodd2u

dx2
+ 3

du

dx
+ 2u = ecos x

(
sin2 x− cos x− 3 sinx + 2

)
Convergence of the numerical solution to the analytical one:

u(x) = ecos x

0 10 20 30 40
Number of coefficients N

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0,0001

0,01

1

R
el

at
iv

e 
ac

cu
ra

cy
 (

m
ax

 -
 n

or
m

)



Properties of Chebyshev
polynomials Tn(x), n ∈ N

They are solutions of the singular Sturm-Liouville problem
(p =

√
1− x2, q = 0, w = 1/

√
1− x2 and λn = −n). They are

orthogonal on [−1, 1] with respect to the weight w = 1/
√

1− x2

and, starting from T0 = 1, T1 = x, the recurrence relation is:

Tn+1(x) = 2xTn(x)− Tn−1(x).

They have the simple expression which allows for the use of
FFT to compute the Chebyshev transform:

∀x ∈ [−1, 1], Tn(x) = cos(n arccos x),

also, the Chebyshev-Gauss-Lobatto nodes and weights are
known

xn = − cos
nπ

N
, w0 = wN =

π

2N
, wn =

π

N
.



Linear “differential” operators

Thanks to the recurrence relations of Chebyshev polynomials, it
is possible to express the coefficients {bi}i=0...N of

Lu(x) =
N∑

i=0

biTi(x), with u(x) =
N∑

i=0

aiTi(x).

If L = d/dx,

bn = 2
N∑

i=n+1,n+i odd

iai.

If L = x×,

bn =
1
2

((1 + δ0n−1)an−1 + an+1) (n ≥ 1).



Inversion of operators
A practical example

The numerical solution ū(x) of

x2u′′(x)− 6xu′(x) + 10u(x) = s(x),

can be seen as a solution of the system Lū = s̄, where

ū =
N∑

i=0

aiTi(x) and s̄ =
N∑

i=0

αiTi(x)

are represented as vectors and, if N = 5

L =


10 0 −10 0 4
0 4 0 −18 0
0 0 0 0 −8
0 0 0 −2 0
0 0 0 0 −2





Inversion of operators
The need for boundary conditions

L =


10 0 −10 0 4
0 4 0 −18 0
0 0 0 0 −8
0 0 0 −2 0
0 0 0 0 −2


is not an invertible matrix. In order to get the solution of the
ODE, one must specify exactly two boundary conditions. e.g.

1 u(x = −1) = 0, and
2 u(x = 1) = 0.

Since
∀i, Ti(−1) = (−1)i, and Ti(1) = 1,

in the tau method, the last two lines of the matrix representing
L are replaced by the two boundary conditions.



Inversion of operators
The need for boundary conditions

L =


10 0 −10 0 4
0 4 0 −18 0
0 0 0 0 −8
1 −1 1 −1 1
1 1 1 1 1


is not an invertible matrix. In order to get the solution of the
ODE, one must specify exactly two boundary conditions. e.g.

1 u(x = −1) = 0, and
2 u(x = 1) = 0.

Since ∀i, Ti(−1) = (−1)i, and Ti(1) = 1,

in the tau method, the last two lines of the matrix representing
L are replaced by the two boundary conditions.



Singular operators

The operator u(x) 7→ u(x)
x

is a linear operator, inverse of

u(x) 7→ xu(x).
Its action on the coefficients {ai}i=0...N representing the
N -order approximation to a function u(x) can be
computed as the product by a regular matrix.

⇒The computation in the coefficient space of u(x)/x, on the
interval [−1, 1] always gives a finite result.
⇒The actual operator which is thus computed is

u(x) 7→ u(x)− u(0)
x

.

⇒The same holds for u(x) 7→ u(x)
x− 1

and u(x) 7→ u(x)
x + 1

.

⇒possibility of computing a singular ratio
f

g
.



Spectral solution of an ODE
Chebyshev-tau method

The Poisson equation in spherical symmetry and spherical
coordinates writes

d2u

dr2
+

2
r

du

dr
= s(r).

To be regular, u(r) and s(r) must be even functions of r.
it is sufficient to use only even Chebyshev polynomials for
x ∈ [0, 1],
it is necessary to specify one boundary condition at x = 1.
the matrix of the spectral Chebyshev-tau method of
approximating the solution is (with u(x = 1) =const)

L =


0 12 32 132 256
0 0 80 192 544
0 0 0 168 384
0 0 0 0 288
1 1 1 1 1





Convergence of the solution
Chebyshev-tau methodd2u

dx2
+

2
x

du

dx
= (4x2 − 6)e−x2

and u(x = 1) = 1/e.

Convergence of the numerical solution to the analytical one:
u(x) = e−x2
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Multi-domain and
multi-dimensional settings

with spherical coordinates



Multi-domains techniques
Motivations and settings

Multi-domain technique consists in having several touching, or
overlapping, domains (intervals), each one mapped on [−1, 1].

the boundary between two domains can be the place of a
discontinuity of the function, or its derivatives ⇒recover
spectral convergence,
one can set a domain with more coefficients (collocation
points) in a region where much resolution is needed ⇒fixed
mesh refinement,
2D or 3D, allows to build a complex domain from several
simpler ones,
it is possible to treat a function in each domain on a
different CPU ⇒parallelization.

Domain 1 Domain 2
x

1
=-1 x

1
=1 x

2
=-1 x

2
=1

y=a
y = y

0

y=b



Domain matching
tau method

Consider the ODE:

∀y ∈ [a, b], Lu(y) = s(y), with boundary conditions on u(y = a, b).

The numerical solution is sought in the form{
∀y ≤ y0, ū(y) =

∑N1
i=0 c1

i Ti (x1(y)) ,

∀y ≥ y0, ū(y) =
∑N2

i=0 c2
i Ti (x2(y)) ,

To determine the N1 + N2 + 2 coefficients, one takes:
N1 − 1 residual equations for domain 1,
N2 − 1 residual equations for domain 2,
2 boundary conditions at x1 = −1 and x2 = 1,
2 matching conditions at y = y0:
ū(x1 = 1) = ū(x2 = −1) and ū′(x1 = 1) = ū′(x2 = −1).

⇒considering a big vector of size N1 + N2 + 2, one has in
principle an invertible system and thus a uniquely defined
numerical solution.



Domain matching
collocation method / homogeneous solutions

The collocation multi-domain method is like the tau one:

write the residual equations on the interior collocation points
{xi1, xj2}i=1...(N1−1),j=1...(N2−1),

write the two boundary conditions at x11 and x2N2 , and the
matching condition at y = y0 (x1N1 and x20).

If one knows explicitely the homogeneous solutions uλ(y) and uµ(y) of
∀y ∈ [a, b], Lu(y) = 0,

then after getting a particular solution in each domain, solving
d = 1, 2 Lud

p(xd) = s̄(xd), with e.g. u(xd
p = ±1) = 0,

one is left with the determination of the linear combination in each
domain ud(xd) = ud

p(xd) + λduλ(xd) + µduµ(xd)

such that it verifies the boundary and the matching conditions
(system in {λd, µd}d=1,2).



Comparison

Accuracy on the solution of
d2u

dy2
+ 4u = S, with S(y ≤ 0) = 1

and S(y ≥ 0) = 0. N1 = N2 = N .

5 10 15 20 25 30
N

10
-16

10
-12

10
-8

10
-4

E
rr

or

Tau method
Homogeneous
Variational
Collocation method



Spatial compactification

A mapping not specific to spectral methods.

Consider the simple case of ζ =
1
r

= α(x− 1), x ∈ [−1, 1],

the spherically symmetric Laplace operator writes

∆u =
d2u

dr2
+

2
r

du

dr
= ζ4 d2u

dζ2
,

and it is possible to impose boundary conditions at
r →∞ ⇐⇒ ζ = 0.
Other types of compactification are possible (tan, . . . ), even
combining (t, r) coordinates in conformal compactification.
Keep in mind that properties of some PDEs may change

with the mapping: the ζ =
1
r

is not compatible with the

characteristics of the wave equation ¤u =
∂2u

∂t2
−∆u = s.



Spherical coordinates
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are well-adapted to
describe isolated
astrophysical systems:
single star or black hole,
where the surface is
spheroidal,
compactification needs
only to be done for r,
the boundary surface
r = const is a smooth one.

allow the use of spherical harmonics,
the coordinate singularities can be nicely handled with
spectral methods,
spherical and axial symmetries nicely handled.



Regularity conditions

Considering (e.g.) the Laplace operator, which is regular:

∆ =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

(
∂2

∂θ2
+

1
tan θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
,

division by r or sin θ look singular. ⇒a regular field u(r, θ, ϕ)
must have a particular behavior.

if u is expandable in series of powers of x, y and z, near
r = 0: u(x, y, z) =

∑
i,j,k aijkx

iyjzk.

changing to spherical coordinates
u(r, θ, ϕ) =

∑
n,p,q anpqr

n+p+q cosq θ sinn+p θ cosn ϕ sinp ϕ;
and rearranging the terms
u(r, θ, ϕ) =

∑
m,p,q bmpqr

|m|+2p+q sin|m|+2p θ cosq θeimϕ

introducing ` = |m|+ 2p + q and the spherical harmonics
Y m

` (θ, ϕ), one gets the following consequences for u:
near θ = 0, u(θ) ∼ sin|m| θ,
near r = 0, u(r) ∼ r` and has the same parity as `.



Spherical harmonics

are pure angular functions
Y m

` (θ, ϕ), forming an
orthonormal basis for the space of
regular functions on a sphere:

` ≥ 0, |m| ≤ `,
Y m

` (θ, ϕ) ∝ Pm
` (cos θ)eimϕ.

are eigenfunctions of the angular
part of the Laplace operator:

∆θϕY m
` (θ, ϕ) :=

∂2Y m
`

∂θ2
+

1
tan θ

∂Y m
`

∂θ
+

1
sin2 θ

∂2Y m
`

∂ϕ2
= −`(`+1)Y m

` (θ, ϕ).

⇒they can form a spectral decomposition basis for functions
defined on a spheroid (e.g. apparent horizon)
⇒they can simplify the solution of a Poisson equation



Example:
3D Poisson equation, with non-compact support

To solve ∆φ(r, θ, ϕ) = s(r, θ, ϕ), with s extending to infinity.

Nucleus
r = αξ, 0 ≤ ξ ≤ 1

T
2i

(ξ) for l even

T
2i+1

(ξ) for l odd

Compactified domain

r =   1

β(ξ − 1)
, 0 ≤ ξ ≤ 1

T_i(ξ)

setup two domains in the
radial direction: one to deal
with the singularity at r = 0,
the other with a compactified
mapping.
In each domain decompose the
angular part of both fields
onto spherical harmonics:

φ(ξ, θ, ϕ) '
`max∑
`=0

m=∑̀
m=−`

φ`m(ξ)Y m
` (θ, ϕ),

∀(`, m) solve the ODE:
d2φ`m

dξ2
+

2
ξ

dφ`m

dξ
− `(` + 1)φ`m

ξ2
= s`m(ξ),

match between domains, with regularity conditions at
r = 0, and boundary conditions at r →∞.



Non-linear problems
Solution of a boundary value problem

Lu = Nu

Newton-Raphson method

for F (ū) = (L−N) (c0, . . . , cN ) = 0:

compute Jij =
∂Fi

∂cj
,

start from an initial guess ū0, and solve J(ū1 − ū0) = −Fū0. . .

⇒J may be complicated to compute!

iterative method

if the inversion of L is easy,
start from initial guess ū0, compute Nū0 and
solve the linear operator to get ū1 = L−1 Nū0. . .

⇒no reason to converge!



“Mariage des
Maillages”(MdM):

Interpolation and filtering



Combination of two numerical
techniques

hydrodynamics ⇒High-Resolution Shock-Capturing
schemes (HRSC), presented by Pablo tomorrow;
gravity ⇒multi-domain spectral solver using spherical
harmonics and Chebyshev polynomials, with a
compactification of type u = 1/r.

Use of two numerical grids with interpolation:
matter sources: Godunov (HRSC) grid → spectral grid;
gravitational fields: spectral grid → Godunov grid.

First achieved in the case of spherical symmetry, in
tensor-scalar theory of gravity (Novak & Ibáñez 2000).
Spares a lot of CPU time in the gravitational sector, that can
be used for other physical ingredients.



Mariage des Maillages
Interpolation

Godunov grid stops at a finite distance ⇒no matter
outside;

Grid setting

2000 2500 3000
r [km]

r
fd

ghost zones

   domain 5
(fourth shell)

domain 6
(compactified, extending to radial infinity)

0 100 200 300 400 500
r [km]

r
d1

 = r
d

r
d2

domain 1
(nucleus)

domain 2
(first shell)

domain 3
(second shell)

//

interpolation to spectral grid
using piecewise parabolic
formula (many tested);
fewest possible manipulations
of these fields on spectral grid;
partial summation technique
(Orszag 1980) to gain CPU in
the spectral summation.



Mariage des Maillages
Filtering

One the main limitations for the use of spectral methods is the
Gibbs phenomenon.⇒possibility to use filters: e.g.

cn 7→ cn × e−α( n
N )2p

⇒spectral series
converging with
order p
⇒quite useful for
discontinuous
sources in
core-collapse
simulations.
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