Spectral methods for core collapse

Jérôme Novak (Jerome.Novak@obspm.fr)

[L](http://www.luth.obspm.fr)aboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

in collaboration with: Silvano Bonazzola, Éric Gourgoulhon, Philippe Grandclément

CoCoNuT school, November, 4th 2008

Introduction: Representation of functions

FUNCTIONS ON A COMPUTER

SIMPLIFIED PICTURE

How to deal with functions on a computer?

⇒a computer can manage only integers In order to represent a function $\phi(x)$ (e.g. interpolate), one can use:

- a finite set of its values $\{\phi_i\}_{i=0...N}$ on a grid $\{x_i\}_{i=0...N}$,
- a finite set of its coefficients in a functional basis $\phi(x) \simeq \sum_{i=0}^{N} c_i \Psi_i(x).$

In order to manipulate a function (e.g. derive), each approach leads to:

• finite differences schemes

$$
\phi'(x_i) \simeq \frac{\phi(x_{i+1}) - \phi(x_i)}{x_{i+1} - x_i}
$$

• spectral methods $\phi'(x) \simeq \sum$ N $i=0$ $c_i \Psi'_i(x)$

GIBBS PHENOMENON

no convergence for discontinuous (or non-periodic) FUNCTIONS! $\int x^2 dx = \int 0, x \in [0, \pi]$

$$
\phi(x) = \begin{cases} x & \text{for } x \in [0, \pi] \\ x - 2\pi & \text{for } x \in (\pi, 2\pi) \end{cases}
$$

Polynomial interpolation

From the Weierstrass theorem, it is known that any continuous function can be approximated to arbitrary accuracy by a polynomial function.

In practice, with the function known on a grid $\{x_i\}_{i=0}$ N, one uses the Lagrange cardinal polynomials:

 $N=13$

 $l_i(x) = \prod$ N j=0,j $\neq i$ $x - x_j$ $x_i - x_j$

But a uniform grid is not a good choice ⇒Runge phenomenon

ORTHOGONAL POLYNOMIALS

The solutions $(\lambda_i, u_i)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in [-1, 1]$:

$$
-(pu')' + qu = \lambda wu,
$$

with $p > 0, C^1, p(\pm 1) = 0$

• are orthogonal with respect to the measure w :

$$
(u_i, u_j) = \int_{-1}^{1} u_i(x) u_j(x) w(x) dx = 0 \text{ for } m \neq n,
$$

form a spectral basis such that, if $f(x)$ is smooth (\mathcal{C}^{∞})

$$
f(x) \simeq \sum_{i=0}^{N} c_i u_i(x)
$$

converges faster than any power of N.

Chebyshev, Legendre and, more generally any type of Jacobi polynomial enters this category.

GAUSS QUADRATURE

To get a convergent representation ${c_i}_{i=0}$, n of a function $f(x)$, it is sufficient to be able to compute

$$
\forall i, \quad c_i = \frac{\int_{-1}^{1} f(x) u_i(x) w(x) \mathrm{d}x}{\int_{-1}^{1} (u_i(x))^2 w(x) \mathrm{d}x}.
$$

In practice, one can use the Gauss quadrature (here Gauss-Lobatto): for a given $w(x)$ and N, one can find ${w_i}_{k=0}$ N and ${x_i}_{k=0}$ N \in [-1, 1] such that

$$
\forall g \in \mathbb{P}_{2N-1}, \quad \int_{-1}^{1} g(x)w(x)dx = \sum_{k=0}^{N} g(x_k)w_k.
$$

Linear Ordinary Differential

Equations

Differential equations POSITION OF THE PROBLEM

We consider the general form of an Ordinary Differential Equation (ODE) on an interval, for the unknown function $u(x)$:

$$
Lu(x) = s(x), \quad \forall x \in [a, b]
$$

$$
Bu(x) = 0, \quad \text{for } x = a, b,
$$

with L, B being two linear differential operators and $s(x)$ a given source.The approximate solution is sought in the form

$$
\bar{u}(x) = \sum_{i=0}^{N} c_i \Psi_i(x).
$$

The ${\lbrace \Psi_i \rbrace}_{i=0}$ N are called trial functions: they belong to a finite-dimension sub-space of some Hilbert space $\mathcal{H}_{[a,b]}$.

Method of weighted residuals

A function \bar{u} is said to be a numerical solution of the ODE if:

- \bullet $B\bar{u} = 0$ for $x = a, b$,
- $R\bar{u} = L\bar{u} s$ is "small".

Defining a set of test functions $\{\xi_i\}_{i=0}$ N and a scalar product on $\mathcal{H}_{[a,b]},\,R$ is small iff:

$$
\forall i=0...N, \quad (\xi_i,R)=0.
$$

It is expected that

$$
\lim_{N \to \infty} \bar{u} = u,
$$

the "true" solution of the ODE.

Various numerical methods

TYPE OF TRIAL FUNCTIONS Ψ

- finite-differences methods for local, overlapping polynomials of low order,
- finite-elements methods for local, smooth functions, which are non-zero only on a sub-domain of $[a, b]$,
- \bullet spectral methods for global smooth functions on [a, b].

TYPE OF TEST FUNCTIONS ξ for spectral methods

- tau method: $\xi_i(x) = \Psi_i(x)$, but some of the test conditions are replaced by the boundary conditions.
- collocation method (pseudospectral): $\xi_i(x) = \delta(x x_i)$, at collocation points. Some of the test conditions are replaced by the boundary conditions.
- Galerkin method: the test and trial functions are chosen to fulfill the boundary conditions.

SPECTRAL SOLUTION OF AN ODE Fourier Galerkin method

Let $u(x)$ be the solution on $[0, 2\pi)$ of $\mathrm{d}^2 u$ $\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + 3\frac{\mathrm{d}u}{\mathrm{d}x}$ $\frac{d}{dx} + 2u = s(x),$

with periodic boundary conditions. If one decomposes $\bar{u}(x) = \sum_{n=1}^{N}$ $n=0$ $a_n \cos(nx) + b_n \sin(nx)$ and $\bar{s}(x) = \sum_{n=0}^{N}$ $n=0$ $\alpha_n \cos(nx) + \beta_n \sin(nx),$

then, the condition on the residuals translates into

$$
\begin{cases}\n -n^2 a_n + 3nb_n + 2a_n &= \alpha_n \\
-n^2 b_n - 3n a_n + 2b_n &= \beta_n\n\end{cases}
$$

$$
\iff \begin{cases} a_n = \frac{(2-n^2)\alpha_n + 3n\beta_n}{(n^2+1)(n^2+4)} \\ b_n = \frac{3n\alpha_n + (2-n^2)\beta_n}{(n^2+1)(n^2+4)} \end{cases}
$$

Convergence properties

PROPERTIES OF CHEBYSHEV POLYNOMIALS $T_n(x)$, $n \in \mathbb{N}$

They are solutions of the singular Sturm-Liouville problem $(p =$ √ $1-x^2, q=0, w=1/$ µµ
∕ $(1-x^2 \text{ and } \lambda_n = -n)$. They are orthogonal on $[-1, 1]$ with respect to the weight $w = 1/\sqrt{1-x^2}$ and, starting from $T_0 = 1$, $T_1 = x$, the recurrence relation is:

$$
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).
$$

They have the simple expression which allows for the use of FFT to compute the Chebyshev transform:

 $\forall x \in [-1, 1], \quad T_n(x) = \cos(n \arccos x),$

also, the Chebyshev-Gauss-Lobatto nodes and weights are known

$$
x_n = -\cos\frac{n\pi}{N}, \quad w_0 = w_N = \frac{\pi}{2N}, w_n = \frac{\pi}{N}.
$$

Linear "differential" operators

Thanks to the recurrence relations of Chebyshev polynomials, it is possible to express the coefficients ${b_i}_{i=0...N}$ of

$$
Lu(x) = \sum_{i=0}^{N} b_i T_i(x)
$$
, with $u(x) = \sum_{i=0}^{N} a_i T_i(x)$.

If $L = d/dx$,

$$
b_n = 2 \sum_{i=n+1, n+i \text{ odd}}^N i a_i.
$$

If $L = x \times$,

$$
b_n = \frac{1}{2} \left((1 + \delta_{0n-1}) a_{n-1} + a_{n+1} \right) \quad (n \ge 1).
$$

Inversion of operators

A practical example

The numerical solution $\bar{u}(x)$ of

$$
x^{2}u''(x) - 6xu'(x) + 10u(x) = s(x),
$$

can be seen as a solution of the system $L\bar{u} = \bar{s}$, where

$$
\bar{u} = \sum_{i=0}^{N} a_i T_i(x)
$$
 and $\bar{s} = \sum_{i=0}^{N} \alpha_i T_i(x)$

are represented as vectors and, if $N = 5$

$$
L = \left(\begin{array}{cccc} 10 & 0 & -10 & 0 & 4 \\ 0 & 4 & 0 & -18 & 0 \\ 0 & 0 & 0 & 0 & -8 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{array}\right)
$$

Inversion of operators

THE NEED FOR BOUNDARY CONDITIONS

$$
L = \left(\begin{array}{cccc} 10 & 0 & -10 & 0 & 4 \\ 0 & 4 & 0 & -18 & 0 \\ 0 & 0 & 0 & 0 & -8 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{array}\right)
$$

is not an invertible matrix. In order to get the solution of the ODE, one must specify exactly two boundary conditions. e.g.

$$
u(x = -1) = 0
$$
, and

$$
u(x=1)=0.
$$

Since

$$
\forall i, \quad T_i(-1) = (-1)^i, \text{ and } T_i(1) = 1,
$$

in the tau method, the last two lines of the matrix representing L are replaced by the two boundary conditions.ser<mark>vatoire LUTH</mark>

Inversion of operators

THE NEED FOR BOUNDARY CONDITIONS

$$
L = \left(\begin{array}{rrrrr} 10 & 0 & -10 & 0 & 4 \\ 0 & 4 & 0 & -18 & 0 \\ 0 & 0 & 0 & 0 & -8 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}\right)
$$

is not an invertible matrix. In order to get the solution of the ODE, one must specify exactly two boundary conditions. e.g.

$$
u(x = -1) = 0, \text{ and}
$$

2
$$
u(x = 1) = 0.
$$

Since
$$
\forall i, T_i(-1) = (-1)^i, \text{ and } T_i(1) = 1,
$$

in the tau method, the last two lines of the matrix representing L are replaced by the two boundary conditions.

Singular operators

- The operator $u(x) \mapsto \frac{u(x)}{x}$ $\frac{y(x)}{x}$ is a linear operator, inverse of $u(x) \mapsto xu(x)$.
- Its action on the coefficients ${a_i}_{i=0...N}$ representing the N-order approximation to a function $u(x)$ can be computed as the product by a regular matrix.

 \Rightarrow The computation in the coefficient space of $u(x)/x$, on the interval $[-1, 1]$ always gives a finite result.

$$
\Rightarrow
$$
 The actual operator which is thus computed is

$$
u(x) \mapsto \frac{u(x) - u(0)}{x}.
$$

 \Rightarrow The same holds for $u(x) \mapsto \frac{u(x)}{x}$ $\frac{u(x)}{x-1}$ and $u(x) \mapsto \frac{u(x)}{x+1}$ $\frac{d(x)}{x+1}.$ \Rightarrow possibility of computing a singular ratio $\frac{f}{g}$.

SPECTRAL SOLUTION OF AN ODE

CHEBYSHEV-TAU METHOD

The Poisson equation in spherical symmetry and spherical coordinates writes

$$
\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}u}{\mathrm{d}r} = s(r).
$$

To be regular, $u(r)$ and $s(r)$ must be even functions of r.

- it is sufficient to use only even Chebyshev polynomials for $x \in [0, 1],$
- it is necessary to specify one boundary condition at $x = 1$.
- the matrix of the spectral Chebyshev-tau method of approximating the solution is (with $u(x = 1) = const$)

$$
L = \left(\begin{array}{cccc} 0 & 12 & 32 & 132 & 256 \\ 0 & 0 & 80 & 192 & 544 \\ 0 & 0 & 0 & 168 & 384 \\ 0 & 0 & 0 & 0 & 288 \\ 1 & 1 & 1 & 1 & 1 \end{array}\right)
$$

Convergence of the solution $d^2u = 2 du$ Chebyshev-tau method $\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{2}{x}$ du $\frac{du}{dx} = (4x^2 - 6)e^{-x^2}$ and $u(x = 1) = 1/e$. \boldsymbol{x} Convergence of the numerical solution to the analytical one: $u(x) = e^{-x^2}$ 0.0001 1e-06 Relative accuracy (max-norm) Relative accuracy (max-norm)1e-08 1e-10 1e-12 1e-14 1e-16 5 10 15 20 Number of coefficients N

Multi-domain and multi-dimensional settings

with spherical coordinates

MULTI-DOMAINS TECHNIQUES

MOTIVATIONS AND SETTINGS

Multi-domain technique consists in having several touching, or overlapping, domains (intervals), each one mapped on [−1, 1].

- the boundary between two domains can be the place of a discontinuity of the function, or its derivatives ⇒recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed ⇒fixed mesh refinement,
- 2D or 3D, allows to build a complex domain from several simpler ones,
- it is possible to treat a function in each domain on a different $CPU \Rightarrow$ parallelization.

DOMAIN MATCHING **TAU METHOD**

Consider the ODE:

 $\forall y \in [a, b], \quad Lu(y) = s(y),$ with boundary conditions on $u(y = a, b)$.

The numerical solution is sought in the form

$$
\begin{cases} \forall y \leq y_0, & \bar{u}(y) = \sum_{i=0}^{N_1} c_i^1 T_i (x_1(y)), \\ \forall y \geq y_0, & \bar{u}(y) = \sum_{i=0}^{N_2} c_i^2 T_i (x_2(y)), \end{cases}
$$

To determine the $N_1 + N_2 + 2$ coefficients, one takes:

- $N_1 1$ residual equations for domain 1,
- $N_2 1$ residual equations for domain 2,
- 2 boundary conditions at $x_1 = -1$ and $x_2 = 1$,
- 2 matching conditions at $y = y_0$:

 $\bar{u}(x_1 = 1) = \bar{u}(x_2 = -1)$ and $\bar{u}'(x_1 = 1) = \bar{u}'(x_2 = -1)$.

 \Rightarrow considering a big vector of size $N_1 + N_2 + 2$, one has in principle an invertible system and thus a uniquely defined $\gamma_{\text{Dosey} \text{ radioire} \text{--} \text{UTH}}$ numerical solution.

DOMAIN MATCHING

collocation method / homogeneous solutions

The collocation multi-domain method is like the tau one:

- write the residual equations on the interior collocation points ${x_{i1}, x_{j2}}_{i=1... (N_1-1), j=1... (N_2-1)}$
- write the two boundary conditions at x_{11} and x_{2N_2} , and the matching condition at $y = y_0$ $(x_{1N_1} \text{ and } x_{20})$.

If one knows explicitely the homogeneous solutions $u_{\lambda}(y)$ and $u_{\mu}(y)$ of $\forall y \in [a, b], \quad Lu(y) = 0,$

then after getting a particular solution in each domain, solving $d = 1, 2$ $Lu_p^d(x_d) = \bar{s}(x_d)$, with e.g. $u(x_p^d = \pm 1) = 0$,

one is left with the determination of the linear combination in each domain $d(x_d) = u_p^d(x_d) + \lambda_d u_\lambda(x_d) + \mu_d u_\mu(x_d)$

such that it verifies the boundary and the matching conditions (system in $\{\lambda_d, \mu_d\}_{d=1,2}$).

COMPARISON

Accuracy on the solution of $\frac{d^2u}{dx^2}$ $\frac{d^2y}{dy^2} + 4u = S$, with $S(y \le 0) = 1$ and $S(y \ge 0) = 0$. $N_1 = N_2 = N$.

SPATIAL COMPACTIFICATION

- A mapping not specific to spectral methods.
- Consider the simple case of $\zeta = \frac{1}{\zeta}$ $\frac{1}{r} = \alpha(x-1), \ x \in [-1,1],$
- the spherically symmetric Laplace operator writes $\Delta u = \frac{d^2 u}{1^2}$ $\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{2}{r}$ r du $rac{\mathrm{d}u}{\mathrm{d}r} = \zeta^4 \frac{\mathrm{d}^2u}{\mathrm{d}\zeta^2}$ $rac{a}{d\zeta^2}$
- and it is possible to impose boundary conditions at $r \to \infty \iff \zeta = 0.$
- \bullet Other types of compactification are possible (\tan, \dots) , even combining (t, r) coordinates in conformal compactification.
- Keep in mind that properties of some PDEs may change with the mapping: the $\zeta = \frac{1}{\zeta}$ $\frac{1}{r}$ is not compatible with the

characteristics of the wave equation $\square u = \frac{\partial^2 u}{\partial x^2}$ $\frac{\partial u}{\partial t^2} - \Delta u = s.$

Spherical coordinates

- are well-adapted to describe isolated astrophysical systems: single star or black hole, where the surface is spheroidal,
- compactification needs only to be done for r ,
- the boundary surface

 $r = \text{const}$ is a smooth one.

- allow the use of spherical harmonics,
- the coordinate singularities can be nicely handled with spectral methods,
- spherical and axial symmetries nicely handled.

REGULARITY CONDITIONS

Considering (e.g.) the Laplace operator, which is regular: $\Delta = \frac{\partial^2}{\partial x^2}$ $\frac{\partial^2}{\partial r^2} + \frac{2}{r}$ r $\frac{\partial}{\partial r}+\frac{1}{r^2}$ r^2 $\int \partial^2$ $rac{\partial^2}{\partial \theta^2} + \frac{1}{\tan \theta}$ $\tan\theta$ $rac{\partial}{\partial \theta} + \frac{1}{\sin^2}$ $\sin^2\theta$ ∂^2 $\partial \varphi^2$ ¶ , division by r or $\sin \theta$ look singular. \Rightarrow a regular field $u(r, \theta, \varphi)$ must have a particular behavior.

- if u is expandable in series of powers of x, y and z, near $r = 0$: $u(x, y, z) = \sum_{i,j,k} a_{ijk} x^i y^j z^k$.
- changing to spherical coordinates $u(r,\theta,\varphi)=\sum_{n,p,q}a_{npq}r^{n+p+q}\cos^q\theta\sin^{n+p}\theta\cos^n\varphi\sin^p\varphi;$
- and rearranging the terms $u(r,\theta,\varphi)=\sum_{m,p,q}b_{mpq}r^{|m|+2p+q}\sin^{|m|+2p}\theta\cos^q\theta e^{im\varphi}$
- introducing $\ell = |m| + 2p + q$ and the spherical harmonics $Y_{\ell}^{m}(\theta,\varphi)$, one gets the following consequences for u:
- near $\theta = 0$, $u(\theta) \sim \sin^{|m|} \theta$,
- near $r = 0$, $u(r) \sim r^{\ell}$ and has the same parity as ℓ .

Spherical harmonics

\$@\$## EGDOOM SCSBOOT ≦G€G00000 SGBAAAA

• are pure angular functions $Y_{\ell}^{m}(\theta,\varphi)$, forming an orthonormal basis for the space of regular functions on a sphere: $\ell > 0, |m| < \ell,$ $Y_{\ell}^{m}(\theta,\varphi) \propto P_{\ell}^{m}(\cos\theta)e^{im\varphi}.$

• are eigenfunctions of the angular part of the Laplace operator:

$$
\Delta_{\theta\varphi}Y_{\ell}^m(\theta,\varphi):=\frac{\partial^2Y_{\ell}^m}{\partial\theta^2}+\frac{1}{\tan\theta}\frac{\partial Y_{\ell}^m}{\partial\theta}+\frac{1}{\sin^2\theta}\frac{\partial^2Y_{\ell}^m}{\partial\varphi^2}=-\ell(\ell+1)Y_{\ell}^m(\theta,\varphi).
$$

⇒they can form a spectral decomposition basis for functions defined on a spheroid (e.g. apparent horizon) ⇒they can simplify the solution of a Poisson equation

Example:

3D Poisson equation, with non-compact support To solve $\Delta \phi(r, \theta, \varphi) = s(r, \theta, \varphi)$, with s extending to infinity.

 \bullet

- setup two domains in the radial direction: one to deal with the singularity at $r = 0$, the other with a compactified mapping.
- In each domain decompose the angular part of both fields onto spherical harmonics:

$$
\phi(\xi,\theta,\varphi) \simeq \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{m=\ell} \phi_{\ell m}(\xi) Y_{\ell}^{m}(\theta,\varphi),
$$

 $\forall (\ell,m)$ solve the ODE: $\frac{d^2 \phi_{\ell m}}{d \epsilon^2}$ $\frac{\partial \phi_{\ell m}}{\mathrm{d}\xi^2} + \frac{2}{\xi}$ ξ $\mathrm{d}\phi_{\ell m}$ $\frac{\phi_{\ell m}}{\mathrm{d}\xi} - \frac{\ell(\ell+1)\phi_{\ell m}}{\xi^2}$ $\frac{1}{\xi^2} = s_{\ell m}(\xi),$ • match between domains, with regularity conditions at \mathcal{L}_{ref} $r = 0$, and boundary conditions at $r \to \infty$.

Non-linear problems

Solution of a boundary value problem

 $Lu = Nu$

Newton-Raphson method

- for $F(\bar{u}) = (L N)(c_0, \ldots, c_N) = 0$:
- compute $J_{ij} = \frac{\partial F_i}{\partial q_i}$ $\frac{\partial^2 f}{\partial c_j},$

• start from an initial guess \bar{u}_0 , and solve $J(\bar{u}_1 - \bar{u}_0) = -F\bar{u}_0$...

 \Rightarrow J may be complicated to compute!

iterative method

- if the inversion of L is easy,
- start from initial guess \bar{u}_0 , compute $N\bar{u}_0$ and
- solve the linear operator to get $\bar{u}_1 = L^{-1} N \bar{u}_0 \dots$

⇒no reason to converge!

"Mariage des Maillages"(MdM):

Interpolation and filtering

COMBINATION OF TWO NUMERICAL **TECHNIQUES**

- hydrodynamics ⇒High-Resolution Shock-Capturing schemes (HRSC), presented by Pablo tomorrow;
- gravity ⇒multi-domain spectral solver using spherical harmonics and Chebyshev polynomials, with a compactification of type $u = 1/r$.

Use of two numerical grids with interpolation:

- matter sources: Godunov (HRSC) grid \rightarrow spectral grid;
- gravitational fields: spectral grid \rightarrow Godunov grid.

First achieved in the case of spherical symmetry, in tensor-scalar theory of gravity (Novak $\&$ Ibáñez 2000). Spares a lot of CPU time in the gravitational sector, that can be used for other physical ingredients.

Mariage des Maillages INTERPOLATION

Godunov grid stops at a finite distance ⇒no matter outside;

- interpolation to spectral grid using piecewise parabolic formula (many tested);
- fewest possible manipulations of these fields on spectral grid;
- partial summation technique (Orszag 1980) to gain CPU in the spectral summation.

Mariage des Maillages FILTERING

One the main limitations for the use of spectral methods is the Gibbs phenomenon. \Rightarrow possibility to use filters: e.g.

$$
c_n \mapsto c_n \times e^{-\alpha \left(\frac{n}{N}\right)^{2p}}
$$

⇒spectral series converging with order p ⇒quite useful for discontinuous sources in core-collapse simulations.

ON SPECTRAL METHODS...

- Boyd, J.B., Chebyshev and Fourier Spectral Methods, (Dover ā. 2001).
- 螶 Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A., Spectral Methods: Fundamentals in Single Domains, (Springer Verlag 2006).
- Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, (Springer Verlag 2007).
- 量 Gottlieb, D., and Orszag, S.A., Numerical Analysis of Spectral Methods: Theory and Applications, (Society for Industrial and Applied Mathematics 1977).
- Grandclément, Ph. and Novak, J., Spectral Methods for 譶 Numerical Relativity, to appear in Living Rev. Relativity <http://arXiv.org/abs/0706.2286>
- 螶

Hesthaven, J.S., Gottlieb, S., and Gottlieb, D., Spectral Methods for Time-Dependent Problems, (Cambridge University Press *D*bservatoire 2007).Laboratoire Univers et Théo