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3+1 formulation of Einstein equations in terms of
(Yag> Kes)
Conformal Flatness Condition (CFC) : v;; = ¢*f;;

no dynamical degree of freedom for the metric — no
gravitational waves

Einstein equations =-system of coupled second-order
elliptic equations for lapse a, shift 3" and conformal
factor ¢
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In the simple version (see Isa’s talk, for a more refined one)
the metric system writes:

A K.. K4
Ap = —2n¢® | phW? — P + —2 :
167
A 7K, K
Alag) = 2ma¢’ (ph(i%W2 - 2)+5P+#) :
T

«

AB = 16ma¢iSt + 20KV ( g

1AiA k

with A, V flat Laplace and gradient operators.
=iteration using the solutions of /inear Poisson equations.
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simple viewpoint: representation of a given function
using a basis of well know functions

e.g. sin, cos (discrete Fourier transform) or orthogonal
polynomials (Chebyshev, Legendre, ...)

if f(z) is a continuous function of = € [—1, 1], one can
approximate it by Chebyshev truncated series

f(z) ~ Z ¢;T;(x) with T;(z) = cos(i arccos(z)).

1=0

f is represented by the vector {¢;},_, 5 and usual
“differential” operators can be seen as matrix
multiplications

=-solution of ODEs = inversion of N x N matriceﬁ;@wm
with NV small.



Spherical coordinates

3D Decomposition:

external compactified
domain




The spherical harmonics Y;"(6, ¢) are eigenvectors of the
angular part of the Laplace operator

Nop Y = —L(L + )Y

9 29 Ll+1
(ﬁ + ;g — ( o )> ¢Em(7n) — O—Em(r)

Accuracy on the solution ~ 107 with N ~ 30
(exponential decay)
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Vector components expressed in the spherical triad do not
behave like scalars: they cannot be expanded onto a basis
of Y;"(6, ¢).

=two solutions:

use Cartesian triad, where %Y*(r, 6, ¢) can be
expanded onto Y,;”, and use the scalar Poisson solver
(drawback: needs more points in (6, ¢))
decompose the spherical components onto pure-spin
vector spherical harmonics (Y1, Y,Z 'Y,2) and solve
for the scalar potentials (drawback: more complicated
to implement)
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Spectral grid points, from which coefficients are computed,
given by the Chebyshev-Gauss-Lobatto rule.
=finite-differences (hydro) and spectral (metric) grids do
not coincide

=-interpolation between both spherical grids

various interpolation algorithms from finite-differences
grid to spectral one (piecewise linear or parabolic,
splines, minimization of second-derivative) most with

O(N3,..) operations =best seems piecewise parabolic

use of spectral summation (definition of spectral
approximation) from spectral grid to finite-differences

one: prohibitive cost at O(Np, x N2,..) operations

use of partial summation technique to reduce to
O(N3 [, X Ngpee) Operations e



Discontinuous functions show many spurious oscillations
=Gibbs phenomenon

n \2P
Filtering of coefficients ¢, — ¢, X e(%)
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For any closed smooth 2-surface S on a time-slice, one can
define (see also Pepe’s talk)
the outward pointing normal unit 3-vector s!
the expansion © = V;s' — K + K;;s's’
A marginally trapped surface is definer for © = 0
An apparent horizon is the outermost marginally trapped

surface.
Numerically, the AH is defined by

= h<97 90) — Zé,m hem}/ém<97 90)

O =0 <= Ap,h—2h=0c(h,vyj, K”)
which is solved iteratively
-1
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evolves the hydro with FORTRAN-HRSC code
call to the C++ part: interpolation to the spectral grid
of hydro sources for metric equations
iterative solution of the metric system with
C++-spectral code
interpolation back to finite-differences grid of metric
potentials

IMPORTANT POINTS:

most of parameters for the spectral metric solver can

be modified at the end of the parameters file

many data and functions related to the spectral metric

solver are coded in a class called Coco (static variable)

the domain setup is important for the spectral metric

stuff (solver + AH finder): for shells R/ Rin < ’ .@t
. ask me!
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