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Einstein equations in CFC

• 3+1 formulation of Einstein equations in terms of
(γij, Kij)

• Conformal Flatness Condition (CFC) : γij = φ4fij

• no dynamical degree of freedom for the metric — no
gravitational waves

• Einstein equations ⇒system of coupled second-order
elliptic equations for lapse α, shift βi and conformal
factor φ



System of elliptic equations

In the simple version (see Isa’s talk, for a more refined one)
the metric system writes:
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with ∆̂, ∇̂ flat Laplace and gradient operators.
⇒iteration using the solutions of linear Poisson equations.



Spectral methods
• simple viewpoint: representation of a given function

using a basis of well know functions

• e.g. sin, cos (discrete Fourier transform) or orthogonal
polynomials (Chebyshev, Legendre, ...)

• if f(x) is a continuous function of x ∈ [−1, 1], one can
approximate it by Chebyshev truncated series

f(x) '
N∑

i=0

ciTi(x) with Ti(x) = cos(i arccos(x)).

• f is represented by the vector {ci}i=0...N and usual
“differential” operators can be seen as matrix
multiplications

• ⇒solution of ODEs = inversion of N ×N matrices...
with N small.



Spherical coordinates

3D Decomposition:
Chebyshev polynomials for ξ,
Y m

` for the angular part (θ, φ)

• symmetries and
regularity conditions of
the fields at the origin
and on the axis of
spherical coordinate
system

• compactified variable
for elliptic PDEs
⇒boundary conditions
are well imposed



Scalar Poisson solver

The spherical harmonics Y m
` (θ, ϕ) are eigenvectors of the

angular part of the Laplace operator

∆θϕY m
` = −`(` + 1)Y m

`

Solution of ∆φ = σ:(
∂2

∂r2
+

2

r

∂

∂r
− `(` + 1)

r2

)
φ`m(r) = σ`m(r)

Accuracy on the solution ∼ 10−13 with N ∼ 30
(exponential decay)



Vector Poisson solver
Vector components expressed in the spherical triad do not
behave like scalars: they cannot be expanded onto a basis
of Y m

` (θ, ϕ).
⇒two solutions:

• use Cartesian triad, where βx,y,z(r, θ, ϕ) can be
expanded onto Y m

` , and use the scalar Poisson solver
(drawback: needs more points in (θ, ϕ))

• decompose the spherical components onto pure-spin
vector spherical harmonics (Y R

`m, Y E
`m, Y B

`m) and solve
for the scalar potentials (drawback: more complicated
to implement)

V
r

=
X
`,m

R`m(r)Y`m(θ, ϕ)

η =
X
`,m

E`m(r)Y`m,

µ =
X
`,m

B`m(r)Y`m



Interpolation between grids

Spectral grid points, from which coefficients are computed,
given by the Chebyshev-Gauss-Lobatto rule.
⇒finite-differences (hydro) and spectral (metric) grids do
not coincide
⇒interpolation between both spherical grids

• various interpolation algorithms from finite-differences
grid to spectral one (piecewise linear or parabolic,
splines, minimization of second-derivative) most with
O(N3

spec) operations ⇒best seems piecewise parabolic

• use of spectral summation (definition of spectral
approximation) from spectral grid to finite-differences
one: prohibitive cost at O(N3

FD ×N3
spec) operations

• use of partial summation technique to reduce to
O(N3

FD ×Nspec) operations



Filtering and Gibbs phenomenon
Discontinuous functions show many spurious oscillations
⇒Gibbs phenomenon

Filtering of coefficients cn 7→ cn × e−α( n
N )

2p



AH finder
For any closed smooth 2-surface S on a time-slice, one can
define (see also Pepe’s talk)

• the outward pointing normal unit 3-vector si

• the expansion Θ = ∇is
i −K + Kijs

isj

A marginally trapped surface is definer for Θ = 0
An apparent horizon is the outermost marginally trapped
surface.
Numerically, the AH is defined by
r = h(θ, ϕ) =

∑
`,m h`mY m

` (θ, ϕ).

Θ = 0 ⇐⇒ ∆θϕh− 2h = σ(h, γij, K
ij)

which is solved iteratively

h`m =
−1

` (` + 1) + 2

∫
S

Y m∗
` σdΩ



Structure of the code
• evolves the hydro with fortran-HRSC code
• call to the C++ part: interpolation to the spectral grid

of hydro sources for metric equations
• iterative solution of the metric system with

C++-spectral code
• interpolation back to finite-differences grid of metric

potentials

IMPORTANT POINTS:

• most of parameters for the spectral metric solver can
be modified at the end of the parameters file

• many data and functions related to the spectral metric
solver are coded in a class called Coco (static variable)

• the domain setup is important for the spectral metric
stuff (solver + AH finder): for shells Rout/Rin . 2

• ... ask me!
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