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3+1 formalism

Decomposition of spacetime and of Einstein equations

Evolution equations:

∂Kij

∂t
−LβKij =

−DiDjN + NRij − 2NKikKk
j +

N [KKij + 4π((S − E)γij − 2Sij)]

Kij =
1

2N

„
∂γij

∂t
+ Diβj + Djβi

«
.

Constraint equations:

R + K2 −KijK
ij = 16πE,

DjK
ij −DiK = 8πJ i.

gµν dxµ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)
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Constraint violation

If the constraints are verified for initial data, evolution should
preserve them. Therefore, one could in principle solve Einstein
equations without solving the constraints

⇓

Appearance of constraint violating modes

However, some cures have been (are) investigated :

solving the constraints at (almost) every time-step ...

studying the influence of time foliation (Frauendiener & Vogel
2005)

constraints as evolution equations (Gentle et al. 2004)

constraint-preserving boundary conditions (Lindblom et al. 2004)

relaxation (Marronetti 2005)

constraint projection (Holst et al. 2004)
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Some reasons not to solve constraints

computational cost of usual elliptic solvers ...

few results of well-posedness for mixed systems versus solid
mathematical theory for pure-hyperbolic systems

definition of boundary conditions at finite distance and at black hole
excision boundary
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Motivations for a fully-constrained

scheme

“Alternate” approach (although most straightforward)

partially constrained schemes: Bardeen & Piran (1983), Stark &
Piran (1985), Evans (1986)

fully constrained schemes: Evans (1989), Shapiro & Teukolsky
(1992), Abrahams et al. (1994), Choptuik et al. (2003)

⇒Rather popular for 2D applications, but disregarded in 3D
Still, many advantages:

constraints are verified!

elliptic systems have good stability properties

easy to make link with initial data

evolution of only two scalar-like fields ...
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Usual conformal decomposition

Standard definition of conformal 3-metric (e.g.
Baumgarte-Shapiro-Shibata-Nakamura formalism)

Dynamical degrees of freedom of the gravitational
field:

York (1972) : they are carried by the conformal “metric”

γ̂ij := γ−1/3 γij with γ := det γij

Problem

γ̂ij = tensor density of weight −2/3
not always easy to deal with tensor densities... not really covariant!
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Introduction of a flat metric

We introduce fij (with
∂fij

∂t
= 0) as the asymptotic structure of γij ,

and Di the associated covariant derivative.

Define:

γ̃ij := Ψ−4 γij or γij =: Ψ4 γ̃ij

with

Ψ :=
(

γ
f

)1/12

f := det fij

γ̃ij is invariant under any conformal transformation of γij and verifies
det γ̃ij = f
⇒no more tensor densities: only tensors.

Finally,
γ̃ij = f ij + hij

is the deviation of the 3-metric from conformal flatness.
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Generalized Dirac gauge

One can generalize the gauge introduced by Dirac (1959) to any type
of coordinates:

divergence-free condition on γ̃ij

Dj γ̃
ij = Djh

ij = 0

where Dj denotes the covariant derivative with respect to the flat
metric fij .

Compare

minimal distortion (Smarr & York 1978) : Dj

(
∂γ̃ij/∂t

)
= 0

pseudo-minimal distortion (Nakamura 1994) : Dj (∂γ̃ij/∂t) = 0

Notice: Dirac gauge ⇐⇒ BSSN connection functions vanish: Γ̃i = 0
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Generalized Dirac gauge properties

hij is transverse

from the requirement det γ̃ij = 1, hij is asymptotically traceless
3Rij is a simple Laplacian in terms of hij

3R does not contain any second-order derivative of hij

with constant mean curvature (K = t) and spatial harmonic

coordinates (Dj

[
(γ/f)1/2

γij
]

= 0), Anderson & Moncrief

(2003) have shown that the Cauchy problem is locally strongly
well posed

the Conformal Flat Condition (CFC) verifies the Dirac gauge
⇒possibility to easily use initial data for binaries now available
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Einstein equations
Dirac gauge and maximal slicing (K = 0)

Hamiltonian constraint

∆(Ψ2
N) = Ψ6

N

„
4πS +

3

4
ÃklA

kl
«
− h

klDkDl(Ψ2
N) + Ψ2

"
N
“ 1

16
γ̃

klDkh
ijDlγ̃ij

−
1

8
γ̃

klDkh
ijDj γ̃il + 2D̃k ln Ψ D̃

k ln Ψ
”

+ 2D̃k ln Ψ D̃
k

N

#

Momentum constraint

∆β
i +

1

3
Di

“
Djβ

j
”

= 2A
ijDjN + 16πNΨ4

J
i − 12NA

ijDj ln Ψ − 2∆i
klNA

kl

−h
klDkDlβ

i −
1

3
h

ikDkDlβ
l

Trace of dynamical equations

∆N = Ψ4
N
h
4π(E + S) + ÃklA

kl
i
− h

klDkDlN − 2D̃k ln Ψ D̃
k

N
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Einstein equations
Dirac gauge and maximal slicing (K = 0)

Evolution equations

∂2hij

∂t2
− N 2

Ψ4
∆hij − 2£β

∂hij

∂t
+ £β£βhij = Sij

6 components - 3 Dirac gauge conditions -
(
det γ̃ij = 1

)
2 degrees of freedom

−∂2W

∂t2
+ ∆W = SW

−∂2X

∂t2
+ ∆X = SX

with W and X two scalar potentials related to hθθ − hϕϕ and hθϕ.
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Integration procedure

Everything is know on slice Σt

⇓

Evolution of W and X to next time-slice Σt+dt (+ hydro)

⇓

Deduce hij(t + dt) from Dirac and trace-free conditions

⇓

Deduce the trace from det γ̃ij = 1; thus hij(t + dt)
and γ̃ij(t + dt).

⇓

Iterate on the system of elliptic equations for N,Ψ2N and βi on Σt+dt
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Numerical methods: 3D multi-domain

spectral methods
numerical library Lorene (http://www.lorene.obspm.fr)

Decomposition:

Chebyshev polynomials for ξ,
Fourier or Y m

l for the angular
part (θ, φ),

symmetries and regularity
conditions of the fields at the
origin and on the axis of
spherical coordinate system

compactified variable for
elliptic PDEs ⇒boundary
conditions are well imposed

use of spherical components
for tensors

⇒development of a “transparent” boundary conditions for the
hyperbolic PDEs at finite distance
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Results with a pure gravitational wave

spacetime
Initial data

Similar to Baumgarte & Shapiro (1999), namely a momentarily static
(∂γ̃ij/∂t = 0) Teukolsky (1982) wave ` = 2, m = 2: W (t = 0) =

W0

2
r2 exp

(
−r2

r2
0

)
sin2 θ sin 2ϕ

X(t = 0) = 0
with W0 = 10−3

Preparation of the initial data by means of the conformal thin
sandwich procedure

Evolution of hφφ in the plane θ = π
2
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How well are equations solved?

Constraints

Imposed
numerically at
every time-step!

depends on
spectral resolution
& number of
iterations

keep the error
below 10−6

Evolution equations

only two out of six are solved

check on the others: equation for Ψ

∂Ψ

∂t
= β

kDkΨ +
Ψ

6
Dkβ

k
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Evolution of ADM mass
Are the boundary conditions efficient?

ADM mass is conserved up to 10−4

main source of error comes from time finite-differencing

the wave is let out at better than 10−4

Long-term stability : run for several grid-crossing times !!
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Physical model of rotating neutron

stars

Code developed for

self-gravitating perfect fluid in general relativity

two Killing vector fields (axisymmetry + stationarity)

Dirac gauge

equilibrium between matter and gravitational field

equation of state of a relativistic polytrope Γ = 2

Considered model here:

central density ρc = 2.9ρnuc

rotation frequency f = 641.47 Hz ' fMass shedding

gravitational mass Mg ' 1.51M�

baryon mass Mb ' 1.60M�

Equations are the same as in the dynamical case, replacing time
derivative terms by zero
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Comparison with quasi-isotropic gauge

Other code using quasi-isotropic gauge has been used for a long time
and successfully compared to other codes in Nozawa et al. (1998).

Global quantities

Quantity q-isotropic Dirac rel. diff.
N(r = 0) 0.727515 0.727522 10−5

Mg [M�] 1.60142 1.60121 10−4

Mb [M�] 1.50870 1.50852 10−4

Rcirc [km] 23.1675 23.1585 4× 10−4

J
[
GM2

�/c
]

1.61077 1.61032 3× 10−4

Virial 2D 1.4× 10−4 1.5× 10−4

Virial 3D 2.5× 10−4 2.1× 10−4

Virial identities (2 & 3D) are covariant relations that should be
fulfilled by any stationary spacetime; they are not imposed
numerically.
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Stationary axisymmetric models
Deviation from conformal flatness

For all components (except hrϕ and hθϕ,
which are null), hij

max ∼ 0.005 (up to ∼ 0.02
in more compact cases)
⇒comparable with γθθ − γϕϕ in
quasi-isotropic gauge
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Summary

We have developed and implemented a fully-constrained
evolution scheme for solving Einstein equations, using a
generalization of Dirac gauge and maximal slicing

Easy to extract gravitational radiation (asymptotical TT gauge +
spherical grid)

Well tested in the quasi-linear regime and for rotating compact
stars (i.e. most astrophysical scenarios without a black hole)

Ongoing work and outlook

Improve the accuracy to study the full non-linear regime (e.g.
collapse of a GW to a black hole)
Develop boundary conditions on the for black holes (on the
apparent horizon) in this formulation
Already possible applications to core collapse (“Mariage Des
Maillages” project) or study of oscillations of relativistic stars
Compatible with no-radiation approximations: e.g. Schäfer &
Gopakumar (2004); useful for slow evolution studies of
inspiralling compact binaries
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M.W. Choptuik, E.W. Hirschmann, S.L. Liebling, and F. Pretorius, Class. Quantum Grav. 20, 1857 (2003).

J. Fauendiener and T. Vogel, Class. Quantum Grav. 22, 1769 (2005).

A.P. Gentle, N.D. George, A. Kheyfets, and W.A. Miller, Class. Quantum Grav. 21, 83 (2004).

L. Lindblom, M.A. Scheel, L.E. Kidder, H.P. Pfeiffer, D. Shoemaker, and S.A. Teukolsky, Phys. Rev. D 69, 124025 (2004).

P.Marronetti, Class. Quantum Grav. 22, 2433 (2005).

T. Nozawa, N. Stergioulas, E. Gourgoulhon and Y. Eriguchi, Astron. Astrophys. Suppl. 132, 431 (1998).
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Definition of W and X potentials

with P =
(
hθθ − hϕϕ

)
/2

P =
∂2W

∂θ2
− 1

tan θ

∂W

∂θ
− 1

sin2 θ

∂2W

∂ϕ2
− 2

∂

∂θ

(
1

sin θ

∂X

∂ϕ

)
hθϕ =

∂2X

∂θ2
− 1

tan θ

∂X

∂θ
− 1

sin2 θ

∂2X

∂ϕ2
+ 2

∂

∂θ

(
1

sin θ

∂W

∂ϕ

)

Inverse relations

∆θϕ

“
∆θϕ + 2

”
W =

∂2P

∂θ2
+

3

tan θ

∂P

∂θ
−

1

sin2 θ

∂2P

∂ϕ2
− 2P +

2

sin θ

∂

∂ϕ

0@ ∂hθϕ

∂θ
+

hθϕ

tan θ

1A
∆θϕ

“
∆θϕ + 2

”
X =

∂2hθϕ

∂θ2
+

3

tan θ

∂hθϕ

∂θ
−

1

sin2 θ

∂2hθϕ

∂ϕ2
− 2h

θϕ −
2

sin θ

∂

∂ϕ

 
∂P

∂θ
+

P

tan θ

!
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