SPECTRAL METHODS FOR NUMERICAL
RELATIVITY

Jérome Novak (Jerome.Novak@obspm. fr)

Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris-Diderot

Jin collaboration with:
Silvano Bonazzola, Eric Gourgoulhon, Philippe Grandclément

Frontiers in Numerical Gravitational Astrophysics, July, 2"
2008

I’.@vﬁo}re LUTH


http://www.luth.obspm.fr

PLAN OF THE LECTURE

@ INTRODUCTION: REPRESENTATION OF FUNCTIONS

© LINEAR ORDINARY DIFFERENTIAL EQUATIONS

@ TIME-DEPENDENT PROBLEMS

@ MULTI-DOMAIN TECHNIQUES

@ F1ELDS IN 2D AND 3D: COORDINATES AND MAPPINGS

e EXAMPLES IN NUMERICAL RELATIVITY

"'@wa@e?re LuTH



Introduction:
Representation of functions



FUNCTIONS ON A COMPUTER
SIMPLIFIED PICTURE
How to deal with functions on a computer?
=-a computer can manage only integers
In order to represent a function ¢(x) (e.g. interpolate), one can
use:
e a finite set of its values {¢;},_o  on a grid {z;},_¢ N»
@ a finite set of its coefficients in a functional basis
$(z) = 3o Vi),
In order to manipulate a function (e.g. derive), each approach
leads to:
e finite differences schemes
o (1) ~ P(wit1) — ¢(z:)

Titl — &4

@ spectral methods
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CONVERGENCE OF FOURIER SERIES
é(x) = /1.5 + cos(x) + sin’
N

~ Z az\lfz(a:) with \Uzk = COS(k}.’E), \Uzk_|_1 = sin(kx)

=0
N =18




Relative accuracy (max-norm)
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CONVERGENCE TO THE DERIVATIVE
é(x) = /1.5 + cos(x) + sin’
N
¢(x) = a;Wj(x) with Wy, = —ksin(kz), Why,,; = kcos(kx)

=0
N =18




Relative accuracy (max-norm)

CONVERGENCE TO THE DERIVATIVE
#(x) = /1.5 + cos(x) + sin”
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GIBBS PHENOMENON

NO CONVERGENCE FOR DISCONTINUOUS (OR NON—PERIODIC)

FUNCTIONS!
o) = {

x for x € [0, 7]

x—2n for x € (m,2m)
N =98

I'wvatoire LUTH
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POLYNOMIAL INTERPOLATION

From the Weierstrass theorem, it is known that any continuous
function can be approximated to arbitrary accuracy by a
polynomial function.

In practice, with the function known on a grid {z;},_, », one
uses the Lagrange cardinal polynomials:

N=13

N
€r — Ty

T — 2
j=0g#i """

But a uniform grid is

not a good choice
— Uniform interpolant

=Runge phenomenon

I‘.@v‘at‘oire LUTH




ORTHOGONAL POLYNOMIALS

The solutions (A;, u;);en of a singular Sturm-Liouville problem
on the interval x € [—1,1]:

— (pu’)/ + qu = lwu,
with p > 0,CY, p(£1) =0
e are orthogonal with respect to the measure w:

1
(us,uj) = / ui(x)u;(z)w(z)de = 0 for m # n,

e form a spectral basis such that, if f(z) is smooth (C*)

N
F@) =) ciug(x)
i=0
converges faster than any power of V.

Chebyshev, Legendre and, more generally any type of Jacobi
polynomial enters this category. "'@Y?*‘j?'e LT



(GAUSS QUADRATURE

To get a convergent representation {c;},_, 5 of a function
f(x), it is sufficient to be able to compute

1
o f@)u(p)w(z)de
I (i) w(z)dz
In practice, one can use the Gauss quadrature (here

Gauss-Lobatto): for a given w(z) and N, one can find
{witi_o nand {z;},_o 5 €[—1,1] such that

Vi y C;

1 N

Vg € Pony_1, / g(x)w(z)dzr = Zg(wk)wk.

-1 k=0
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ExaMPLE WITH CHEBYSHEV

POLYNOMIALS
N é(x) = (1 +2sin(52)) /(1 +2°)

¢(x) = > a;Wi(x) with Wy = Ty(x) = cos(k arccos(x))

i=0 N =12




ExAMPLE WITH CHEBYSHEV

POLYNOMIALS
o(x) = (1 + 2sin(5z)) /(1 + :1’2)
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Linear Ordinary Differential

FEquations



DIFFERENTIAL EQUATIONS

POSITION OF THE PROBLEM

We consider the general form of an Ordinary Differential
Equation (ODE) on an interval, for the unknown function u(z):

Lu(z) = s(x), Vz € [a,b]
Bu(z) = 0, forxz=a,b,

with L, B being two lincar differential operators and s(z) a
given source.The approximate solution is sought in the form

N

u(z) =) cVi(x).

=0

The {V;},_, n are called trial functions: they belong to a
finite-dimension sub-space of some Hilbert space H|g y-

I‘.@v‘at‘oire LUTH



METHOD OF WEIGHTED RESIDUALS

A function @ is said to be a numerical solution of the ODE if:
e Bi=0forxz=a,b,
e Ru = Lu — s is “small”.
Defining a set of test functions {&},_, , and a scalar product
on Hi,p), 1 is small iff:

Vi=0...N, (&,,R)=0.
It is expected that

lim 4 = u,
N—oo

the “true” solution of the ODE.

I’.@v‘at‘oire LUTH



VARIOUS NUMERICAL METHODS

TYPE OF TRIAL FUNCTIONS W

o finite-differences methods for local, overlapping
polynomials of low order,

o finite-clements methods for local, smooth functions, which
are non-zero only on a sub-domain of [a, b],

@ spectral methods for global smooth functions on [a, b].

TYPE OF TEST FUNCTIONS £ FOR SPECTRAL METHODS

o tau method: &(z) = W;(x), but some of the test conditions
are replaced by the boundary conditions.

e collocation method (pseudospectral): & (x) = 6(xz — x;), at
collocation points. Some of the test conditions are replaced
by the boundary conditions.

o Galerkin method: the test and trial functions are chosen
to fulfill the boundary conditions.

LUTH




SPECTRAL SOLUTION OF AN ODE
FOURIER GALERKIN METHOD
Let u(x) be the solution on [0,27) of
d®u _du
12 +3d + 2u = s(z),
with periodic boundary conditions. If one decomposes

Z ay, cos(nx)+b, sin(nz) and 5( Z oy, cos(nx)+f, sin(nx),
n=0 n=0

then, the condition on the residuals translates into

—n?ay, + 3nb, +2a, = o
—n2b, — 3na, +2b, = By

_ (2 n )an+3n/8ﬂ
I = T
_ 3nap+(2—n?)Bn
bn = I e

LUTH



CONVERGENCE PROPERTIES

d2 du FOURIER GALERKIN METHOD
— + 3— + 2u = 5% (sm2x —cosz — 3sinz + 2)
22
Convergence of the numerical solution to the analytical one:
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PROPERTIES OF LEGENDRE
POLYNOMIALS P,(z),n € N

They are solutions of the singular Sturm-Liouville problem
(p=1-22¢=0,w=1and \, = —n(n+1)):

d dP,
o <(1 — x2)dxn> = —n(n+1)P,;
they are orthogonal on [—1, 1] with respect to the weight w =1
and, starting from Py = 1, P, = z, the recurrence relation is:

(n+1)Put1(z) = (2n + 1)xPy(x) — nPp_1(x).

The {x;};,_; n_ are zeros of Pj(x), and must be computed
numerically. They give the Legendre-Gauss-Lobatto weights

2 1
N(N + 1) (PN(xn))z . I‘.@vﬂat‘ojre LUTH
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PROPERTIES OF CHEBYSHEV
POLYNOMIALS T),(x),n € N

They are solutions of the singular Sturm-Liouville problem
(p=v1—22¢g=0,w=1/V/1—2%and )\, = —n). They are
orthogonal on [—1, 1] with respect to the weight w = 1/v/1 — 22
and, starting from 7o = 1, 11 = x, the recurrence relation is:

Thii1(x) = 22T (x) — Th—1(2).

They have the simple expression which allows for the use of
FFT to compute the Chebyshev transform:

Vo € [-1,1], T,(x) = cos(narccosz),

also, the Chebyshev-Gauss-Lobatto nodes and weights are
known

m
2N N I‘.@vﬂat‘ojre LUTH



LINEAR “DIFFERENTIAL’ OPERATORS

Thanks to the recurrence relations of Legendre and Chebyshev
polynomials, it is possible to express the coefficients {b;},_;
of

N N
Lu(z) = Z b; ?83 , with u(z) = Z a; ? ;3
1=0 ! i=0 7'

If L = d/dz, for Legendre polynomials

N

bo=(2n+1) > a

i=n+1,n+i odd

If L = xx, for Chebyshev polynomials

bp = = (1 + don—1)an—1+ an+1) (n>1).

N -
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INVERSION OF OPERATORS

A PRACTICAL EXAMPLE

The numerical solution @(z) of
22" (z) — 6zu' () + 10u(z) = s(z),

can be seen as a solution of the system Lu = 5, where

N N
= a;T;(z) and 5 = Z a;T;(x)
i=0 1=0

are represented as vectors and, if N =5

10 0 -10 0 4
0 4 0 -18 0
L= 00 0 0 -8
00 0 -2 0
00

0 0 -2 "'@@%9&6

LUTH



INVERSION OF OPERATORS

THE NEED FOR BOUNDARY CONDITIONS

10 0 =10 O 4
0 4 0 -18 O
L = 0 0 O 0 -8
0 0 O -2 0

0 0 O 0o -2
is not an invertible matrix. In order to get the solution of the
ODE, one must specify exactly two boundary conditions. e.g.
O u(xr=-1)=0, and
9 u(x=1)=0.
Since

Vi, Ti(—1) = (-1)", and T;(1) = 1,

in the tau method, the last two lines of the matrix represeng' g
L are replaced by the two boundary conditions. @



INVERSION OF OPERATORS

THE NEED FOR BOUNDARY CONDITIONS

10 0 -10 O 4
0 4 0 -18 O
L= 0 0 0 0 -8
1 -1 1 -1 1

1 1 1 1 1

is not an invertible matrix. In order to get the solution of the
ODE, one must specify exactly two boundary conditions. e.g.
O u(x=-1)=0, and
Q u(z=1)=0.

Since Vi, Ti(-1)= (—1)i, and T;(1) = 1,

in the tau method, the last two lines of the matrix representing
L are replaced by the two boundary conditions. "'@vaﬁqire LuTH



SINGULAR OPERATORS
u(x)

e The operator u(z) — is a linear operator, inverse of

x

e Its action on the coefficients {a;},_, 5 representing the
N-order approximation to a function u(z) can be
computed as the product by a regular matrix.

=The computation in the coefficient space of u(x)/z, on the
interval [—1, 1] always gives a finite result (both with
Chebyshev and Legendre polynomials).
=The actual operator which is thus computed is
u(z) — u(z) — u(0) u(O)
x

M and u(z) — )

=The same holds for u(z) — —.
x—1 r+1

=-possibility of computing a singular ratio i -
g @V“a".o“ll’e LUTH



SPECTRAL SOLUTION OF AN ODE
CHEBYSHEV-TAU METHOD
The Poisson equation in spherical symmetry and spherical
coordinates writes
dPu 2du B
a2 i =)
To be regular, u(r) and s(r) must be even functions of r.
e it is sufficient to use only even Chebyshev (or Legendre)
polynomials for z € [0, 1],
@ it is necessary to specify one boundary condition at x = 1.
o the matrix of the spectral Chebyshev-tau method of
approximating the solution is (with u(z = 1) =const)
0 12 32 132 256
0 0 80 192 544
L=]0 0 0 168 384
0 0 0 0 288
1101 1 1 P 1



CONVERGENCE OF THE SOLUTION

CHEBYSHEV-TAU METHOD
d?u  2du

2 a2
+ —— = (4z° — 6)e and u(z =1) = 1/e.
Convergence of the numerical solution to the analytical one:
2
u(x) =e "
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Time-dependent problems



TIME DISCRETIZATION

Formally, the representation (and manipulation) of f(t) is the
same as that of f(z).

=in principle, one should be able to represent a function u(x,t)
and solve time-dependent PDEs only using spectral
methods...but this is not the way it is done! Two works:

Ierley et al. (1992): study of the Korteweg de Vries and
Burger equations, Fourier in space and Chebyshev in time
=time-stepping restriction.

Hennig and Ansorg (2008): study of non-linear (1+1) wave
equation, with conformal compactification in Minkowski
space-time. =-nice spectral convergence.

WHY?

poor a priori knowledge of the exact time interval,
too big matrices for full 3+1 operators (~ 30% x 30%),

V“'il‘oil’e LUTH

finite-differences time-stepping errors can be quite smai



EXpLICIT / IMPLICIT SCHEMES

Let us look for the numerical solution of (L acts only on x):

Ju(z,t)
ot

with good boundary conditions. Then, with 0t the time-step:

= Lu(z,t),

vVt >0, Vzel-1,1],

VJeN, u/(z)=u(x,J x t),

it is possible to discretize the PDE as
° uJ+1($) = uJ(a:) + it Luj(x): explicit time scheme
(forward Euler); from the knowledge of u”(z), it is possible
to compute directly u”/*!, by applying L (“deriving”).
o u/t(x) — 0t Lu’*1(x) = v/ (x): implicit time scheme
(backward Euler); one must solve an equation (ODE) to
get u’/*1, the matrix approximating it here is I — §t L.l‘o@yggqire LUTH



TEMPORAL STABILITY ANALYSIS

For each ¢, the field u(z,t) is approximated by Uy (t), the vector
of N + 1 time-dependent spectral coefficients (Galerkin / tau
methods) or values at grid points (collocation method)

oUn
Vt >0, —— = LUn(t).
>0, — n(t)
The matrix L (including the boundary conditions) admits
N + 1 complex eigenvalues {\;},_, , and the PDE is

equivalent to a set of time ODEs

% = )\iai(t).

V¢>0,¥i=0...N,
dt

=for a given ODE time-integration scheme, the region of
absolute stability is the set of the complex plane containing all
the \;ét, for which all the {a;(t)},_,  remain bounded P

in time.



REGIONS OF STABILITY

RUNGE-KUTTA SCHEMES

Regions of absolute stability for various Runge-Kutta schemes.
4

RK2
--------- RK3
--- RK4
———- RK5
&
o
%, -4 Y Nl Y Nz Y N3 Y 4
E

-4 | U.@\@t‘oire LUTH



Imaginary part

EIGENVALUES OF L =

or

CHEBYSHEV-TAU METHOD

200

100

I
GBS

o

100

200

Real part

An eigenvalue on the negative part of the real axis, which i 1g@vmlre .
too negative, is not displayed O(—N

%)



PROS AND CONS

DRAWBACK OF EXPLICIT SCHEMES:

o CFL time-step limitation §t < ————,=for advection
max (|A;])

equation with Chebyshev or Legendre

Ju(x,t)  Ou(z,t) . 1
= = <
5 T the time-step ot < ek

DRAWBACKS OF IMPLICIT SCHEMES:

@ more complicated to implement: boundary-value problem
at each time-step,

@ also limited by CFL-like condition for linear multi-step
methods of order higher than 2 (Dahlquist barrier).

¢ LUTH



EXAMPLE OF TIME-INTEGRATION
FOURIER GALERKIN

Let us solve the PDE:
ou(z,t) ou(z,t)

Vi € [0.27]. ¢ > 0 _
vel0,2n] ¥ >0, —5 or

YVt >0, wu(2m,t) = wu(0,1),
Vz €[0,2n], wu(z,0) = €%,

If one decomposes: u(x,t) = ZLO an(t) cos(nz) + by (t) sin(nx)
then, the forward Euler scheme writes:
altt = al +néth!
{ bl = b —notal

and the backward Euler:
altl —ntp/ 1

ndtaltt + o/t = b/

I
S

Two examples with ¢ = 0.01 and 6t = 0.1. ro@@gque LT



BOUNDARY CONDITIONS

IMPLICIT SCHEMES
An ODE is solved to advance from one time-step to the next,
e.g.: (I-6tL)UF = Uy,
the boundary conditions are 1mposed as for ODEs.

EXPLICIT SCHEMES

One can directly compute the coefficients at the new time-step,
e.g.: Uyt = UR + LUY,.

With b boundary conditions, the tau method requires the
change of the last b coefficients of Uy ™! so that @/*(z) fulfills

the boundary conditions.

For example, if 7/71(z) = SV ¢;T;(x) and one requires
/T (z =1) =0, the {¢;},_o_y_; are advanced and

N-1
= — E C;. I‘.@v“at‘ojre LUTH
i=0 ‘



COLLOCATION EXPLICIT SCHEMES

o Let {;},_, y be (e.g.) the Legendre-Gauss-Lobatto
collocation points: xg = -1,z = 1 and
Vi=1...N—1, Ppy(z;)=0.

o Using the Lagrange cardinal polynomials, or the Legendre
polynomials properties, it is possible to compute the
differentiation matrix D;;:

N
Vi=0...N,VQ € Py[X], Q'(z:)=)_ Di;Q(x;).

@ The time integration of the advection PDE (with
u(1,t) = 0 condition) writes:

Vi=0...N -1, ulzt)
ot

ﬂ(l‘N, t) =

Z]U .CUJ,

OQMZ

I .@v‘at‘ofre LUTH



BOUNDARY CONDITIONS

PENALTY METHOD FOR COLLOCATION SCHEMES

o In all previous examples, the boundary conditions were
enforced strongly: the numerical solution @(z,t) satisfies
the BCs up to machine precision.

o In particular, in collocation methods, the PDE is not
satisfied at the (neighborhood of the) boundary point.

In the penalty method, the boundary condition is enforced
through a penalty term at the boundary collocation point

_ N
ViZO...N, &L(;J;,t) = ZDija(xjyt)
j=0
(A @i)Py(@i) B

where 7 is an adjustable constant such that the problem be
well-posed and stable.=The boundary condition is emforced,.@Y‘a,‘ojre o
up to the precision of the scheme. ‘ ‘



CHEBYSHEV COLLOCATION EXAMPLE

ADVECTION EQUATION
Initial data

Ve e [-1,1], u(x,0)= e’ _ gt
at Chebyshev-Gauss-Lobatto collocation points

{zr = —cos(km/N)}i—o. N

U

. 7 . . .
e computation of 68% (derivation matrix or coefficients),

e advance to next time-step
J+1 J du’ (xy)
Vk=0...N, u (xk):u(wk)—l—étT
1
e and don’t forget the boundary condition:

uTHzy) = 0.

LUTH




Multi-domain (or patching)

techniques



MULTI-DOMAINS TECHNIQUES
MOTIVATIONS AND SETTINGS
Multi-domain technique consists in having several touching, or
overlapping, domains (intervals), each one mapped on [—1,1].

o the boundary between two domains can be the place of a
discontinuity of the function, or its derivatives =recover
spectral convergence,

e one can set a domain with more coefficients (collocation
points) in a region where much resolution is needed =-fixed
mesh refinement,

e 2D or 3D, allows to build a complex domain from several
simpler ones,

@ it is possible to treat a function in each domain on a
different CPU =-parallelization.

Domain 1 Domain 2

X,=-1 X :1| X,=-1 x2:1|

1
I‘.@vatoire LUTH
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DOMAIN MATCHING

TAU METHOD

Consider the ODE:
Yy € [a,b], Lu(y) = s(y), with boundary conditions on u(y = a, b).

The numerical solution is sought in the form

Vy <wyo, u(y) = ZzO aTi(21(y)),
vyzyo? a(y) = 120 ZT( ())7

To determine the N1 + Ny + 2 coeflicients, one takes:

o N7 — 1 residual equations for domain 1,

@ Ny — 1 residual equations for domain 2,

@ 2 boundary conditions at 1 = —1 and x, = 1,

@ 2 matching conditions at y = yo:

w(ry =1) =u(rp = —1) and @'(z1 = 1) = @/ (22 = —1).

=-considering a big vector of size N1 + N, + 2, one has in
principle an invertible system and thus a uniquely defined u@vm.re L
numerical solution.



DOMAIN MATCHING

COLLOCATION METHOD / HOMOGENEOUS SOLUTIONS
The collocation multi-domain method is like the tau one:
@ write the residual equations on the interior collocation points
{@i1, xﬂ}1:1...(N1—1),j:1...(N2—1)v

@ write the two boundary conditions at x1; and xay,, and the
matching condition at y = yo (z1n, and ).

y

If one knows explicitely the homogeneous solutions ux(y) and u,(y) of
Yy € [a,b], Lu(y)=0,
then after getting a particular solution in each domain, solving
d=1,2 Lug(:cd) = 5(zq), with e.g. u(xg =41) =0,

one is left with the determination of the linear combination in each

domain ut(2q) = ub(zq) + Aqur(za) + pauw(zq)

such that it verifies the boundary and the matching conditions
(system in {Ag; pa} g o)-

LUTH



VARIATIONAL MATCHING METHOD
(LEGENDRE, NUMERICALLY INTEGRATED)
Only with Legendre collocation method (i.e. polynomials
orthogonal with w(z) = 1). Considering only Lu(y) = u”(y) the
residual equation gives, in each domain:

/ & dzg = / &nSdxg = fn / & dy—/ &nS dy.

With Legendre-Gauss-Lobatto quadrature and &, (zq4;) = 0n;:

d d
VYn=1...Ng—1, Z Z D Dinwiu (xg5) = S (zan) w
i=0 j=0
2 more equations are obtained from the boundary conditions,
and 1 from the continuity requirement at y = yo. The derivative

at this point is obtained from the integrated part
Ni Ny

U (.’E]_ - 1 ZZDUDZNIU)Z (.ZU]_]) +S($1N1 WN; - I.@vatmre LUTH
=0 57=0



COMPARISON
2

d
Accuracy on the solution of d—g +4u =S5, with S(y <0) =1
Y
and S(y >0)=0. Ny =N, =N.

I I I ‘
4] R G-© Tau method
10 =-8 Homogeneous
o Variational
A Collocation method

I‘.@v‘at‘oire LUTH




Fields in 2D and 3D:

coordinates and mappings



TENSOR PRODUCT AND MAPPINGS
In two spatial dimensions, the usual

technique is to write a function as:

Foo Q=[-1,1x[-L1] —R s |
Nz Ny
flay) = D> cyPix)Py(y)

i=0 j=0 R
: o The domain 2 is then mapped to

0 the real physical domain, trough
some mapping

; M:(z,y)— (X,Y) e
/ @ When computing derivatives, the
Jacobian of I1 is used.

e For example, the interior of an
axisymmetric star can be described

(5,8) € [0,1P = (p,2) € [0, punan] X [0,2(p)]. osin




EXAMPLE:

FOURIER METHOD FOR 3D POISSON EQUATION

In (e.g.) simulations of cosmic structure formation, one has to
solve a Poisson equation to get the gravitational potential:

62 82 82
Ag = < + (")73/2 + 322> ¢ = 4rGp(x,y, 2),

with periodic boundary conditions. Writing:

_ Epa+kyy+ks
o(z,y,2) = Z . ?\}4_0 Zkz_o oy b € cilkotkyy+ z)’
_ kpa+kyy+k-
plz,y,z) = Zkz_o _0 Zkz 0 Chakyhs € eilkoa+hyy+ksz2)
one gets the set of simple equations:
Chykyk,

v(ka:a kyy kz) 7& (07 07 0)7 akmkykz — _m.

®

V‘at‘oil’e LUTH



SPATIAL COMPACTIFICATION

A mapping not specific to spectral methods.
1

Consider the simple case of ( = = = a(z — 1), z € [-1,1],
r

the spherically symmetrlc Laplace operator writes
A d?u n 2du C4d
- cdu
dr2 " rdr d¢?’

and it is possible to impose boundary conditions at
r—oo <= (=0.

Other types of compactification are possible (tan,...), even
combining (¢, ) coordinates in conformal compactification.

Keep in mind that properties of some PDEs may change

1
with the mapping: the ( = — is not compatible with the
r

d%u

characteristics of the wave equation u = — — Au =

8 t I" .@vatonre
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TYPES OF COORDINATES

List of coordinates used in numerical relativity, with spectral
methods (flat line element):
e Cartesian (rectangular) coordinates: ds? = da? + dy? + dz°.
e Circular cylindrical coordinates: ds® = dp? + p? dé? + dz?,
singular on the z-axis (p = 0).
@ Spherical (polar) coordinates: ds? = dr? + r2 do? + r2 sin? 9d<p2,
singular at the origin (r = 0) and on the z—axis.

Bipolar Coordinates: ¢ and 1 Isosurfaces
Foci arc located at (-1, 0y and (+1, 0)

@ Prolate spheroidal coordinates: ds® = ‘ ‘ ‘
a® (sinh2 1+ sin® u) (d,u2 + du2) + |
a? sinh? psin® v dp?, singular for =0 2
and v = 0,7 (the foci are at = = +a).

Y Axis
<
T

@ Bispherical coordinates: ds® =
a?(cosha — cos7) % (do? + dr? +sin’ ¢ =
The foci situated at x = +a on the I
focal axis exhibit coordinate L L 2 LuTH
singularities.

IS
ok
°
©
IS



SPHERICAL COORDINATES

o are well-adapted to

= describe isolated
M 2 astrophysical systems:
€ single star or black hole,
- 8 2 where the surface is
€, € .
I 6 spheroidal,
e y . .
e S+ Y e compactification needs
p . only to be done for 7,

e the boundary surface
r = const is a smooth one.

o allow the use of spherical harmonics,

o the coordinate singularities can be nicely handled with
spectral methods,

@ spherical and axial symmetries nicely handled. ro@wwh .



REGULARITY CONDITIONS
Considering (e.g.) the Laplace operator, which is regular:
_82+28+1 82+18+182
o2 rdr 2\ 002 tan00  sin200p2 )’
division by r or sin§ look singular. =-a regular field u(r, @, )
must have a particular behavior.
e if u is expandable in series of powers of x,y and z, near
r=0: u(z,y,z2) = Z”k az‘jkfﬁzyjzk-
@ changing to spherical coordinates
u(r, 0,0) = 3, 4 Gnpg”™ P cos? @ sin™ P § cos™ psin? p;
e and rearranging the terms
u(r,0,p) = Zm,p,q bmpqr|m|+2p+q sinl™I+2P g cosd heime
e introducing ¢ = |m| 4+ 2p + ¢ and the spherical harmonics
Y, ™(0, ¢), one gets the following consequences for u:
e near 6 = 0, u(f) ~ sin™l 9,

. I8 vatoire  LuTH
e near 7 = 0, u(r) ~ r* and has the same parity as /. @ ‘



SPHERICAL HARMONICS

@ are pure angular functions

-2 @ Y, ™(0,¢), forming an
= @ 2“' » orthonormal basis for the space of
=' 220 regular functions on a sphere:

.
-
-

-

>0, |m| <¢,
Y0, ) o< P (cosf)e'™?.
e are eigenfunctions of the angular
part of the Laplace operator:

|
'

i
y

an
s TT]1

a2y'gm+ 1 a}/[n_'_ 1 82}/67%
002 tanf 00  sin®>0 O¢?

Do, Y7"(0,¢) = — ()Y (0, ).
=they can form a spectral decomposition basis for functions

defined on a spheroid (e.g. apparent horizon)

=they can simplify the solution of a Poisson equation e Lo



EXAMPLE:

3D POISSON EQUATION, WITH NON-COMPACT SUPPORT

To solve A¢(r, 6, p) = s(r, 0, ), with s extending to infinity.

@ setup two domains in the

Compactified domain radial direction: one to deal
= g(]él_ 1)v05551 with the singularity at r = 0,
Nucleus 6) the other with a compactified

r=of 0s<g<1 mapping.

@ In each domain decompose the
angular part of both fields
onto spherical harmonics:

T, (&) for | even
T,.,() for | odd

lmax m={

BE0,0) =D > dum(Y (0 9),

° =0 m=—/¢

2
W(£, m) solve the ODE: 3-0m  2d0em _ AL+ Ldum

+ = - = Stm 5 )
g2 ¢ d¢ &2 ©

e match between domains, with regularity conditions at I'@vatowe LuTH
r = 0, and boundary conditions at r — oo.




Relative change in energy

SCALAR WAVE EQUATION

Time-dependent 3D problems can be treated similarly, e.g. the
Pe(r,0,0) o
case of the wave equation oz = Ag(r,0, ), inside a
sphere of radius R, with homogeneous boundary conditions
¢(r = R) = 0 (reflection), for £ = m = 0,2 modes.
=-use of Chebyshev-tau method and explicit second-order
time-scheme:
¢.]+1 _ 2¢7 _ ¢J71 + (57‘52A¢]

d .
2™-order time scheme
R=4, N=49, dt=10"*

o =Check the conservation of
energy in the grid:

HHIFH- - s @)

zi=t,r,0,0

—1-1.5e-08

fOI' 5t = OOOU) 1 I‘.@vatoire LUTH
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VECTOR AND TENSOR COMPONENTS

Vector components expressed in the spherical triad do not
behave like scalars: they cannot be expanded onto a basis of
Y,™(0, ¢).=two solutions:

e use Cartesian triad, where %%#(r, 0, p) can be expanded
onto Y,;”, and use scalar solvers (drawback: needs more
points in (6, ¢))

@ decompose the spherical components onto pure-spin vector
spherical harmonics (Y| Y,E | Y,B ) and solve for the scalar
potentials (drawback: more complicated to implement)

VA ZR[,m(r)Yem(@,sO)
,m

n = ZEZm(T)Yhm

Lm
H = Z BZm (T)nm

Lm
Same questions appear in the case of rank-2 tensor (e.g. thﬁ@wre -
3-metric ~;; in 341 formalism). -



NON-LINEAR PROBLEMS

EXPLICIT METHOD FOR TIME-DEPENDENT PROBLEMS

PN
ot

e knowing the field @/ at a given time-step, one can compute
the non-linear source Nu”, and advance in time. ..

SOLUTION OF A BOUNDARY VALUE PROBLEM

Lu = Nu
e Newton-Raphson method for F(z) = (L + N)(co,...,cn) =0:

OF; o _
compute J;; = —, start from an initial guess 1g,and solve

aCj
J(u1 — 1p) = —Fp. .. J may be complicated to compute!
o iterative method: if the inversion of L is easy, start from

initial guess g, compute Ny and solve the linear operator
to get u; = L~ Nig. . .no reason to converge! LuTH

v




Examples in numerical relativity



ROTATING RELATIVISTIC STARS

POSITION OF THE PROBLEM

We consider space-times which are
e stationary: there exists a Killing vector field, timelike at
infinity,
o axisymmetric : there exists a Killing vector field, vanishing
on a timelike 2-surface (the axis), spacelike elsewhere and
whose orbits are closed curves,

e asymptotically flat

@ circular: there is no meridional convective current.
ds? = —N2dt? + B%?sin? 0 (dp — f9dt)? + A% (dr? + r2d6?) .

=-set of 4 coupled non-linear Poisson-like equations for the
metric potentials + first integral of motion (hydrostatic
equilibrium) + equation of state (EOS).

I‘.@v‘at‘oire LUTH



z [km]

ROTATING RELATIVISTIC STARS

e The density profile is not smooth at the
surface =-loss in the convergence rate.

@ The multi-domain approach requires
that the domain boundary be situated
exactly at the (coordinate) surface of
the star,

Enthalpy

ADAPTED MAPPING

From Bonazzola et al. (1998).

For a rotating star, this surface is not a
sphere =need of a starred mapping

(£, 0,¢") = (1,0, 9):

T o= Qg [5 + (354 - 256)Feven(9/a ¢')
+(56° — 36%)Goaa(¥', ¢')]
0 = 0 and o=

to take care of regularity conditions "'@Wre LuTH
at r = 0. ‘ ‘



ROTATING RELATIVISTIC STARS

EXTREMELY DISTORTED STARS

All very fast and differentially rotating stars ()

¢

do no fit into this picture: <

=use of cylindrical coordinates with the
mapping (s,t) = (p, 2):

2
22 = r2syp(t), rp: polar radius
p > P

where yp(t) describes the star surface.

=yp(t), with other fields, is decomposed on
a basis of Chebyshev polynomials and enters
the system of equations.

From Ansorg et al.(2002)

(b)

p° = rgst, re: equatorial radius C
2

¢

s

I‘.@v‘at‘o?re LUTH



ROTATING RELATIVISTIC STARS

EINSTEIN-MAXWELL SYSTEM

Magnetic field

@ One can solve for the
electro-magnetic field in
addition to the
gravitational one,

] e Assumption of perfect
] conductor and
d self-consistent model

(electric currents in hydro
equilibrium),
1 e Matching of the tangential
= part of electric field at the

-20 —10

From Bocquet et al.(1995)

0 10 20 surface.

, .
x [km] I@y‘at‘o‘gre LUTH



BINARY SYSTEMS
POSITION OF THE PROBLEM
Want to model initial data of inspiralling binary systems of
compact objects =must be in some quasi-equilibrium state:
e standing waves, or
@ no gravitational radiation
use of conformally flat condition (see lectures
by Font and Campanelli): the 3-metric is
conformally flat (spatial gauge is then fixed)
=set of five coupled elliptic (Poisson-like)
non-linear equations (two scalar ones and a

vector one) From Gourgoulhon et al. (2001)
Several choices for the coordinates:
e Cartesian (compactification?),
e two spherical grids, centered on each object (cost of
interpolation?),

I’.@v‘at‘oire LUTH

e bispherical coordinates (implementation?).



BINARY SYSTEMS

NEUTRON STAR INITIAL DATA

e For neutron stars, one often considers that the viscosity is
too small to synchronize the binary,

o the hydro flow can be considered as irrotational=-solution
of an additional Poisson-like equation for the potential.

@ use of two spherical grids, adapted to
the surface of each star,

e most of time spent in the interpolation
between grids
@ able to treat incompressible fluids, as
well as strange quark matter (pressure
jump at the surface).
"'@Wre LutH




Lapse function (z=0)

10

—10

X
From Granclément (2006)

Other grid setting;:
e only Cartesian grids
and shells (no r =0
coordinate singularity),

@ overlapping domain
matching.

BINARY SYSTEMS

MIXED INITIAL DATA

o Irrotational hydro flow and a grid
adapted to the surface of the star,

o the black hole is modeled through

the presence of an isolated
horizon, which is set to be a
sphere

BCIIOIN

From Foucart et al. (2008)

I‘.@v‘at‘oire LUTH



BINARY SYSTEMS

BLACK HOLE INITIAL DATA
Several “groups” have performed
computations of binary-black-hole initial
data, using spectral methods:

o the Meudon group (e.g. Gourgoulhon et
al. 2002),

@ the Caltech / Cornell group (e.g.
Lovelace et al. 2008)

?

@ M. Ansorg (e.g. Ansorg 2005).
punctures excision

I‘.@vagcﬁre LUTH




BINARY BLACK HOLE EVOLUTION

Only the Caltech/Cornell group is able to perform binary black
hole evolution with spectral methods (see lectures by
Campanelli and Laguna).

@ use free evolution, generalized

Ly : / harmonic gauge and excision,
4 s
] e multi-domain spectral method,
o with penalty technique to match
9 P the domains,

y/m
o

@ dual-frame approach and
A ] horizon-tracking grid,

o explicit, high-order Runge-Kutta

4 0 & scheme, spherical harmonics and
x/m .
From Boyle et al. (2007) Chebyshev representation.

=-15 orbits and merger, up to = 4000M. f“@wﬁre LuTH



CORE-COLLAPSE

COMBINED CODE SPE(‘TRAL/GODL'NO\"

Spectral methods may not be used for the hydrodynamics of
core-collapse simulations ...
methods are very efficient (see lecture by J.A. Font).
o Nevertheless, the gravitational field is never discontinuous
(no coordinate shocks),
@ Although not spectrally convergent, the spectral
representation of gravitational field is convergent.
@ Define a domain containing the shock, with more points.

= “Mariage des Maillages” /CoCoNuT
project (also lecture by Font):

@ use high-resolution shock-capturing
methods for the hydro system,

o use spectral methods for the
Finstein equations. vo@vmre -

Cordero-Carrién et al. (2008), in preparation



CORE-COLLAPSE

FILTERING

One the main limitations for the use of spectral methods is the
Gibbs phenomenon.=-possibility to use filters: e.g.

=spectral series
converging with
order p

=quite useful for
discontinuous
sources in
core-collapse
simulations.

2
Cp = Cp X e—o(#)”

0.5

after

SI‘ .@vﬂat‘ofre
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Summary



SUMMARY

@ Spectral method can yield rapid convergence in the
representation of smooth functions, the computation of
their derivatives and for the solution of PDEs/ODEs.

@ They can nicely handle coordinate singularities and

0
“—_like” terms.

o They are limited by the Gibbs phenomenon, which makes
them not well-suited for some simulations (shocks,. .. ).

@ They can however be combined with other techniques
(Godunov, SPH, ...) to solve for the gravitational field
equations.

o Possible future developments: spectral methods for time
representation, spectral elements, ...

Some of the techniques/codes described here are available as
parts of the publicly available numerical library LORENE:
www.lorene.obspm.fr

I‘.@v‘at‘oire LUTH
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ON SPECTRAL METHODS. .
@ Boyd, J.B., Chebyshev and Fourier Spectral Methods, (Dover
2001).

@ Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A.,
Spectral Methods: Fundamentals in Single Domains, (Springer
Verlag 2006).

@ Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A.,

Spectral Methods: Evolution to Complexr Geomeltries and
Applications to Fluid Dynamics, (Springer Verlag 2007).

@ Gottlieb, D.; and Orszag, S.A., Numerical Analysis of Spectral
Methods: Theory and Applications, (Society for Industrial and
Applied Mathematics 1977).

@ Grandclément, Ph. and Novak, J., Spectral Methods for
Numerical Relativity, submitted to Living Rev. Relativity
http://arXiv.org/abs/0706.2286

@ Hesthaven, J.S., Gottlieb, S., and Gottlieb, D., Spectral Methods
for Time-Dependent Problems, (Cambridge Unlver81ty Press,.@
2007).
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