Spectral methods for numerical **RELATIVITY**

Jérôme Novak (Jerome.Novak@obspm.fr)

[L](http://www.luth.obspm.fr)aboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

in collaboration with: Silvano Bonazzola, Éric Gourgoulhon, Philippe Grandclément

Frontiers in Numerical Gravitational Astrophysics, July, 2nd 2008

PLAN OF THE LECTURE

- [Introduction: representation of functions](#page-2-0)
- [Linear Ordinary Differential Equations](#page-14-0)
- [Time-dependent problems](#page-29-0)
- 4 MULTI-DOMAIN TECHNIQUES
- [Fields in 2D and 3D: coordinates and mappings](#page-47-0)
- [Examples in numerical relativity](#page-59-0)

Introduction: Representation of functions

FUNCTIONS ON A COMPUTER SIMPLIFIED PICTURE

How to deal with functions on a computer?

⇒a computer can manage only integers In order to represent a function $\phi(x)$ (e.g. interpolate), one can

use:

- a finite set of its values $\{\phi_i\}_{i=0...N}$ on a grid $\{x_i\}_{i=0...N}$,
- a finite set of its coefficients in a functional basis

 $\phi(x) \simeq \sum_{i=0}^{N} c_i \Psi_i(x).$

In order to manipulate a function (e.g. derive), each approach leads to:

• finite differences schemes

$$
\phi'(x_i) \simeq \frac{\phi(x_{i+1}) - \phi(x_i)}{x_{i+1} - x_i}
$$

• spectral methods $\phi'(x) \simeq \sum$ N $i=0$ $c_i \Psi'_i(x)$

Convergence of Fourier series $\phi(x)=\sqrt{1.5+\cos(x)}+ \sin^7 x$ N $\phi(x) \simeq \sum$ $a_i\Psi_i(x)$ with $\Psi_{2k} = \cos(kx)$, $\Psi_{2k+1} = \sin(kx)$ $\dot{i}=0$ $N = 18$ $\frac{5}{2}$ α 1.5 $\overline{ }$ $\overline{0}$ \circ \mathbf{o} $\overline{2}$ $\overline{4}$ $\boldsymbol{6}$

Gibbs phenomenon

no convergence for discontinuous (or non-periodic) FUNCTIONS!

Polynomial interpolation

From the Weierstrass theorem, it is known that any continuous function can be approximated to arbitrary accuracy by a polynomial function.

In practice, with the function known on a grid $\{x_i\}_{i=0}$ N, one uses the Lagrange cardinal polynomials:

 $N=13$

 $l_i(x) = \prod$ N $_{j=0,j\neq i}$ $x - x_j$ $x_i - x_j$

But a uniform grid is not a good choice ⇒Runge phenomenon

ORTHOGONAL POLYNOMIALS

The solutions $(\lambda_i, u_i)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in [-1, 1]$:

$$
-(pu')' + qu = \lambda wu,
$$

with $p > 0, \mathcal{C}^1, p(\pm 1) = 0$

• are orthogonal with respect to the measure w :

$$
(u_i, u_j) = \int_{-1}^{1} u_i(x) u_j(x) w(x) dx = 0 \text{ for } m \neq n,
$$

form a spectral basis such that, if $f(x)$ is smooth (\mathcal{C}^{∞})

$$
f(x) \simeq \sum_{i=0}^N c_i u_i(x)
$$

converges faster than any power of N.

Chebyshev, Legendre and, more generally any type of Jacobi polynomial enters this category.

GAUSS QUADRATURE

To get a convergent representation ${c_i}_{i=0}$, n of a function $f(x)$, it is sufficient to be able to compute

$$
\forall i, \quad c_i = \frac{\int_{-1}^1 f(x) u_i(x) w(x) \mathrm{d}x}{\int_{-1}^1 (u_i(x))^2 w(x) \mathrm{d}x}.
$$

In practice, one can use the Gauss quadrature (here Gauss-Lobatto): for a given $w(x)$ and N, one can find ${w_i}_{k=0}$ N and ${x_i}_{k=0}$ N \in [-1, 1] such that

$$
\forall g \in \mathbb{P}_{2N-1}, \quad \int_{-1}^{1} g(x)w(x) \mathrm{d}x = \sum_{k=0}^{N} g(x_k)w_k.
$$

Example with Chebyshev polynomials $\phi(x)=\left(1+2\sin(5x)\right)/(1+x^2)$

Linear Ordinary Differential

Equations

DIFFERENTIAL EQUATIONS POSITION OF THE PROBLEM

We consider the general form of an Ordinary Differential Equation (ODE) on an interval, for the unknown function $u(x)$:

$$
Lu(x) = s(x), \quad \forall x \in [a, b]
$$

$$
Bu(x) = 0, \quad \text{for } x = a, b,
$$

with L, B being two linear differential operators and $s(x)$ a given source.The approximate solution is sought in the form

$$
\bar{u}(x) = \sum_{i=0}^N c_i \Psi_i(x).
$$

The $\{\Psi_i\}_{i=0}$ N are called trial functions: they belong to a finite-dimension sub-space of some Hilbert space $\mathcal{H}_{[a,b]}$.

Method of weighted residuals

A function \bar{u} is said to be a numerical solution of the ODE if:

- \bullet $B\bar{u} = 0$ for $x = a, b$,
- $R\bar{u} = L\bar{u} s$ is "small".

Defining a set of test functions $\{\xi_i\}_{i=0...N}$ and a scalar product on $\mathcal{H}_{[a,b]}$, R is small iff:

$$
\forall i=0...N, \quad (\xi_i,R)=0.
$$

It is expected that

$$
\lim_{N \to \infty} \bar{u} = u,
$$

the "true" solution of the ODE.

Various numerical methods

TYPE OF TRIAL FUNCTIONS Ψ

- finite-differences methods for local, overlapping polynomials of low order,
- finite-elements methods for local, smooth functions, which are non-zero only on a sub-domain of $[a, b]$,
- spectral methods for global smooth functions on $[a, b]$.

TYPE OF TEST FUNCTIONS ξ for spectral methods

- tau method: $\xi_i(x) = \Psi_i(x)$, but some of the test conditions are replaced by the boundary conditions.
- collocation method (pseudospectral): $\xi_i(x) = \delta(x x_i)$, at collocation points. Some of the test conditions are replaced by the boundary conditions.
- Galerkin method: the test and trial functions are chosen to fulfill the boundary conditions.

-LUTH

SPECTRAL SOLUTION OF AN ODE Fourier Galerkin method

Let
$$
u(x)
$$
 be the solution on $[0, 2\pi)$ of
\n
$$
\frac{d^2u}{dx^2} + 3\frac{du}{dx} + 2u = s(x),
$$

with periodic boundary conditions. If one decomposes $\bar{u}(x) = \sum_{n=0}^{N} a_n \cos(nx) + b_n \sin(nx)$ and $\bar{s}(x) = \sum_{n=0}^{N} a_n \cos(nx)$ $n=0$ $n=0$ $\alpha_n \cos(nx) + \beta_n \sin(nx),$

then, the condition on the residuals translates into

$$
\begin{cases}\n -n^2 a_n + 3nb_n + 2a_n &= \alpha_n \\
-n^2 b_n - 3n a_n + 2b_n &= \beta_n\n\end{cases}
$$
\n
$$
\iff \begin{cases}\n a_n &= \frac{(2-n^2)\alpha_n + 3n\beta_n}{(n^2+1)(n^2+4)} \\
b_n &= \frac{3n\alpha_n + (2-n^2)\beta_n}{(n^2+1)(n^2+4)}\n\end{cases}
$$

PROPERTIES OF LEGENDRE POLYNOMIALS $P_n(x), n \in \mathbb{N}$

.

They are solutions of the singular Sturm-Liouville problem $(p = 1 - x^2, q = 0, w = 1 \text{ and } \lambda_n = -n(n + 1))$:

$$
\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x^2)\frac{\mathrm{d}P_n}{\mathrm{d}x}\right)=-n(n+1)P_n;
$$

they are orthogonal on $[-1, 1]$ with respect to the weight $w = 1$ and, starting from $P_0 = 1$, $P_1 = x$, the recurrence relation is:

$$
(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x).
$$

The ${x_i}_{i=1...N-1}$ are zeros of $P'_N(x)$, and must be computed numerically. They give the Legendre-Gauss-Lobatto weights

$$
w_n = \frac{2}{N(N+1)} \frac{1}{\left(P_N(x_n)\right)^2}
$$

PROPERTIES OF CHEBYSHEV POLYNOMIALS $T_n(x)$, $n \in \mathbb{N}$

They are solutions of the singular Sturm-Liouville problem $(p =$ √ $1-x^2, q=0, w=1/$ µµ
∕ $1-x^2$ and $\lambda_n=-n$). They are orthogonal on $[-1, 1]$ with respect to the weight $w = 1/\sqrt{1-x^2}$ and, starting from $T_0 = 1$, $T_1 = x$, the recurrence relation is:

$$
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).
$$

They have the simple expression which allows for the use of FFT to compute the Chebyshev transform:

 $\forall x \in [-1, 1], \quad T_n(x) = \cos(n \arccos x),$

also, the Chebyshev-Gauss-Lobatto nodes and weights are known

$$
x_n = -\cos\frac{n\pi}{N}, \quad w_0 = w_N = \frac{\pi}{2N}, w_n = \frac{\pi}{N}.
$$

LINEAR "DIFFERENTIAL" OPERATORS Thanks to the recurrence relations of Legendre and Chebyshev polynomials, it is possible to express the coefficients ${b_i}_{i=0}$. of

$$
Lu(x) = \sum_{i=0}^{N} b_i \left| \begin{array}{c} P_i(x) \\ T_i(x) \end{array} \right|, \text{ with } u(x) = \sum_{i=0}^{N} a_i \left| \begin{array}{c} P_i(x) \\ T_i(x) \end{array} \right|.
$$

If $L = d/dx$, for Legendre polynomials

$$
b_n = (2n + 1) \sum_{i=n+1, n+i \text{ odd}}^N a_i.
$$

If $L = x \times$, for Chebyshev polynomials

$$
b_n=\frac{1}{2}\left((1+\delta_{0n-1})a_{n-1}+a_{n+1}\right)\quad(n\geq 1).
$$

Inversion of operators A practical example

The numerical solution $\bar{u}(x)$ of

$$
x^{2}u''(x) - 6xu'(x) + 10u(x) = s(x),
$$

can be seen as a solution of the system $L\bar{u} = \bar{s}$, where

$$
\bar{u} = \sum_{i=0}^{N} a_i T_i(x)
$$
 and $\bar{s} = \sum_{i=0}^{N} \alpha_i T_i(x)$

are represented as vectors and, if $N = 5$

$$
L = \left(\begin{array}{cccc} 10 & 0 & -10 & 0 & 4 \\ 0 & 4 & 0 & -18 & 0 \\ 0 & 0 & 0 & 0 & -8 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{array}\right)
$$

Inversion of operators THE NEED FOR BOUNDARY CONDITIONS

$$
L = \left(\begin{array}{cccccc} 10 & 0 & -10 & 0 & 4 \\ 0 & 4 & 0 & -18 & 0 \\ 0 & 0 & 0 & 0 & -8 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{array}\right)
$$

is not an invertible matrix. In order to get the solution of the ODE, one must specify exactly two boundary conditions. e.g.

$$
u(x = -1) = 0
$$
, and

 $u(x = 1) = 0.$

Since

$$
\forall i, \quad T_i(-1) = (-1)^i, \text{ and } T_i(1) = 1,
$$

in the tau method, the last two lines of the matrix representing L are replaced by the two boundary conditions.

Inversion of operators THE NEED FOR BOUNDARY CONDITIONS

$$
L = \left(\begin{array}{ccccc} 10 & 0 & -10 & 0 & 4 \\ 0 & 4 & 0 & -18 & 0 \\ 0 & 0 & 0 & 0 & -8 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}\right)
$$

is not an invertible matrix. In order to get the solution of the ODE, one must specify exactly two boundary conditions. e.g.

$$
u(x = -1) = 0
$$
, and

2 $u(x=1)=0$.

Since
$$
\forall i, T_i(-1) = (-1)^i, \text{ and } T_i(1) = 1,
$$

in the tau method, the last two lines of the matrix representing L are replaced by the two boundary conditions. servatoire — LUTH

Singular operators The operator $u(x) \mapsto \frac{u(x)}{x}$ $\frac{\sqrt{u}}{x}$ is a linear operator, inverse of $u(x) \mapsto xu(x)$.

• Its action on the coefficients ${a_i}_{i=0...N}$ representing the N-order approximation to a function $u(x)$ can be computed as the product by a regular matrix.

 \Rightarrow The computation in the coefficient space of $u(x)/x$, on the interval $[-1, 1]$ always gives a finite result (both with Chebyshev and Legendre polynomials).

⇒The actual operator which is thus computed is

$$
u(x) \mapsto \frac{u(x) - u(0)}{x}.
$$

 \Rightarrow The same holds for $u(x) \mapsto \frac{u(x)}{x}$ $\frac{u(x)}{x-1}$ and $u(x) \mapsto \frac{u(x)}{x+1}$ $\frac{d(x)}{x+1}.$ \Rightarrow possibility of computing a singular ratio $\frac{f}{g}$.

SPECTRAL SOLUTION OF AN ODE CHEBYSHEV-TAU METHOD

The Poisson equation in spherical symmetry and spherical coordinates writes

$$
\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}u}{\mathrm{d}r} = s(r).
$$

To be regular, $u(r)$ and $s(r)$ must be even functions of r.

- it is sufficient to use only even Chebyshev (or Legendre) polynomials for $x \in [0, 1]$,
- it is necessary to specify one boundary condition at $x = 1$.
- the matrix of the spectral Chebyshev-tau method of approximating the solution is (with $u(x = 1) = const$)

$$
L = \left(\begin{array}{ccccc} 0 & 12 & 32 & 132 & 256 \\ 0 & 0 & 80 & 192 & 544 \\ 0 & 0 & 0 & 168 & 384 \\ 0 & 0 & 0 & 0 & 288 \\ 1 & 1 & 1 & 1 & 1 \end{array}\right)
$$

Time-dependent problems

TIME DISCRETIZATION

Formally, the representation (and manipulation) of $f(t)$ is the same as that of $f(x)$.

 \Rightarrow in principle, one should be able to represent a function $u(x, t)$ and solve time-dependent PDEs only using spectral methods...but this is not the way it is done! Two works:

- Ierley *et al.* (1992): study of the Korteweg de Vries and Burger equations, Fourier in space and Chebyshev in time ⇒time-stepping restriction.
- Hennig and Ansorg (2008) : study of non-linear $(1+1)$ wave equation, with conformal compactification in Minkowski space-time. ⇒nice spectral convergence.

WHY?

- poor a priori knowledge of the exact time interval,
- too big matrices for full 3+1 operators (\sim 30⁴ × 30⁴),
- **•** finite-differences time-stepping errors can be quite small.

EXPLICIT / IMPLICIT SCHEMES

Let us look for the numerical solution of $(L \nvert L)$ acts only on x.

$$
\forall t \geq 0, \quad \forall x \in [-1, 1], \quad \frac{\partial u(x, t)}{\partial t} = Lu(x, t),
$$

with good boundary conditions. Then, with δt the time-step:

$$
\forall J \in \mathbb{N}, \quad u^J(x) = u(x, J \times \delta t),
$$

it is possible to discretize the PDE as

- $u^{J+1}(x) = u^{J}(x) + \delta t \, Lu^{J}(x)$: explicit time scheme (forward Euler); from the knowledge of $u^{J}(x)$, it is possible to compute directly u^{J+1} , by applying L ("deriving").
- $u^{J+1}(x) \delta t \, Lu^{J+1}(x) = u^{J}(x)$: implicit time scheme (backward Euler); one must solve an equation (ODE) to get u^{J+1} , the matrix approximating it here is $I - \delta t L$.

Temporal stability analysis

For each t, the field $u(x, t)$ is approximated by $U_N(t)$, the vector of $N+1$ time-dependent spectral coefficients (Galerkin / tau methods) or values at grid points (collocation method)

$$
\forall t\geq 0, \quad \frac{\partial U_N}{\partial t}=LU_N(t).
$$

The matrix \overline{L} (including the boundary conditions) admits $N+1$ complex eigenvalues $\{\lambda_i\}_{i=0...N}$ and the PDE is equivalent to a set of time ODEs

$$
\forall t \geq 0, \forall i = 0 \ldots N, \quad \frac{\mathrm{d}a_i}{\mathrm{d}t} = \lambda_i a_i(t).
$$

⇒for a given ODE time-integration scheme, the region of absolute stability is the set of the complex plane containing all the $\lambda_i \delta t$, for which all the $\{a_i(t)\}_{i=0}$ N remain bounded in time.

Regions of stability Runge-Kutta schemes

Regions of absolute stability for various Runge-Kutta schemes.

Real part

EIGENVALUES OF $L = \frac{\partial}{\partial \lambda}$ ∂x Chebyshev-tau method

An eigenvalue on the negative part of the real axis, which is too negative, is not displayed $\mathcal{O}(-N^2)$.

Pros and cons

DRAWBACK OF EXPLICIT SCHEMES:

CFL time-step limitation $\delta t \lesssim \frac{1}{\sqrt{1-\epsilon}}$ $\frac{1}{\max(|\lambda_i|)}, \Rightarrow$ for advection equation with Chebyshev or Legendre

$$
\frac{\partial u(x,t)}{\partial t} = \frac{\partial u(x,t)}{\partial x}, \text{ the time-step } \delta t \lesssim \frac{1}{N^2}.
$$

DRAWBACKS OF IMPLICIT SCHEMES:

- more complicated to implement: boundary-value problem at each time-step,
- also limited by CFL-like condition for linear multi-step methods of order higher than 2 (Dahlquist barrier).
EXAMPLE OF TIME-INTEGRATION Fourier Galerkin

Let us solve the PDE:

$$
\forall x \in [0, 2\pi], \forall t \ge 0, \quad \frac{\partial u(x, t)}{\partial t} = \frac{\partial u(x, t)}{\partial x},
$$

$$
\forall t \ge 0, \quad u(2\pi, t) = u(0, t),
$$

$$
\forall x \in [0, 2\pi], \quad u(x, 0) = e^{\cos x}.
$$

If one decomposes: $\bar{u}(x,t) = \sum_{n=0}^{N} a_n(t) \cos(nx) + b_n(t) \sin(nx)$ then, the forward Euler scheme writes:

$$
\begin{cases}\n a_n^{J+1} = a_n^J + n \, \delta t \, b_n^J \\
 b_n^{J+1} = b_n^J - n \, \delta t \, a_n^J\n\end{cases}
$$

and the backward Euler:
\n
$$
\begin{cases}\na_n^{J+1} - n \,\delta t \, b_n^{J+1} = a_n^J \\
n \,\delta t \, a_n^{J+1} + b_n^{J+1} = b_n^J\n\end{cases}
$$

Two examples with $\delta t = 0.01$ and $\delta t = 0.1$.

BOUNDARY CONDITIONS

implicit schemes

An ODE is solved to advance from one time-step to the next, e.g.: $(I - \delta t L) U_N^{J+1} = U_N^J,$ the boundary conditions are imposed as for ODEs.

explicit schemes

One can directly compute the coefficients at the new time-step, $e.g.:$ $U_N^{J+1} = U_N^J + L U_N^J.$ With b boundary conditions, the tau method requires the change of the last b coefficients of U_N^{J+1} \bar{u}^{J+1} so that $\bar{u}^{J+1}(x)$ fulfills the boundary conditions.

For example, if $\bar{u}^{J+1}(x) = \sum_{i=0}^{N} c_i T_i(x)$ and one requires $\bar{u}^{J+1}(x=1) = 0$, the ${c_i}_{i=0...N-1}$ are advanced and

$$
c_N = -\sum_{i=0}^{N-1} c_i.
$$

COLLOCATION EXPLICIT SCHEMES

- Let ${x_i}_{i=0}$ N be (e.g.) the Legendre-Gauss-Lobatto collocation points: $x_0 = -1, x_N = 1$ and $\forall i=1 \ldots N-1, \quad P'_N(x_i)=0.$
- Using the Lagrange cardinal polynomials, or the Legendre polynomials properties, it is possible to compute the differentiation matrix D_{ii} :

$$
\forall i=0 \ldots N, \forall Q \in \mathbb{P}_N[X], \quad Q'(x_i) = \sum_{j=0}^N D_{ij}Q(x_j).
$$

The time integration of the advection PDE (with $u(1, t) = 0$ condition) writes:

$$
\begin{array}{rcl} \forall i=0 \ldots N-1, \quad \frac{\partial \bar{u}(x_i,t)}{\partial t} & = & \displaystyle\sum_{j=0}^N D_{ij} \bar{u}(x_j,t) \\ \bar{u}(x_N,t) & = & 0 \end{array}
$$

BOUNDARY CONDITIONS PENALTY METHOD FOR COLLOCATION SCHEMES

- In all previous examples, the boundary conditions were enforced strongly: the numerical solution $\bar{u}(x, t)$ satisfies the BCs up to machine precision.
- In particular, in collocation methods, the PDE is not satisfied at the (neighborhood of the) boundary point.

In the penalty method, the boundary condition is enforced through a penalty term at the boundary collocation point

$$
\forall i = 0...N, \quad \frac{\partial \bar{u}(x_i, t)}{\partial t} = \sum_{j=0}^{N} D_{ij} \bar{u}(x_j, t) - \tau \frac{(1+x_i)P'_N(x_i)}{2P'_N(x_N)} (\bar{u}(x_N, t) - 0),
$$

where τ is an adjustable constant such that the problem be well-posed and stable.⇒The boundary condition is enforced up to the precision of the scheme.Laboratoire Univers et T

Chebyshev collocation example Advection equation

 $\text{Initial data} \quad \forall x \in [-1, 1], \quad u(x, 0) = e^{-4x^2} - e^{-4}$ at Chebyshev-Gauss-Lobatto collocation points ${x_k = -\cos(k\pi/N)}_{k=0,N}$.

⇓

LOOP

- computation of $\frac{\partial u^J}{\partial x}$ (derivation matrix or coefficients),
- advance to next time-step

$$
\forall k = 0...N, \quad u^{J+1}(x_k) = u^{J}(x_k) + \delta t \, \frac{\partial u^{J}(x_k)}{\partial x}
$$

• and don't forget the boundary condition: $u^{J+1}(x_N) = 0.$

Multi-domain (or patching)

techniques

MULTI-DOMAINS TECHNIQUES MOTIVATIONS AND SETTINGS

Multi-domain technique consists in having several touching, or overlapping, domains (intervals), each one mapped on [−1, 1].

- the boundary between two domains can be the place of a discontinuity of the function, or its derivatives ⇒recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed ⇒fixed mesh refinement,
- 2D or 3D, allows to build a complex domain from several simpler ones,
- it is possible to treat a function in each domain on a different $CPU \Rightarrow$ parallelization.

DOMAIN MATCHING **TAU METHOD**

Consider the ODE:

 $\forall y \in [a, b], \quad Lu(y) = s(y),$ with boundary conditions on $u(y = a, b)$. The numerical solution is sought in the form

$$
\begin{cases} \forall y \leq y_0, & \bar{u}(y) = \sum_{i=0}^{N_1} c_i^1 T_i (x_1(y)), \\ \forall y \geq y_0, & \bar{u}(y) = \sum_{i=0}^{N_2} c_i^2 T_i (x_2(y)), \end{cases}
$$

To determine the $N_1 + N_2 + 2$ coefficients, one takes:

- $N_1 1$ residual equations for domain 1,
- $N_2 1$ residual equations for domain 2,
- 2 boundary conditions at $x_1 = -1$ and $x_2 = 1$,
- 2 matching conditions at $y = y_0$:

 $\bar{u}(x_1 = 1) = \bar{u}(x_2 = -1)$ and $\bar{u}'(x_1 = 1) = \bar{u}'(x_2 = -1)$.

 \Rightarrow considering a big vector of size $N_1 + N_2 + 2$, one has in principle an invertible system and thus a uniquely defined $\gamma_{\text{Dosey} \text{ radioire} \text{--} \text{UTH}}$ numerical solution.

DOMAIN MATCHING

collocation method / homogeneous solutions

The collocation multi-domain method is like the tau one:

- write the residual equations on the interior collocation points ${x_{i1}, x_{j2}}_{i=1...(N_1-1), i=1...(N_2-1)}$
- write the two boundary conditions at x_{11} and x_{2N_2} , and the matching condition at $y = y_0$ (x_{1N_1} and x_{20}).

If one knows explicitely the homogeneous solutions $u_{\lambda}(y)$ and $u_{\mu}(y)$ of $\forall y \in [a, b], \quad Lu(y) = 0,$

then after getting a particular solution in each domain, solving $d = 1, 2$ $Lu_p^d(x_d) = \bar{s}(x_d)$, with e.g. $u(x_p^d = \pm 1) = 0$,

one is left with the determination of the linear combination in each domain $d(x_d) = u_p^d(x_d) + \lambda_d u_\lambda(x_d) + \mu_d u_\mu(x_d)$

such that it verifies the boundary and the matching conditions (system in $\{\lambda_d, \mu_d\}_{d=1,2}$).

VARIATIONAL MATCHING METHOD (Legendre, numerically integrated)

Only with Legendre collocation method (i.e. polynomials orthogonal with $w(x) = 1$. Considering only $Lu(y) = u''(y)$ the residual equation gives, in each domain:

$$
\int_{-1}^{1} \xi_n u'' \, \mathrm{d}x_d = \int_{-1}^{1} \xi_n S \, \mathrm{d}x_d \Rightarrow \left[\xi_n u' \right]_{-1}^{1} - \int_{-1}^{1} \xi_n' u' \, \mathrm{d}y = \int_{-1}^{1} \xi_n S \, \mathrm{d}y.
$$

With Legendre-Gauss-Lobatto quadrature and $\xi_n(x_{di}) = \delta_{nj}$:

$$
\forall n = 1... N_d - 1, -\sum_{i=1}^{N_d} \sum_{j=1}^{N_d} D_{ij} D_{in} w_i u(x_{dj}) = S(x_{dn}) w_n.
$$

2 more equations are obtained from the boundary conditions, and 1 from the continuity requirement at
$$
y = y_0
$$
. The derivative at this point is obtained from the integrated part

 $i=0$ $j=0$

$$
u'\left(x_1=1\right)=\sum_{i=0}^{N_1}\sum_{j=0}^{N_1}D_{ij}D_{iN_1}w_i u\left(x_{1j}\right)+S\left(x_{1N_1}\right)w_{N_1}\cdot \max_{\textit{rObselya} \textit{f}_\textit{D} \textit{f}_\textit{D} \textit{f}_\textit{D} \textit{f}_\textit{D} \textit{f}_\textit{D} \textit{f}_\textit{D}}
$$

COMPARISON

Accuracy on the solution of $\frac{d^2u}{dx^2}$ $\frac{d^2y}{dy^2} + 4u = S$, with $S(y \le 0) = 1$ and $S(y \ge 0) = 0$. $N_1 = N_2 = N$.

Fields in 2D and 3D: coordinates and mappings

TENSOR PRODUCT AND MAPPINGS

In two spatial dimensions, the usual technique is to write a function as:

- The domain $\hat{\Omega}$ is then mapped to the real physical domain, trough some mapping Π : $(x, y) \mapsto (X, Y) \in \Omega$.
- When computing derivatives, the Jacobian of Π is used.
- For example, the interior of an axisymmetric star can be described

 $(s, t) \in [0, 1]^2 \stackrel{\Pi}{\rightarrow} (\rho, z) \in [0, \rho_{\text{max}}] \times [0, z(\rho)].$

Example: Fourier method for 3D Poisson equation

In (e.g.) simulations of cosmic structure formation, one has to solve a Poisson equation to get the gravitational potential:

$$
\Delta \phi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \phi = 4\pi G \rho(x, y, z),
$$

with periodic boundary conditions.Writing:

$$
\begin{array}{rcl}\n\phi(x,y,z) & = & \sum_{k_x=0}^{N_x} \sum_{k_y=0}^{N_y} \sum_{k_z=0}^{N_z} a_{k_x k_y k_z} e^{i(k_x x + k_y y + k_z z)}, \\
\rho(x,y,z) & = & \sum_{k_x=0}^{N_x} \sum_{k_y=0}^{N_y} \sum_{k_z=0}^{N_z} c_{k_x k_y k_z} e^{i(k_x x + k_y y + k_z z)},\n\end{array}
$$

one gets the set of simple equations:

$$
\forall (k_x, k_y, k_z) \neq (0, 0, 0), \quad a_{k_x k_y k_z} = -\frac{c_{k_x k_y k_z}}{k_x^2 + k_y^2 + k_z^2}.
$$

SPATIAL COMPACTIFICATION

- A mapping not specific to spectral methods.
- Consider the simple case of $\zeta = \frac{1}{\zeta}$ $\frac{1}{r} = \alpha(x-1), \ x \in [-1,1],$
- the spherically symmetric Laplace operator writes $\Delta u = \frac{d^2 u}{1^2}$ $\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{2}{r}$ r du $\frac{\mathrm{d}u}{\mathrm{d}r} = \zeta^4 \frac{\mathrm{d}^2u}{\mathrm{d}\zeta^2}$ $rac{a}{d\zeta^2}$
- and it is possible to impose boundary conditions at $r \to \infty \iff \zeta = 0.$
- \bullet Other types of compactification are possible (\tan, \dots) , even combining (t, r) coordinates in conformal compactification.
- Keep in mind that properties of some PDEs may change with the mapping: the $\zeta = \frac{1}{\zeta}$ $\frac{1}{r}$ is not compatible with the characteristics of the wave equation $\square u = \frac{\partial^2 u}{\partial x^2}$ $rac{\partial u}{\partial t^2} - \Delta u = s.$

Types of coordinates

List of coordinates used in numerical relativity, with spectral methods (flat line element):

- Cartesian (rectangular) coordinates: $ds^2 = dx^2 + dy^2 + dz^2$.
- Circular cylindrical coordinates: $ds^2 = d\rho^2 + \rho^2 d\phi^2 + dz^2$, singular on the z-axis ($\rho = 0$).
- Spherical (polar) coordinates: $ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2$, singular at the origin $(r = 0)$ and on the z–axis.
- Prolate spheroidal coordinates: $ds^2 =$ $a^2 \left(\sinh^2 \mu + \sin^2 \nu\right) \left(d\mu^2 + d\nu^2\right) +$ a^2 sinh² μ sin² ν d φ^2 , singular for $\mu = 0$ and $\nu = 0, \pi$ (the foci are at $x = \pm a$).
- Bispherical coordinates: $ds^2 =$ $a^2(\cosh\sigma-\cos\tau)^{-2}\left(d\sigma^2+d\tau^2+\sin^2\tau\alpha\right)$ The foci situated at $x = \pm a$ on the focal axis exhibit coordinate singularities.

Spherical coordinates

- are well-adapted to describe isolated astrophysical systems: single star or black hole, where the surface is spheroidal,
- compactification needs only to be done for r ,
- the boundary surface $r = \text{const}$ is a smooth one.
- allow the use of spherical harmonics,
- the coordinate singularities can be nicely handled with spectral methods,
- spherical and axial symmetries nicely handled.

REGULARITY CONDITIONS

Considering (e.g.) the Laplace operator, which is regular: $\Delta = \frac{\partial^2}{\partial x^2}$ $rac{\partial^2}{\partial r^2} + \frac{2}{r}$ r $\frac{\partial}{\partial r}+\frac{1}{r^2}$ r^2 \int ∂² $rac{\partial^2}{\partial \theta^2} + \frac{1}{\tan^2}$ tan θ $rac{\partial}{\partial \theta} + \frac{1}{\sin^2}$ $\sin^2\theta$ ∂^2 $\partial \varphi^2$ $\Big),$ division by r or $\sin \theta$ look singular. \Rightarrow a regular field $u(r, \theta, \varphi)$ must have a particular behavior.

- if u is expandable in series of powers of x, y and z, near $r = 0$: $u(x, y, z) = \sum_{i, j, k} a_{ijk} x^i y^j z^k$.
- changing to spherical coordinates $u(r,\theta,\varphi)=\sum_{n,p,q}a_{npq}r^{n+p+q}\cos^q\theta\sin^{n+p}\theta\cos^n\varphi\sin^p\varphi;$
- and rearranging the terms $u(r,\theta,\varphi)=\sum_{m,p,q}b_{mpq}r^{|m|+2p+q}\sin^{|m|+2p}\theta\cos^q\theta e^{im\varphi}$
- introducing $\ell = |m| + 2p + q$ and the spherical harmonics $Y_{\ell}^{m}(\theta,\varphi)$, one gets the following consequences for u:
- near $\theta = 0$, $u(\theta) \sim \sin^{|m|} \theta$,
- near $r = 0$, $u(r) \sim r^{\ell}$ and has the same parity as ℓ .

Spherical harmonics

CGOO EGOOO SGDAD ê Gêrên ara SGBAADAM

- are pure angular functions $Y_{\ell}^{m}(\theta,\varphi)$, forming an orthonormal basis for the space of regular functions on a sphere:
	- $\ell > 0, |m| < \ell,$ $Y_\ell^m(\theta,\varphi) \propto P_\ell^m(\cos\theta) e^{im\varphi}.$
- are eigenfunctions of the angular part of the Laplace operator:

$$
\Delta_{\theta\varphi}Y_\ell^m(\theta,\varphi):=\frac{\partial^2Y_\ell^m}{\partial\theta^2}{+}\frac{1}{\tan\theta}\frac{\partial Y_\ell^m}{\partial\theta}{+}\frac{1}{\sin^2\theta}\frac{\partial^2Y_\ell^m}{\partial\varphi^2}=-\ell(\ell{+}1)Y_\ell^m(\theta,\varphi).
$$

⇒they can form a spectral decomposition basis for functions defined on a spheroid (e.g. apparent horizon) ⇒they can simplify the solution of a Poisson equation

EXAMPLE:

3D Poisson equation, with non-compact support

To solve $\Delta \phi(r, \theta, \varphi) = s(r, \theta, \varphi)$, with s extending to infinity.

- setup two domains in the radial direction: one to deal with the singularity at $r = 0$, the other with a compactified mapping.
- In each domain decompose the angular part of both fields onto spherical harmonics:

 $\ell = 0$ $m = -\ell$ \bullet $\forall (\ell,m)$ solve the ODE: $\frac{d^2 \phi_{\ell m}}{d^2}$ $\frac{\partial \phi_{\ell m}}{\mathrm{d}\xi^2} + \frac{2}{\xi}$ $\mathrm{d}\phi_{\ell m}$ $\frac{\phi_{\ell m}}{\mathrm{d}\xi}-\frac{\ell(\ell+1)\phi_{\ell m}}{\xi^2}$ $\frac{1}{\xi^2} = s_{\ell m}(\xi),$ ξ \bullet match between domains, with regularity conditions at $\mathcal{P}_{\text{bsekyate}}$ $r = 0$, and boundary conditions at $r \to \infty$.

 $\phi(\xi,\theta,\varphi) \simeq \sum^{\ell_{\rm max}}\,\sum^{m=\ell}\,\phi_{\ell m}(\xi) Y_\ell^m(\theta,\varphi),$

Scalar wave equation Time-dependent 3D problems can be treated similarly, e.g. the case of the wave equation $\frac{\partial^2 \phi(r, \theta, \varphi)}{\partial r^2}$ $\frac{\partial^{(r,\sigma)}(r,\sigma,\varphi)}{\partial t^2} = \Delta\phi(r,\theta,\varphi)$, inside a sphere of radius R , with homogeneous boundary conditions $\phi(r = R) = 0$ (reflection), for $\ell = m = 0, 2$ modes. ⇒use of Chebyshev-tau method and explicit second-order time-scheme:

$$
\phi^{J+1} = 2\phi^J - \phi^{J-1} + \delta t^2 \Delta \phi^J.
$$

Vector and tensor components

Vector components expressed in the spherical triad do not behave like scalars: they cannot be expanded onto a basis of $Y_{\ell}^{m}(\theta,\varphi)$ \Rightarrow two solutions:

- use Cartesian triad, where $\beta^{x,y,z}(r,\theta,\varphi)$ can be expanded onto Y_{ℓ}^{m} , and use scalar solvers (drawback: needs more points in (θ, φ))
- decompose the spherical components onto pure-spin vector spherical harmonics $(Y_{\ell m}^R, Y_{\ell m}^E, Y_{\ell m}^B)$ and solve for the scalar potentials (drawback: more complicated to implement)

$$
V^{r} = \sum_{\ell,m} R_{\ell m}(r) Y_{\ell m}(\theta, \varphi)
$$

$$
\eta = \sum_{\ell,m} E_{\ell m}(r) Y_{\ell m},
$$

$$
\mu = \sum_{\ell,m} B_{\ell m}(r) Y_{\ell m}
$$

Same questions appear in the case of rank-2 tensor (e.g. the 3-metric γ_{ii} in 3+1 formalism).

Non-linear problems

explicit method for time-dependent problems

$$
\frac{\partial u}{\partial t} = Nu
$$

knowing the field \bar{u}^J at a given time-step, one can compute the non-linear source $N\bar{u}^J$, and advance in time...

solution of a boundary value problem

$Lu = Nu$

- Newton-Raphson method for $F(\bar{u}) = (L+N)(c_0, \ldots, c_N) = 0$: compute $J_{ij} = \frac{\partial F_i}{\partial x_i}$ $\frac{\partial \Omega_i}{\partial c_j}$, start from an initial guess \bar{u}_0 , and solve $J(\bar{u}_1 - \bar{u}_0) = -F\bar{u}_0...$ *J* may be complicated to compute!
- \bullet iterative method: if the inversion of L is easy, start from initial guess \bar{u}_0 , compute $N\bar{u}_0$ and solve the linear operator to get $\bar{u}_1 = L^{-1} N \bar{u}_0$... no reason to converge!

Examples in numerical relativity

ROTATING RELATIVISTIC STARS POSITION OF THE PROBLEM

We consider space-times which are

- stationary: there exists a Killing vector field, timelike at infinity,
- axisymmetric : there exists a Killing vector field, vanishing on a timelike 2-surface (the axis), spacelike elsewhere and whose orbits are closed curves,
- asymptotically flat
- circular: there is no meridional convective current.

 $ds^2 = -N^2 dt^2 + B^2 r^2 \sin^2 \theta (d\varphi - \beta^{\varphi} dt)^2 + A^2 (dr^2 + r^2 d\theta^2).$

⇒set of 4 coupled non-linear Poisson-like equations for the metric potentials $+$ first integral of motion (hydrostatic equilibrium) $+$ equation of state (EOS).

ROTATING RELATIVISTIC STARS ADAPTED MAPPING

The density profile is not smooth at the surface ⇒loss in the convergence rate.

• The multi-domain approach requires that the domain boundary be situated exactly at the (coordinate) surface of the star,

Enthalpy

From Bonazzola et al. (1998).

For a rotating star, this surface is not a sphere ⇒need of a starred mapping $(\xi, \theta', \varphi') \mapsto (r, \theta, \varphi)$: r = $\alpha_0 \left[\xi + (3\xi^4 - 2\xi^6) F_{\rm even}(\theta',\varphi') \right]$ $+ (5\xi^3 - 3\xi^5) G_{\rm odd}(\theta',\varphi')\big]$ $\theta = \theta'$ and $\varphi = \varphi'$ to take care of regularity conditions poses at $r=0$.

ROTATING RELATIVISTIC STARS EXTREMELY DISTORTED STARS

All very fast and differentially rotating stars do no fit into this picture: ⇒use of cylindrical coordinates with the

mapping $(s, t) \mapsto (\rho, z)$:

$$
\rho^2 = r_e^2 st, r_e: \text{ equatorial radius}
$$

$$
z^2 = r_p^2 s y_B(t), r_p: \text{ polar radius}
$$

where $y_B(t)$ describes the star surface. $\Rightarrow y_B(t)$, with other fields, is decomposed on a basis of Chebyshev polynomials and enters the system of equations.

ROTATING RELATIVISTIC STARS Einstein-Maxwell system

Magnetic field

- One can solve for the electro-magnetic field in addition to the gravitational one,
- Assumption of perfect conductor and self-consistent model (electric currents in hydro equilibrium),
- Matching of the tangential part of electric field at the surface.

From Bocquet et al.(1995)

Binary systems POSITION OF THE PROBLEM

Want to model initial data of inspiralling binary systems of compact objects \Rightarrow must be in some quasi-equilibrium state:

- standing waves, or
- no gravitational radiation

use of conformally flat condition (see lectures by Font and Campanelli): the 3-metric is conformally flat (spatial gauge is then fixed) ⇒set of five coupled elliptic (Poisson-like) non-linear equations (two scalar ones and a vector one) From Gourgoulhon et al. (2001)

Several choices for the coordinates:

- Cartesian (compactification?),
- two spherical grids, centered on each object (cost of interpolation?),
- bispherical coordinates (implementation?).

Binary systems NEUTRON STAR INITIAL DATA

- For neutron stars, one often considers that the viscosity is too small to synchronize the binary,
- the hydro flow can be considered as irrotational⇒solution of an additional Poisson-like equation for the potential.

- use of two spherical grids, adapted to the surface of each star,
- most of time spent in the interpolation between grids
- able to treat incompressible fluids, as well as strange quark matter (pressure jump at the surface).

Lapse function $(z=0)$

From Granclément (2006)

Other grid setting:

- only Cartesian grids and shells (no $r = 0$ coordinate singularity),
- overlapping domain matching.

- Irrotational hydro flow and a grid adapted to the surface of the star,
- the black hole is modeled through the presence of an isolated horizon, which is set to be a sphere

From Foucart et al. (2008)

Binary systems BLACK HOLE INITIAL DATA

Several "groups" have performed computations of binary-black-hole initial data, using spectral methods:

- \bullet the Meudon group (e.g. Gourgoulhon et al. 2002),
- \bullet the Caltech / Cornell group (e.g. Lovelace et al. 2008),
- \bullet M. Ansorg (e.g. Ansorg 2005).

Binary black hole evolution

Only the Caltech/Cornell group is able to perform binary black hole evolution with spectral methods (see lectures by

Campanelli and Laguna).

From Boyle et al. (2007)

- use free evolution, generalized harmonic gauge and excision,
- multi-domain spectral method, with penalty technique to match the domains,
- dual-frame approach and horizon-tracking grid,
- explicit, high-order Runge-Kutta scheme, spherical harmonics and Chebyshev representation.
- \Rightarrow 15 orbits and merger, up to $\geq 4000M$.

Core-collapse Combined code spectral/Godunov

Spectral methods may not be used for the hydrodynamics of core-collapse simulations . . . High-Resolution Shock-Capturing methods are very efficient (see lecture by J.A. Font).

- Nevertheless, the gravitational field is never discontinuous (no coordinate shocks),
- Although not spectrally convergent, the spectral representation of gravitational field is convergent.
- Define a domain containing the shock, with more points.

⇒"Mariage des Maillages"/CoCoNuT project (also lecture by Font):

- use high-resolution shock-capturing methods for the hydro system,
- use spectral methods for the Einstein equations.

Cordero-Carrión et al. (2008), in preparation

Core-collapse FILTERING

One the main limitations for the use of spectral methods is the Gibbs phenomenon. \Rightarrow possibility to use filters: e.g.

$$
c_n \mapsto c_n \times e^{-\alpha \left(\frac{n}{N}\right)^{2p}}
$$

⇒spectral series converging with order p ⇒quite useful for discontinuous sources in core-collapse simulations.

Summary

SUMMARY

servatoire

- Spectral method can yield rapid convergence in the representation of smooth functions, the computation of their derivatives and for the solution of PDEs/ODEs.
- They can nicely handle coordinate singularities and $\frac{0}{2}$ $\frac{1}{\sqrt{2}}$ -like" terms.
- They are limited by the Gibbs phenomenon, which makes them not well-suited for some simulations (shocks,. . .).
- They can however be combined with other techniques $(Godunov, SPH, ...)$ to solve for the gravitational field equations.
- Possible future developments: spectral methods for time representation, spectral elements, . . .

Some of the techniques/codes described here are available as parts of the publicly available numerical library LORENE:

<www.lorene.obspm.fr>

ON SPECTRAL METHODS...

- Boyd, J.B., Chebyshev and Fourier Spectral Methods, (Dover ā. 2001).
- ā. Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A., Spectral Methods: Fundamentals in Single Domains, (Springer Verlag 2006).
- F. Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, (Springer Verlag 2007).
	- Gottlieb, D., and Orszag, S.A., Numerical Analysis of Spectral Methods: Theory and Applications, (Society for Industrial and Applied Mathematics 1977).
- 螶 Grandclément, Ph. and Novak, J., Spectral Methods for Numerical Relativity, submitted to Living Rev. Relativity <http://arXiv.org/abs/0706.2286>
- 螶 Hesthaven, J.S., Gottlieb, S., and Gottlieb, D., Spectral Methods for Time-Dependent Problems, (Cambridge University Press_{robservatore} 2007).Laboratoire Univers et Théo

References I

LUTH

Ansorg, M., Kleinwächter, A. and Meinel, R., *Highly accurate* calculation of rotating neutron stars, Astron. Astrophys. 381 L49 (2002).

晶

譶

- Ansorg, M., Brügmann, B. and Tichy, W., Single-domain spectral method for black hole puncture data, Phys. Rev. D 70 064011 (2004).
- 螶 Ansorg, M., Double-domain spectral method for black hole excision data, Phys. Rev. D **72** 024018 (2005).
- 晶 Bocquet, M., Bonazzola, S., Gourgoulhon, E. and Novak, J., Rotating neutron star models with a magnetic field, Astron. Astrophys. **301** 757 (1995).
- ā. Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., Numerical approach for high precision 3D relativistic star models, Phys. Rev. D 58 104020 (1998).
	- Boyle, M., Brown, D. A., Kidder, L. E., Mroué, A. H., Pfeiffer, H. P., Scheel, M. A., Cook, G. B. and Teukolsky, S. A., *High-accuracy* comparison of numerical relativity simulations with post-Newtonian servatoire expansions, Phys. Rev. D 76 124038 (2007).

REFERENCES II

aboratoire Heivers et The

- Foucart, F., Kidder, L.E., Pfeiffer, H.P. and Teukolsky, S.A., Initial data for black hole-neutron star binaries: a flexible, high-accuracy spectral method, arXiv:0804.3787.
- Gourgoulhon, E., Grandclément, Ph., Taniguchi, K., Marck, J.-A. and Bonazzola, S., Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity: Method and tests, Phys. Rev. D 63 064029 (2001).
- Gourgoulhon, E., Grandclément, Ph. and Bonazzola, S., Binary black Ēπ holes in circular orbits. I. A global spacetime approach, Phys. Rev. D 65 044020 (2002).
- 譶

譶

- Grandclément, Ph., Accurate and realistic initial data for black hole neutron star binaries, Phys. Rev. D 74 124002 (2006).
- 譶 Hennig, J. and Ansorg, M., A Fully Pseudospectral Scheme for Solving Singular Hyperbolic Equations, to appear in J. Hyperbolic Eq., $arXiv:08011455$
-
- Lovelace, G., Owen, R., Pfeiffer, H.P. and Chu, T., *Binary-black-hole* initial data with nearly-extremal spins, $arXiv:08054192$. bservatoire