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Linear Wave Equation of the form:
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In General Relativity propagations are usually governed by and

wave equations...
—> source term o.

Looking for a and stable numerical tool to solve the linear wave equation
on a grid.

= absorbing boundary conditions (generalization of Sommerfeld asymptotic
radiation condition).
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Spatial derivatives are estimated using Spectral Methods, whereas time ones are
computed by Finite-Difference schemes

Spectral methods in time have not given good results (except for periodic

problems)

Wave equation is decomposed on the basis of Y! (6, )

= implicit, second-order time integration is equivalent to an ODE in r:
dt* J+1 J J—1 dt* 4 2 _J
Id— 7A ¢’ (r) =2¢7 (r) — @7 T (r) + 7Agb (r) + dt“c” (7).

which is solved by inverting the matrix of the I.h.s. operator (acting on spectral
Chebyshev coefficients).

This is done in each , @ matching being performed so that the solution
(and its derivative /r) is continuous and verifies Boundary Conditions.
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Computational domains

Bouday Coditias




/ There is no exact BC at a finite distance for outgoing waves

We can:

e either change the formulation of Einstein Equations (CCM, hyperboloidal

formulation, ...)

e or use some “approximate” BC (asymptotic expansion)

Defining
0 0
L=—+—
ot i or’
and
1 2m — 1
Bi=L+>,  Bp= <L+ i )Bm_l,
r r
we Impose
By¢|,._p =0.
This is a asymptotic expansion: B,,¢» = 0 means all modes up to

\l: m — 1 are let out.
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So we have tried: B3z¢ = 0, which can be explicited:

Gravitational waves are at least quadrupolar

9° 9> 1 92 9> 1 0 1 H?
(% Taear TVrae e T B T B e
o> 1 92 1 0 1
— -2 4 18— = — — 0.
or3 +9r or? i 8r2 or +6r3) ¢ —R 0

Using the fact that O¢ = 0, one gets:

0 o 1

r=R

spherical harmonics (A,,.Y, = —I(l+ 1)Y,™).
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This being very easily integrated when decomposed on
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/_ Comparison with analytical Solution
Homogeneous BC @(r=R) =0
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Homogeneous BC @(r=R)=0
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Comparison between Sommerfeld and enhanced BCs
Test on 1I=2 mode
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/_ Comparison between Sommerfeld and enhanced BCs

Test on a3D case
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Outlook
implement and test higher order (B5 — &3,...),
develop BCs: e.g. post-Minkowskian approach,
compare with characteristic-Cauchy matching,

try spectral decomposition in time!
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