A FULLY-CONSTRAINED FORMULATION OF
EINSTEIN EQUATIONS: SETUP AND
NUMERICAL IMPLEMENTATION

Jéréme NOVak (Jerome.Novak@obspm.fr)

Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris-Diderot

based on collaboration with |
S. Bonazzola, I. Cordero-Carrién, J.-L. Cornou, E. Gourgoulhon,
J.L. Jaramillo and N. Vasset.

GReCO seminar, Institut d’Astrophysique de Paris,
February, 15* 2010

I’.@vﬁo}re LUTH


http://www.luth.obspm.fr

PLAN

@ INTRODUCTION
@ Constraints Issues in 3-+1 Formalism

© DESCRIPTION OF THE FORMULATION AND STRATEGY
@ Covariant 3+1 Conformal Decomposition
o Einstein Equations and Integration Strategy
@ Boundary Conditions and Black Holes

@ NUMERICAL METHODS
e Multidomain Spectral Methods with Spherical Coordinates
@ Solutions of Poisson and Wave Equations
@ Spherical Coordinates and Tensor Components

@ METHODS FOR DIVERGENCE-FREE EVOLUTIONS
@ Pure-spin Spherical Harmonics
o New System for Time Evolution
@ Method for Tensors ro@wwh .



3+1 FORMALISM

Decomposition of spacetime and of Einstein equations

EVOLUTION EQUATIONS:

—D;D;N + NR;; — 2NK;, K% +
N[KKij 4+ 4n((S — E)vij — 25i5)]

. 1 43 . .
K = (67 +DW+DW>.

2N \ ot

v

R+ K?— K;;K" = 167E,
D;K"% — D'K = 8nJ".

Gy Aot da¥ = —N? dt* + ;5 (da* + B'dt) (dz? + B dt)
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FREE VS. CONSTRAINED
FORMULATIONS
As in electromagnetism, if the constraints are satisfied initially,
they remain so for a solution of the evolution equations.

FREE EVOLUTION

o start with initial data verifying the constraints,

@ solve only the 6 evolution equations,

@ recover a solution of all Einstein equations.

=-apparition of constraint violating modes from round-off
errors. Considered cures:

o Using of constraint damping terms and adapted gauges
(many groups).
@ Solving the constraints at every time-step (efficient elliptic
solver?). .
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Description of Formulation
and Strategy

Bonazzola et al. (2004)



USUAL CONFORMAL DECOMPOSITION

Standard definition of conformal 3-metric (e.g.
Baumgarte-Shapiro-Shibata-Nakamura — BSSN formalism)

DYNAMICAL DEGREES OF FREEDOM OF THE

GRAVITATIONAL FIELD:
York (1972) : they are carried by the conformal “metric”

Yij = 771/3 Yij with v := det

v

¥ij = tensor density of weight —2/3
not always easy to deal with tensor densities... not really
covariant!

v
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INTRODUCTION OF A FLAT METRIC
We introduce f;; (with Jii

7ij, and D; the associated covariant derivative.

= 0) as the asymptotic structure of

Fij 1= Uy or vy = U

7i; is invariant under any conformal transformation of 7;; and
verifies det y;; = f
=no more tensor densities: only tensors.

Finally,
:yij _ flJ + hii

I O vatoire  LUTH
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CONFORMAL FLATNESS CONDITION
Within conformal 3+1 formalism, one imposes that h”/ = 0:

Yij = Y4 fi J

with fi; the flat metric and ¢ (¢, 2!, 2%, 2%) the conformal factor.
First devised by Isenberg in 1978 as a waveless approximation
to GR, it has been widely used for generating initial data, ...

SET OF 5
6. Kt
A= —2myp~t E*+u )
167
TYS K K
A(Nv) = 2rNyp~t (E +28* + wng) :
7
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GENERALIZED DIRAC GAUGE

One can generalize the gauge introduced by Dirac (1959) to any
type of coordinates:

DIVERGENCE-FREE CONDITION ON ~%

D7 = D;jhY =0

where D; denotes the covariant derivative with respect to the
flat metric f;;.

Compare
o minimal distortion (Smarr & York 1978) : D; (957 /0t) =0
o pseudo-minimal distortion (Nakamura 1994) :
D7 (075/0t) =0
Notice: Dirac gauge <= BSSN connection functions vanish:
=0 e Lo



GENERALIZED DIRAC GAUGE
PROPERTIES

h is transverse

from the requirement det;; = 1, h' is asymptotically
traceless

3R,L-j is a simple Laplacian in terms of 1"

3R does not contain any second-order derivative of A/
with constant mean curvature (K = ¢) and spatial
harmonic coordinates (D; {(’y /f )1/ 2y ] = 0), Anderson &

Moncrief (2003) have shown that the Cauchy problem is

locally strongly well posed

the Conformal Flat Condition (CFC) verifies the Dirac

gauge =-possibility to easily use initial data for binaries

now available |' o@yggque .



EINSTEIN EQUATIONS

DIRAC GAUGE AND MAXIMAL SLICING (K = 0)

HAMILTONIAN CONSTRAINT

5

e - X v -
AV = —27EU° — ?AMA“ — DD + Sk

MOMENTUM CONSTRAINT

AB'+ 2D (D;) = 24YD;N 4+ 167NV J" —12NAYD;In ¥ — 2A%, N A

3 A
7hleleﬂ’L o ghlkaDl/Bl

TRACE OF DYNAMICAL EQUATIONS

AN = U4N [47r(E +8)+ AMA“} — hFDLD,N — 2D In W DFN
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EINSTEIN EQUATIONS

DIRAC GAUGE AND MAXIMAL SLICING (K = 0)

EVOLUTION EQUATIONS

92 i N2 OhY

6 components - 3 Dirac gauge conditions - (det 7 = 1)

DEGREES OF FREEDOM

92A

8t2 +AA =5y,
82

—5@ TAB=55

with A and B two scalar potentials representing the degrees of
freedom.

v
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INTEGRATION PROCEDURE

Everything is know on slice >, J
I
Evolution of A and B to next time-slice ¥4 (+ hydro) J
I
Deduce hiTjraceless(t + dt) from Dirac and trace-free conditions J
4
“Deduce the trace from det 7% = 1; thus h¥ (t + dt) J
and Y (t + dt).
I

Iterate on the system of elliptic equations for N, U?N and 3’ on EtJdtL”T”




OUTGOING BOUNDARY CONDITIONS

If no compactification is done, it is necessary to impose
boundary condition at a finite distance R;

Far enough from the source, one can consider the evolution
operator as being a flat Dalembert operator;

It is then possible to use outgoing-wave boundary
condition.

BUT

Usual outgoing-wave condition (Sommerfeld) is exact, up
to numerical scheme precision, only for £ = 0 mode.

=Use of enhanced condition (Novak & Bonazzola (2004) ):

e exact (up to discretization error) V/ < 2,

o for ¢ > 2, the reflected wave decreases as 1/ R* (versus
1/R? for Sommerfeld). f"@v@%fﬁre me



BOUNDARY CONDITIONS AT A BLACK
HOLE HORIZON

UNDER DEVELOPMENT...

@ Use of excision technique for black hole evolution =-at the
apparent horizon (Gourgoulhon & Jaramillo (2006));
e In this region, the evolution operator for 4/ must be taken
with all (linear) terms,
Then, in the Dirac gauge, for a dynamical horizon:
@ All characteristics are outgoing...
@ ... no boundary condition must be imposed
(Cordero-Carrién et al. (2008))
=O0K with the intuition of a spacelike boundary of the
computational domain.

In the stationary case, first numerical solution imposing only
from boundary conditions, in fully-constrained scheme by
Vasset et al. (2009). L




Numerical Methods

Grandclément & Novak (2009)



MULTIDOMAIN 3D DECOMPOSITION

shell 2

domain

r= ot
—1<€<1

= a‘;é"’Bz

—1<E<l

NUMERICAL LIBRARY LORENE

(http://www.lorene.obspm.fr)

DECOMPOSITION:

Chebyshev polynomials for &,

Fourier or Y™ for the

external compactified

angular part (6, ¢),

e symmetries and
regularity conditions of
the fields at the origin
and on the axis of
spherical coordinate
system

e compactified variable for
elliptic PDEs
=boundary conditions
are well imposed
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SOLUTIONS OF POISSON AND WAVE

EQUATIONS
The angular part of any field ¢ is decomposed on a set of
spherical harmonics Y, (0, ¢), which are eigenvectors of the
angular part of the Laplace operator

Aew}/zlll, — _é(g _"_ 1)}/[’"1,

02 29 eU+1) 5t2 [ 82 209  eU+1) ) )
<87 + ;E - o) ) Dem (1) = gpm (1) |:1 - 7 <37 + ;877 - 2 >j| (‘béjv-rtl = Ué’m,
Accuracy on the solution Accuracy on the solution
~ 10713 (exponential decay) ~ 10710 (time-differencing)

V(¢,m) the operator inversion <= inversion of a ~ 30 x 30

matrix

Non-linear parts are evaluated in the physical space and ro@wh Lo
contribute as sources to the equations.



SPHERICAL COORDINATES AND
COMPONENTS

CHOICE FOR f;; : SPHERICAL POLAR COORDINATES

e stars and black holes are of spheroidal shape
e compactification made easy (only )
@ use of spherical harmonics

e grid boundaries are smooth surfaces

USE OF SPHERICAL ORTHONORMAL TRIAD (TENSOR

COMPONENTS)

e Dirac gauge can easily be imposed

e asymptotically, it is easier to extract gravitational waves
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Methods for divergence-free
Evolutions

Novak et al. (2010)



OBJECTIVE:

SOLVE THE TENSOR WAVE EQUATION UNDER

DIVERGENCE-FREE CONSTRAINTS

2R
o
¥t>0,Vr <R, V;hU =0,
Vr < R, RY(0,7,6, ) = aéj(r, 8, ),
Oh'
ot |—g
Vi >0, Rt R,0,0) =87t 0,0).

Vt >0, Vr < R, ARY,

Vr <R, =& (r,0,0),

=First, consider the vector case (easier!).
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VECTOR SPHERICAL HARMONICS

FOLLOWING e.g. THORNE (1980)
A 3D vector field V' can be decomposed onto a set of vector
spherical harmonics

V= Run(r) Yo (0,0) + Etm(r) Y (0, ¢) + Bom(r)Yim (6, ),
lm

@ pure spin vector harmonics, Y2 & Yiur, (longitudinal)
@ orthonormal set of regular

. Ygﬁ x DYy, (transverse)
angular functions,

: . Yo,
@ not eigenfunctions of vector tm

angular Laplacian

V' = Z Ry (7)Y, (0, ), and we define two other potentials

x 1 X DYy, (transverse)

V@ _ @ B 1 87# 7](7'39780) = ZEZm(T)}/Em,
90 sinf oo’ tm

V‘P — 1 @ + % M(T7 07 SO) = Z Bﬁm (r)%t‘qire LUTH
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NEW EQUATIONS

FLAT WAVE OPERATOR JV' = S’ (DIVERGENCE-FREE
CASE)

———— + AV" Sl
8t2+v+r87'+7“2 ’
0?n 20V"

T Tt T
0%u
—ﬁ+AM = Hs-

DIVERGENCE-FREE CONDITION D,V = 0
ovr 2V 1

— + —A =0
or + r +r ol

gaggjvatoire  LUTH

... thus p does not depend on the divergence of V.



HELMHOLTZ DECOMPOSITION

Any vector field V' on R3, twice continuously differentiable and
with rapid enough decay at infinity can be uniquely written as

V =V 4+ D¢, with D,V = 0.

from D x V =D x V, one gets

pv = jup (twice: r- and 7- components) ,
d VT omg  my VT
v, mw_r oo v U—V——(,u—component).
or r r or r r
=the quantities
0 vr
A= 777 L Q . J
or r T

and p are not sensitive to the gradient part of a vector. I"@yatoire -



EVOLUTION EQUATIONS

ENSURING DIVERGENCE-FREE CONDITION...

From the definition of A and the expression of the wave
operator for a vector, one gets for the source (V' = S")

0 S”
Ag = Ons s

or r r’

and

OAy = Ag J

once A is known, one can reconstruct the vector V* from

o, n V'

T Y _ 9
or i rooor '
ovr 2Vt 1
3 — + —Ay,n = 0 divergence-free condition.
r r r

and p (since (= pg). |®vaton*e
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INTEGRATION PROCEDURE

@ from S’ compute Ag and pug,
@ solve the equation for p,
@ solve the equation for A,

@ solve the coupled system given by the divergence-free
condition and the definition of A to get V" and 7,

@ reconstruct V? from V", n and p.

I .@v‘at‘ofre
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TENSOR SPHERICAL HARMONICS

A 3D symmetric tensor field h can be decomposed onto a set of
tensor pure spin spherical harmonics and one can get 6 scalar
potentials to represent the tensor:

‘TLO‘ TTo ‘TEl ‘TBl ‘TE2‘TBQ‘
‘h”‘TZhee—i—h‘/"p‘ n ‘ 1 ‘W ‘ X ‘

with the following relations:

hr@ _ @_ 1 (lu

90  sinf oy’

. 1 dn  ou

M= Gweae T o
O—pEe PW 1 oW 1 PW 0 ( 1 ax)
2 962  tanf 00  sin?6 02 00 \sinf oy )’
o = DX LY 10X 0 (100

— 9%
902 tanf 00  sin®60 02 i 00

sin @'@v@e?



DIFFERENTIAL OPERATORS

DIVERGENCE-FREE CONDITION H' = D;h" =0
on™ 2n™ 1 T
H" = —Agon——=0
or * i P03 ’
an  3n W T
no— M Ay +2) = 4+ — =
a 8r+r+( 0@+)r 2r 0
o 3u
H = L1222 L (A, +2)X =0;
B +(Bo, +2) ’

“ELECTRIC TYPE’ POTENTIALS “MAGNETIC TYPE”

hrr? T7 ,,77 W

=two groups of coupled equations for the wave operator.
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DIVERGENCE-FREE PART OF A

SYMMETRIC TENSOR
As for the Helmholtz decomposition:

hi = i 4 DWI 4 DIV

... but no possibility to use the curl operator on a symmetric
tensor!

3 DEGREES OF FREEDOM FOR h WAVE EQUATION
ChY = S%

0X p
4= 50
191%% 1 n T
B = -~ gfeW -+
or 2h™ ow W
C =% ‘m@w(aﬁr




DIVERGENCE-FREE EVOLUTION

DEFINE ¢ BY / WAVE EQUATION Oh¥ = S¥

In the case where f;;h” =0 (A" = —1):
@ compute Ag and Bg,
@ solve wave equations for A and B (a wave operator shifted
in 0),
@ solve the system composed of
o definition of A

o definition of B

e H' =0
o H" =0 (Dirac gauge)
[} ]{77 = 0
on the one hand, and .
on the other hand, I‘O@wq;re LuTH

@ recover the tensor components.



SUMMARY - PERSPECTIVES

o A fully-constrained formalism of Einstein equations, aimed at
obtaining stable solutions in astrophysical scenarios (with
matter) has been presented, implemented and tested ;

o This formalism has been implemented in a numerical library
using spectral methods with spherical coordinates and
spherical tensor components;

@ A method, based on this library, has been devised to solve
the evolution equations and ensure the gauge at spectral
accuracy.

Future directions:

e Implementation of the newer version of the FCF (avoiding
uniqueness problems) and tests in the case of gravitational
wave collapse;
@ Use of the CFC approach together with excision methods in
the collapse code to simulate the formation of a black hole
(work by N. Vasset); iacie Lo
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