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3+1 formalism

Decomposition of spacetime and of Einstein equations

Evolution equations:

∂Kij

∂t
−LβKij =

−DiDjN +NRij − 2NKikK
k
j +

N [KKij + 4π((S − E)γij − 2Sij)]

Kij =
1

2N

(
∂γij

∂t
+Diβj +Djβi

)
.

Constraint equations:

R+K2 −KijK
ij = 16πE,

DjK
ij −DiK = 8πJ i.

gµν dx
µ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)
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Free vs. constrained
formulations

As in electromagnetism, if the constraints are satisfied initially,
they remain so for a solution of the evolution equations.

free evolution

start with initial data verifying the constraints,
solve only the 6 evolution equations,
recover a solution of all Einstein equations.

⇒apparition of constraint violating modes from round-off
errors. Considered cures:

Using of constraint damping terms and adapted gauges
(many groups).
Solving the constraints at every time-step (efficient elliptic
solver?).
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Description of Formulation
and Strategy

Bonazzola et al. (2004)



Usual conformal decomposition

Standard definition of conformal 3-metric (e.g.
Baumgarte-Shapiro-Shibata-Nakamura – BSSN formalism)

Dynamical degrees of freedom of the
gravitational field:

York (1972) : they are carried by the conformal “metric”

γ̂ij := γ−1/3 γij with γ := det γij

Problem

γ̂ij = tensor density of weight −2/3
not always easy to deal with tensor densities... not really
covariant!
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Introduction of a flat metric

We introduce fij (with
∂fij
∂t

= 0) as the asymptotic structure of
γij , and Di the associated covariant derivative.

Define:

γ̃ij := Ψ−4 γij or γij =: Ψ4 γ̃ij
with

Ψ :=
(
γ
f

)1/12

f := det fij

γ̃ij is invariant under any conformal transformation of γij and
verifies det γ̃ij = f
⇒no more tensor densities: only tensors.

Finally,
γ̃ij = f ij + hij

is the deviation of the 3-metric from conformal flatness.



Introduction of a flat metric

We introduce fij (with
∂fij
∂t

= 0) as the asymptotic structure of
γij , and Di the associated covariant derivative.

Define:

γ̃ij := Ψ−4 γij or γij =: Ψ4 γ̃ij
with

Ψ :=
(
γ
f

)1/12

f := det fij

γ̃ij is invariant under any conformal transformation of γij and
verifies det γ̃ij = f
⇒no more tensor densities: only tensors.

Finally,
γ̃ij = f ij + hij

is the deviation of the 3-metric from conformal flatness.



Introduction of a flat metric

We introduce fij (with
∂fij
∂t

= 0) as the asymptotic structure of
γij , and Di the associated covariant derivative.

Define:

γ̃ij := Ψ−4 γij or γij =: Ψ4 γ̃ij
with

Ψ :=
(
γ
f

)1/12

f := det fij

γ̃ij is invariant under any conformal transformation of γij and
verifies det γ̃ij = f
⇒no more tensor densities: only tensors.

Finally,
γ̃ij = f ij + hij

is the deviation of the 3-metric from conformal flatness.



Conformal flatness condition
Within conformal 3+1 formalism, one imposes that hij = 0:

γij = ψ4fij

with fij the flat metric and ψ(t, x1, x2, x3) the conformal factor.
First devised by Isenberg in 1978 as a waveless approximation
to GR, it has been widely used for generating initial data, . . .

set of 5 non-linear elliptic PDEs (K = 0)

∆ψ = − 2πψ−1

(
E∗ +

ψ6KijK
ij

16π

)
,

∆(Nψ) = 2πNψ−1

(
E∗ + 2S∗ +

7ψ6KijK
ij

16π

)
,

∆βi +
1
3
DiDjβj = 16πNψ−2(S∗)i + 2ψ10KijDj

N

ψ6
.
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Generalized Dirac gauge

One can generalize the gauge introduced by Dirac (1959) to any
type of coordinates:

divergence-free condition on γ̃ij

Dj γ̃ij = Djhij = 0

where Dj denotes the covariant derivative with respect to the
flat metric fij .

Compare
minimal distortion (Smarr & York 1978) : Dj

(
∂γ̃ij/∂t

)
= 0

pseudo-minimal distortion (Nakamura 1994) :
Dj (∂γ̃ij/∂t) = 0

Notice: Dirac gauge ⇐⇒ BSSN connection functions vanish:
Γ̃i = 0



Generalized Dirac gauge
properties

hij is transverse
from the requirement det γ̃ij = 1, hij is asymptotically
traceless
3Rij is a simple Laplacian in terms of hij
3R does not contain any second-order derivative of hij

with constant mean curvature (K = t) and spatial
harmonic coordinates (Dj

[
(γ/f)1/2 γij

]
= 0), Anderson &

Moncrief (2003) have shown that the Cauchy problem is
locally strongly well posed
the Conformal Flat Condition (CFC) verifies the Dirac
gauge ⇒possibility to easily use initial data for binaries
now available
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Einstein equations
Dirac gauge and maximal slicing (K = 0)

Hamiltonian constraint

∆Ψ = −2πEΨ5 −
Ψ5

8
ÃklA

kl − hklDkDlΨ +
Ψ

8
R̃

Momentum constraint

∆βi +
1

3
Di
`
Djβj

´
= 2AijDjN + 16πNΨ4Ji − 12NAijDj ln Ψ− 2∆i

klNA
kl

−hklDkDlβi −
1

3
hikDkDlβl

Trace of dynamical equations

∆N = Ψ4N
h
4π(E + S) + ÃklA

kl
i
− hklDkDlN − 2D̃k ln Ψ D̃kN
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Einstein equations
Dirac gauge and maximal slicing (K = 0)

Evolution equations

∂2hij

∂t2
− N2

Ψ4
∆hij − 2£β

∂hij

∂t
+ £β£βh

ij = Sij

6 components - 3 Dirac gauge conditions -
(
det γ̃ij = 1

)
2 degrees of freedom

−∂
2A

∂t2
+ ∆A = SA

−∂
2B̃

∂t2
+ ∆B̃ = SB̃

with A and B̃ two scalar potentials representing the degrees of
freedom.
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Integration procedure

Everything is know on slice Σt

⇓

Evolution of A and B̃ to next time-slice Σt+dt (+ hydro)

⇓

Deduce hijTraceless(t+ dt) from Dirac and trace-free conditions

⇓

Deduce the trace from det γ̃ij = 1; thus hij(t+ dt)
and γ̃ij(t+ dt).

⇓

Iterate on the system of elliptic equations for N,Ψ2N and βi on Σt+dt
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Outgoing boundary conditions

If no compactification is done, it is necessary to impose
boundary condition at a finite distance R;
Far enough from the source, one can consider the evolution
operator as being a flat Dalembert operator;
It is then possible to use outgoing-wave boundary
condition.

BUT

Usual outgoing-wave condition (Sommerfeld) is exact, up
to numerical scheme precision, only for ` = 0 mode.

⇒Use of enhanced condition (Novak & Bonazzola (2004) ):

exact (up to discretization error) ∀` ≤ 2,
for ` > 2, the reflected wave decreases as 1/R4 (versus
1/R2 for Sommerfeld).
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Boundary conditions at a black
hole horizon

Under development...

Use of excision technique for black hole evolution ⇒at the
apparent horizon (Gourgoulhon & Jaramillo (2006));
In this region, the evolution operator for hij must be taken
with all (linear) terms,

Then, in the Dirac gauge, for a dynamical horizon:
All characteristics are outgoing...
... no boundary condition must be imposed
(Cordero-Carrión et al. (2008))

⇒OK with the intuition of a spacelike boundary of the
computational domain.

In the stationary case, first numerical solution imposing only
from boundary conditions, in fully-constrained scheme by
Vasset et al. (2009).
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Numerical Methods
Grandclément & Novak (2009)



Multidomain 3D decomposition
numerical library Lorene

(http://www.lorene.obspm.fr)

Decomposition:

Chebyshev polynomials for ξ,
Fourier or Y m

` for the
angular part (θ, φ),

symmetries and
regularity conditions of
the fields at the origin
and on the axis of
spherical coordinate
system
compactified variable for
elliptic PDEs
⇒boundary conditions
are well imposed

Drawback: Gibbs phenomenon!



Solutions of Poisson and wave
equations

The angular part of any field φ is decomposed on a set of
spherical harmonics Y m

` (θ, ϕ), which are eigenvectors of the
angular part of the Laplace operator

∆θϕY
m
` = −`(`+ 1)Y m`

∆φ = σ

 
∂2

∂r2
+

2

r

∂

∂r
−
`(` + 1)

r2

!
φ`m(r) = σ`m(r)

Accuracy on the solution
∼ 10−13 (exponential decay)

�φ = σ

"
1−

δt2

2

 
∂2

∂r2
+

2

r

∂

∂r
−
`(` + 1)

r2

!#
φ

J+1
`m = σ

J
`m

Accuracy on the solution
∼ 10−10 (time-differencing)

∀(`,m) the operator inversion ⇐⇒ inversion of a ∼ 30× 30
matrix
Non-linear parts are evaluated in the physical space and
contribute as sources to the equations.
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Spherical coordinates and
components

Choice for fij : spherical polar coordinates

stars and black holes are of spheroidal shape
compactification made easy (only r)
use of spherical harmonics
grid boundaries are smooth surfaces

Use of spherical orthonormal triad (tensor
components)

Dirac gauge can easily be imposed
asymptotically, it is easier to extract gravitational waves
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Methods for divergence-free
Evolutions

Novak et al. (2010)



Objective:

solve the tensor wave equation under
divergence-free constraints

∀t ≥ 0, ∀r < R,
∂2hij

∂t2
= ∆hij ,

∀t ≥ 0, ∀r ≤ R, Djhij = 0,

∀r ≤ R, hij(0, r, θ, ϕ) = αij0 (r, θ, ϕ),

∀r ≤ R, ∂hij

∂t

∣∣∣∣
t=0

= γij0 (r, θ, ϕ),

∀t ≥ 0, hij(t, R, θ, ϕ) = βij0 (t, θ, ϕ).

⇒First, consider the vector case (easier!).



Vector spherical harmonics
Following e.g. Thorne (1980)

A 3D vector field V can be decomposed onto a set of vector
spherical harmonics

V =
∑
`,m

R`m(r)Y R
`m(θ, ϕ) +E`m(r)Y E

`m(θ, ϕ) +B`m(r)Y B
`m(θ, ϕ),

pure spin vector harmonics,
orthonormal set of regular
angular functions,
not eigenfunctions of vector
angular Laplacian

Y R
`m ∝ Y`mr, (longitudinal)

Y E
`m ∝ DY`m, (transverse)

Y B
`m ∝ r ×DY`m (transverse)

V r =
∑
`,m

R`m(r)Y`m(θ, ϕ), and we define two other potentials

V θ =
∂η

∂θ
− 1

sin θ
∂µ

∂ϕ
,

V ϕ =
1

sin θ
∂η

∂ϕ
+
∂µ

∂θ
;

η(r, θ, ϕ) =
∑
`,m

E`m(r)Y`m,

µ(r, θ, ϕ) =
∑
`,m

B`m(r)Y`m
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New equations

Flat wave operator �V i = Si (divergence-free
case)

−∂
2V r

∂t2
+ ∆V r +

2
r

∂V r

∂r
+

2V r

r2
= Sr,

−∂
2η

∂t2
+ ∆η +

2
r

∂V r

∂r
= ηS ,

−∂
2µ

∂t2
+ ∆µ = µS .

Divergence-free condition DiV i = 0

∂V r

∂r
+

2V r

r
+

1
r

∆θϕη = 0

... thus µ does not depend on the divergence of V .
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Helmholtz decomposition

Any vector field V on R3, twice continuously differentiable and
with rapid enough decay at infinity can be uniquely written as

V = Ṽ + Dφ, with DiṼ i = 0.

from D × V = D × Ṽ , one gets

µV = µṼ (twice: r- and η- components) ,

∂ηV
∂r

+
ηV
r
− V r

r
=

∂ηṼ
∂r

+
ηṼ
r
− Ṽ r

r
(µ- component) .

⇒the quantities

A =
∂η

∂r
+
η

r
− V r

r

and µ are not sensitive to the gradient part of a vector.
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V = Ṽ + Dφ, with DiṼ i = 0.
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Evolution equations
ensuring divergence-free condition...

From the definition of A and the expression of the wave
operator for a vector, one gets for the source (�V i = Si)

AS =
∂ηS
∂r

+
ηS
r
− Sr

r
,

and

�AV = AS

once A is known, one can reconstruct the vector V i from

∂η

∂r
+
η

r
− V r

r
= A,

∂V r

∂r
+

2V r

r
+

1
r

∆θϕη = 0 divergence-free condition.

and µ (since �µ = µS).
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Integration procedure
(vector case)

1 from Si compute AS and µS ,
2 advance in time µ, solving its wave equation,
3 advance in time A, solving its equation,
4 solve the coupled system given by the divergence-free

condition and the definition of A to get the new V r and η,
5 reconstruct V i at new times-step from V r, η and µ.
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Tensor spherical harmonics
A 3D symmetric tensor field h can be decomposed onto a set of
tensor pure spin spherical harmonics and one can get 6 scalar
potentials to represent the tensor:

T L0 T T0 TE1 TB1 TE2 TB2

hrr τ = hθθ + hϕϕ η µ W X

with the following relations:

hrθ =
∂η

∂θ
− 1

sin θ
∂µ

∂ϕ
,

hrϕ =
1

sin θ
∂η

∂ϕ
+
∂µ

∂θ
,

hθθ − hϕϕ

2
=

∂2W

∂θ2
− 1

tan θ
∂W

∂θ
− 1

sin2 θ

∂2W

∂ϕ2
− 2

∂

∂θ

(
1

sin θ
∂X

∂ϕ

)
,

hθϕ =
∂2X

∂θ2
− 1

tan θ
∂X

∂θ
− 1

sin2 θ

∂2X

∂ϕ2
+ 2

∂

∂θ

(
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sin θ
∂W
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Differential operators

Divergence-free condition H i = Djhij = 0

Hr =
∂hrr

∂r
+

2hrr

r
+

1
r

∆θϕη −
τ

r
= 0,

Hη =
∂η

∂r
+

3η
r

+ (∆θϕ + 2)
W

r
+

τ

2r
= 0,

Hµ =
∂µ

∂r
+

3µ
r

+ (∆θϕ + 2)X = 0;

“electric type” potentials

hrr, τ, η,W

“magnetic type”

µ,X

⇒two groups of coupled equations for the wave operator.



Divergence-free part of a
symmetric tensor

As for the Helmholtz decomposition:

hij = h̃ij +DiV j +DjV i

... but no possibility to use the curl operator on a symmetric
tensor!

3 degrees of freedom for h̃

A =
∂X

∂r
− µ

r
,

B =
∂W

∂r
− 1

2r
∆θϕW −

η

r
+

τ

4r
,

C =
∂τ

∂r
− 2hrr

r
− 2∆θϕ

(
∂W

∂r
+
W

r

)
.

Wave equation
�hij = Sij

�A = AS ,

�B +
C

2r2
= BS ,

�C − 2C
r2
−

8∆θϕB

r2
= CS .
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Divergence-free evolution

Define ` by `

B̃`m = 2B`m +
C`m

2(`+ 1)
,

C̃`m = 2B`m −
C`m
2`

;

Wave equation �hij = Sij

�B̃`m +
2`B̃`m
r2

= B̃`m
S ,

�C̃`m −
2(`+ 1)C̃`m

r2
= C̃`mS .

In the case where fijhij = 0 (hrr = −τ):
1 compute AS and B̃S ,
2 solve wave equations for A and B̃ (a wave operator shifted

in `),
3 solve the system composed of

definition of A

Hµ = 0 (Dirac gauge)

for (µ,X) on the one hand, and

definition of B̃

Hr = 0

Hη = 0

for (hrr, τ, η,W ) on the other hand,
4 recover the tensor components.
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Summary - Perspectives

A fully-constrained formalism of Einstein equations, aimed at
obtaining stable solutions in astrophysical scenarios (with
matter) has been presented, implemented and tested ;
This formalism has been implemented in the numerical
library lorene using spectral methods with spherical
coordinates and spherical tensor components;
A method, based on this library, has been devised to solve
the evolution equations and ensure the gauge at spectral
accuracy.

Future directions:
Implementation of the newer version of the FCF (avoiding
uniqueness problems) and tests in the case of gravitational
wave collapse;
Use of the CFC approach together with excision methods in
the collapse code to simulate the formation of a black hole
(work by N. Vasset);
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