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Choice of formulation of Einstein
equations

10 degrees of freedom: e.g. in 3+1 formalism N, βi, γij .
4 constraint equations + 6 evolution equations - 4 gauge conditions

Free Evolution

constraints are not solved
during the evolution;

they are solved initially
and supposed to be
evolved by the evolution
equations;

lapse and shift are
prescribed as gauge
degrees of freedom;

the 3-metric is advanced
in time by evolution
equations.

Constrained Evolution

the constraints are solved at
every time-step, giving the shift
and the determinant of γij ;

the lapse is obtained from the
slicing gauge choice through an
elliptic equation;

only 2 evolution equations are
solved (two polarizations of the
gravitational field);

the rest of γij is obtained
through the 3 remaining gauge
conditions and the determinant.
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Flat metric and Dirac gauge
Following Bonazzola et al. (2004)

Conformal 3+1 (a.k.a BSSN) formulation, but use of fij (with
∂fij

∂t
= 0) as the asymptotic structure of γij , and Di the associated

covariant derivative.

Conformal factor Ψ

γ̃ij := Ψ−4 γij with Ψ :=
(

γ
f

)1/12

, so det γ̃ij = f

Finally,
γ̃ij = f ij + hij

is the deviation of the 3-metric from conformal flatness.
Generalization the gauge introduced by Dirac (1959) to any type of
coordinates:

divergence-free condition on γ̃ij

Dj γ̃
ij = Djh

ij = 0

+ Maximal slicing (K = 0)
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Einstein equations
Dirac gauge and maximal slicing

Constraint Equations

∆Ψ = SHam,

∆βi +
1

3
Di

“
Djβ

j
”

= SMom.

Trace of dynamical equations

∆N = SK̇

Dynamical equations

∂2hij

∂t2
− N 2

Ψ4
∆hij − 2£β

∂hij

∂t
+ £β£βhij = Sij

Dyn

⇒overdetermined system
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Two algorithms to solve the tensor
wave equation

hij decomposed onto tensor spherical harmonics (Zerilli, 1970)
⇒definition of potentials hrr, η, µ,X,W, τ .

Deriving (following Bonazzola et al. 2004)

�hij = σij ⇒
{

�(r2hrr) = r2σrr

�µ = µ(σij)
advantage: the other potentials are easily deduced through the
gauge conditions deriving hrr and µ

drawback: many radial derivatives ⇒too much numerical noise

Integrating

hij is divergence-free ⇒only three scalar degrees of freedom A, B̃, h
easily expressed from hrr, η, µ,X,W, τ .

�hij = σij ⇒
{

�A = A(σij)

�̃B̃ = B̃(σij)
drawback: need to solve elliptic system from gauge conditions

advantage: much more robust and accurate
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Regularity and boundary conditions

Use of spherical grid and coordinates, with multi-domain spectral
methods.

hij is represented through 4 scalar and 2 pseudo-scalar potentials

standard regularity conditions on the z-axis taken care by
numerical decomposition on scalar spherical harmonics Y m

` (θ, ϕ)

standard regularity conditions at the origin f`,m(r) ∼ r`

approximatively fulfilled by even/odd Chebyshev decomposition

No compactification for hyperbolic equations

boundary conditions at finite distance on a sphere of radius R

perfectly absorbing for quadrupolar waves on Minkowski
space-time (Novak & Bonazzola (2004) )

neglecting curvature effects (unlike Buchman & Sarbach 2007)

reflection coefficient decays as δt2 for ` ≤ 2 and R−4 for the
others.
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Constraints and ADM mass

Initial data: Gaussian profile with ` = m = 2 component for r2hrr

and µ(hij) + conformal-thin sandwich approach (York 1999)
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Evolution equations

Only two evolution equations are solved (out of six):
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Summary and outlook

New algorithm to solve the Einstein evolution
equations, ensuring the gauge (divergence-free)
condition, for any amplitude of the deviation from
conformal-flatness,
Solve only for two scalar wave equations,
Designed for spectral methods in spherical coordinates
(gain in CPU).

Next:
Improve outgoing-wave boundary conditions,
Implement the full linear operator (with the “shift
advection”),
Evolution of one black hole through the
implementation of dynamical horizon boundary
conditions,
evolution with matter (“Mariage des Maillages”).
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