Relativité numérique en astrophysique

Jérôme Novak

Département d'Astrophysique Relativiste et de Cosmologie CNRS / Observatoire de Paris Meudon, France

En collaboration avec

Silvano Bonazzola, Eric Gourgoulhon, Philippe Grandclément

- 1. Équations d'Einstein en formalisme 3+1 (les équations à résoudre)
- 2. Méthodes numériques (méthodes spectrales à plusieurs domaines)
- 3. Modèles d'étoiles à neutrons

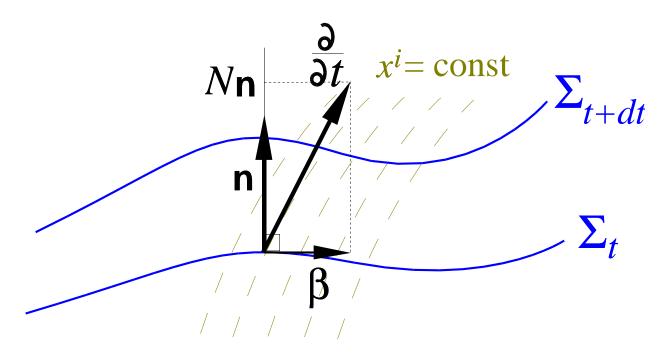
4. Binaires d'astres compacts en approximation quasi-stationnaire

Équations d'Einstein en formalisme 3+1

(les équations à résoudre)

Formalisme 3+1 en Relativité Générale

Feuilletage de l'espace-temps par une famille d'hypersurfaces du genre espace Σ_t .



 ${f n}$: unitaire et normal à Σ_t $({f n}=-N
abla t)$

N: fonction lapse, β : vecteur shift

$$\frac{\partial}{\partial t} = N\mathbf{n} + \boldsymbol{\beta}$$
 avec $\mathbf{n} \cdot \boldsymbol{\beta} = 0$

3-métrique γ induite par la 4-métrique ${\bf g}$ sur les hypersurfaces Σ_t :

$$\gamma = \mathsf{g} + \mathsf{n} \otimes \mathsf{n}$$

Composantes du tenseur de la 4-métrique exprimées en fonction de la fonction lapse, des composantes du 3-vecteur shift et de la 3-métrique :

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -(N^2 - \beta_i\beta^i) dt^2 + 2\beta_i dt dx^i + \gamma_{ij} dx^i dx^j$$

Tenseur de courbure extrinsèque K de l'hypersurface Σ_t

$$\mathbf{K} = -rac{1}{2}\pounds_{\mathbf{n}} \boldsymbol{\gamma}$$

(Dérivée de Lie de la 3-métrique le long du champ normal à Σ_t)

Équations d'Einstein dans le formalisme 3+1

- Contrainte hamiltonienne : $R + K^2 - K_{ij}K^{ij} = 16\pi E$

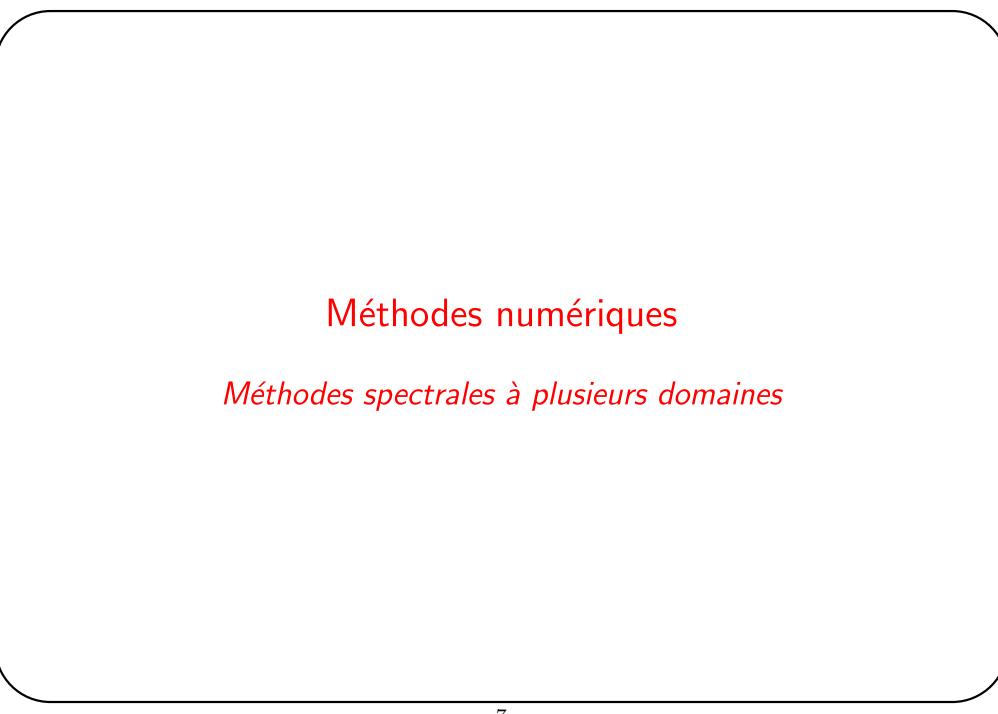
– Contrainte impulsionnelle : $D_j K^{ij} - D^i K = 8\pi J^i$

Équations "dynamiques" :

$$\frac{\partial K_{ij}}{\partial t} - \pounds_{\beta} K_{ij} = N \left[R_{ij} - 2K_{ik} K_{j}^{k} + KK_{ij} + 4\pi \left((S - E) - 2S_{ij} \right) \right] - D_{i} D_{j} N ,$$

$$\frac{\partial \gamma_{ij}}{\partial t} - \pounds_{\beta} \gamma_{ij} = -2NK_{ij}$$

 $(R_{ij}$: Tenseur de Ricci de la 3-métrique γ , D_i : dérivée covariante associée à γ)



Méthodes spectrales et méthodes aux différences finies

Méthodes spectrales : représentation d'un champ physique u par une autre fonction Iu appartenant à un certain espace vectoriel de dimension finie \mathcal{H} .

Si $(\varphi_0, \ldots, \varphi_N)$ est une base orthonormée de \mathcal{H} , alors la projection de u sur \mathcal{H} est donnée par :

$$Pu = \sum_{n=0}^{N} \tilde{u}_n \varphi_n.$$

Les coefficients $(\tilde{u}_0, \dots, \tilde{u}_N)$ sont obtenus par le produit scalaire de u avec les fonctions de la base :

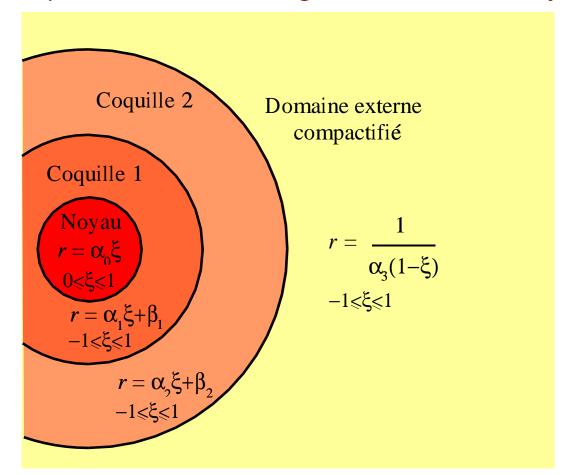
$$\tilde{u}_n = \langle u, \varphi_n \rangle.$$

Différences finies: représentation d'un champ physique u par un tableau fini de nombres: les valeurs (u_1, \ldots, u_n) prises par u aux points de la grille (x_1, \ldots, x_n) .

Cette différence — fonction/nombres — est la raison pour laquelle les méthodes spectrales sont d'habitude beaucoup plus précises que les méthodes aux différences finies.

Décomposition sur plusieurs domaines

Les méthodes spectrales à plusieurs domaines ont été décrites pour les problèmes 3D par : *Bonazzola, Gourgoulhon & Marck, Phys. Rev. D* 58, 104020 (1998).



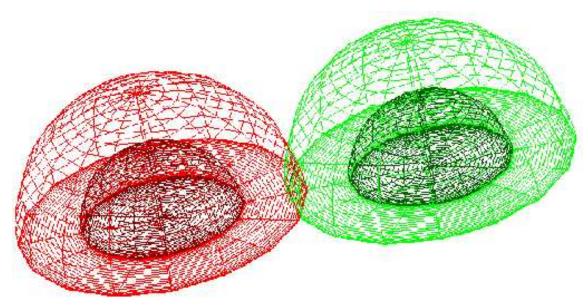
coordonnées physiques

$$(r, \theta, \varphi)$$

coordonnées numériques

$$(\xi, \theta, \varphi)$$

Ensemble de domaines pour décrire un système binaire



Possibilité d'adapter les grilles à

la surface des étoiles par le mapping suivant :

$$r = \alpha[\xi + A(\xi)F(\theta', \varphi') + B(\xi)G(\theta', \varphi')] + \beta, \quad \theta = \theta', \quad \varphi = \varphi'$$

Bases de fonctions pour la décomposition spectrale

$$u(\xi, \theta, \varphi) = \sum_{m=0}^{N_{\varphi}/2} \sum_{j=0}^{N_{\theta}-1} \sum_{i=0}^{N_{r}-1} \hat{u}_{mji} X_{i}(\xi) \Theta_{j}(\theta) e^{im\varphi}$$

La régularité sur l'axe $(\theta = 0)$ et à l'origine sont bien traitées en choisissant (on suppose l'invariance par symétrie/plan équatorial) :

- Décomposition en φ : Séries de Fourier
- Décomposition en θ : Polynômes trigonométriques ou fonctions de Legendre associées
 - pour m pair : $\Theta_j(\theta) = \cos(2j\theta)$ ou $\Theta_j(\theta) = P_{2j}^m(\cos\theta)$
 - pour m impair : $\Theta_j(\theta) = \sin((2j+1)\theta)$ ou $\Theta_j(\theta) = P_{2j+1}^m(\cos\theta)$
- Décomposition en ξ (radiale) : Polynômes de Tchebychev
 - dans le noyau : $X_i(\xi) = T_{2i}(\xi)$ pour m pair, $X_i(\xi) = T_{2i+1}(\xi)$ pour m impair
 - dans les cocquilles et le domaine externe compactifié $X_i(\xi) = T_i(\xi)$

Évaluation d'opérateurs linéaires

Toute opération linéaire sur u (par ex : une dérivée partielle), revient à multiplication matricielle dans l'espace des coefficients. Ainsi, si L est un opérateur linéaire, on a :

$$L \cdot I u = \sum_{n=0}^{N} \hat{u}_n \ L \cdot \varphi_n = \sum_{k=0}^{N} \left(\sum_{n=0}^{N} a_{kn} \hat{u}_n \right) \varphi_k ,$$

où les a_{kn} sont définis par :

$$L \cdot \varphi_n = \sum_{k=0}^{N} a_{kn} \varphi_k .$$

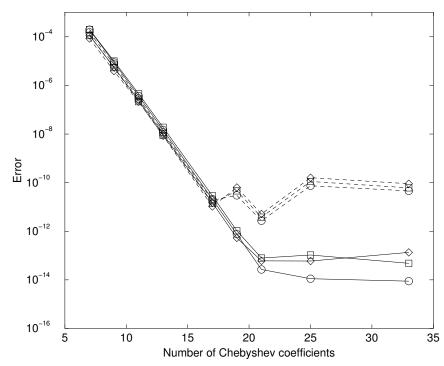
On peut ainsi résoudre les EDP elliptiques par une inversion de matrice.

Résolution d'équations elliptiques avec des sources non-compactes

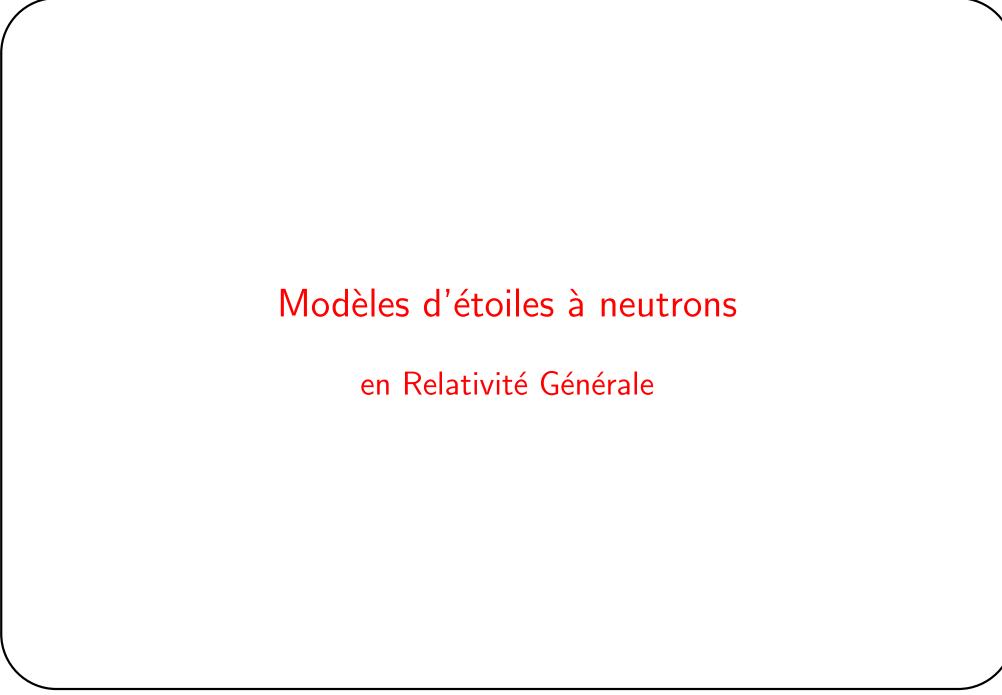
Feuilletage maximal : $\Delta N = S$

Équation dans la jauge de distorsion minimale pour le vecteur shift :

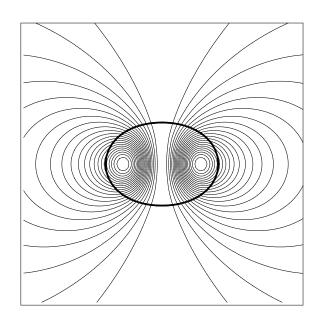
$$\Delta \boldsymbol{\beta} + \frac{1}{3} \nabla (\nabla \cdot \boldsymbol{\beta}) = \mathbf{S}$$

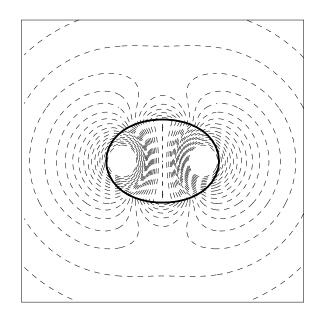


Erreur sur la composante z de la solution de l'équation du shift en distorsion minimale, avec une source non-compacte



Champ magnétique dans les étoiles à neutrons





Équations d'Einstein-Maxwell couplées, dans l'hypothèse de stationarité et de symétrie axiale.

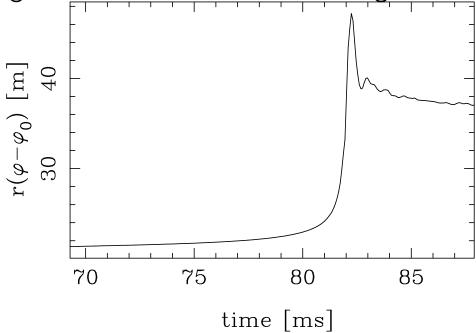
⇒Déformation induite par le champ magnétique sur les étoiles à neutrons en rotation rapide.

Bocquet, Bonazzola, Gourgoulhon & Novak Astron. Astrophys. (1995).

Étoiles à neutrons en théorie tenseur-scalaire de la gravitation

"Sur-théorie" de la Relativité Générale (Cf. présentation de G. Esposito-Farèse).

⇒prédiction d'ondes gravitationnelles *scalaires* interagissant avec les détecteurs.



Formes et amplitudes des ondes provenant d'effondrements de supernov a ou (étoile à neutrons \rightarrow trou noir).

Étoiles à neutrons superfluides

Les étoiles à neutrons sont (en majorité) des objets froids et contiennent des neutrons superfluides + protons superconducteurs.

 \Rightarrow approche à deux fluides sur les modèles numériques + équation d'état spéciale.

x [km]

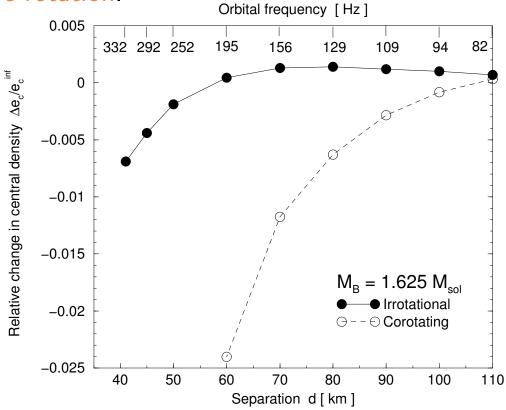
Fluid 1 enthalpy

En collaboration avec R.Prix, N.Anderson (U. de Southampton) et G.Comer (U. de St. Louis).

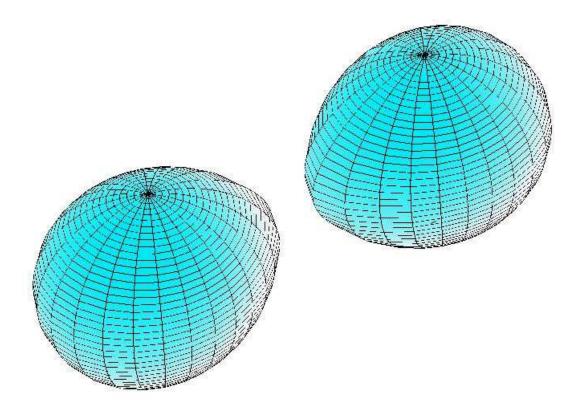
Binaires d'étoiles à neutrons

Approximation de symétrie hélicoïdale (\Rightarrow métrique spatiale conformément plate : $\gamma_{ij} = \Psi^4 f_{ij}$).

Hypothèse de contre-rotation.



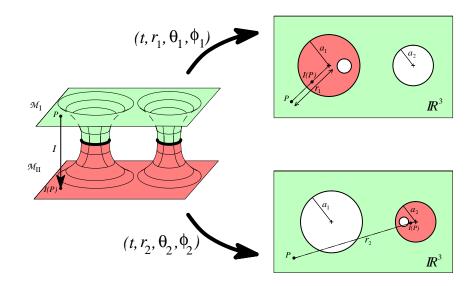
Binaires d'étoiles à neutrons



Grilles adaptatives pour les deux étoiles à neutrons.

Binaires de trous noirs

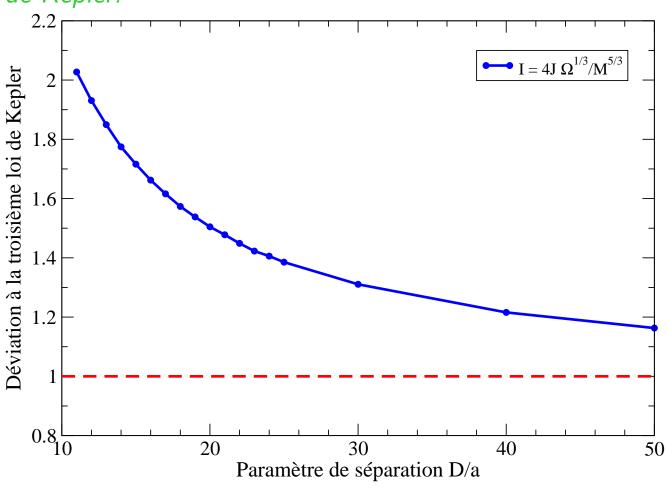
- Mêmes approximations que pour les binaires d'étoiles à neutrons.
- Hypothèse de co-rotation.
- Région centrale "excisée" et remplacée par une condition au contours à l'intérieur de (ou sur) l'horizon.



Premiers résultats :

Gourgoulhon, Grandclément & Bonazzola, gr-qc/0106015. Grandclément, Gourgoulhon & Bonazzola, gr-qc/0106016.

Test : vérification asymptotique (pour des trous noirs infiniment éloignés) de la troisième loi de Kepler.



Fonction lapse dans le plan orbital

