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RELATIVISTIC GRAVITY
In general relativity (1915), space-time is a
four-dimensional Lorentzian manifold, where gravitational
interaction is described by the metric g, .

EINSTEIN EQUATIONS
1

I8y = §Rg,“, = 8T,

They form a set of 10 second-order non-linear PDEs, with
very few (astro-)physically relevant exact solutions
(Schwarzschild, Oppenheimer-Snyder, Kerr, ... ).
=-approximate solutions:

e.g. linearizing around the flat (Minkowski) solution in
vacuum gy, = Ny + by
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GRAVITATIONAL WAVES
ASTROPHYSICAL SOURCES
Using the linearized Einstein equations:

e at first order h ~ Q (mass quadrupole momentum of

G E (£>2)
the source), or further from the source h ~ — .
c

,
e the total gravitational power of a source is
G
L~ =5’ M*R".
: : . . 2GM
..introducing the Schwarzschild radius Rg = and

. =
w=uv/r: R 6
T (Y
G R c
=non-spherical, relativistic compact objects:

@ binary neutron stars or black holes,

@ supernovae and neutron star oscillations. Gecie o



(GRAVITATIONAL WAVES

The effect of a wave on
two tests-masses is the
variation of their
distance Al/l ~ h,
measured by a LASER

beam.

DETECTORS

LIGO: USA, WASHINGTON

VIRGO: FRANCE/ITALY (

Arms of these Michelson-type interfe-
rometers are 3 km (VIRGO) and 4 km
(LIGO) long . ..almost perfect vacuum.
They are acquiring data since 2005,

with a very complex data analysis

=need for accurate wave patterns:
perturbative and numerical

approaches. iacie Lo



A BRIEF HISTORY OF
NUMERICAL RELATIVITY

1966 : May & White, Calculations of General-Relativistic
Collapse

1975 : Butterworth & Ipser, Rapidly rotating fluid bodies in
general relativity

1976 : Smarr, Cadez, DeWitt & Eppley, Collision of two black
holes

1985 : Stark & Piran, Gravitational-Wave Emission from
Rotating Gravitational Collapse

1993 : Abrahams & Evans, Vacuum axisymmetric gravitational
collapse

1999 : Shibata, Fully general relativistic simulation of
coalescing binary neutron stars

2005 : Pretorius, Fvolution of Binary Black-Hole Spacetimes
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Formulations of Einstein equations



FOUR-DIMENSIONAL APPROACH

Classic approach in analytic studies: harmonic coordinate
condition, the coordinates {2/} _, 5 verify

Oz = 0.

=-nice form of Einstein equations, with Ugag = Sag,
=existence and uniqueness proofs in some cases.
However, the gauge can be pathological (e;g. in presence of
matter): necessity of some generalization for numerical
implementation.
Ozt = H*,

with an arbitrary source. Generalized Harmonic gauge
Choice of H#* <= choice of gauge

e arbitrary function,

e evolution toward harmonic gauge 0,H, = —r(t)H,,,

e prescription from 3+1 formulations (see later).

first successful simulation of binary black hole evolution | f'@“”‘fre o




3-+1 FORMALISM

Decomposition of spacetime and of Einstein equations

8Kl'j
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EQUATIONS:
R+ K? - K;; K" = 167E,
D;K" — D'K = 8n.J".

G dat dz” = —N2dt? + ,; (do' + fidt) (da? + Far e



CONSTRAINED / FREE
FORMULATIONS

As in electromagnetism, if the constraints are satisfied
initially, they remain so for a solution of the evolution
equations.

FREE EVOLUTION

e start with initial data verifying the constraints,
@ solve only the 6 evolution equations,

@ recover a solution of all Einstein equations.

=-apparition of constraint violating modes from round-off
errors. Considered cures:
e Using of constraint damping terms and adapted gauges
(many groups).
@ Solving the constraints at every time-step D
(efficient elliptic solver?). ‘



FULLY-CONSTRAINED
FORMULATION IN DIRAC GAUGE

Proposed by Bonazzola, Gourgoulhon, Grandclément & JN
(2004): Define the conformal metric (carrying the
dynamical degrees of freedom)

iy g det ;. 1/12
Y7 = Wy with ¥ = ( —X
" W (det fzg) ’

choose the generalized Dirac gauge

Then, one solves 4 constraint equations + 4 gauge equations
(elliptic) at each time-step. Only 2 evolution equations..I
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FULLY-CONSTRAINED
FORMULATION

PROPERTIES OF THE HYPERBOLIC PART
The hyperbolic part is obtained combining the evolution
equations:

aKi]’
ot

ij
_EBKz] :Sij and K" = % (agt —f-) s
to obtain a wave-type equation for 4%,
This system of evolution equations has been studied by
Cordero-Carrién et al. (2008):
@ the choice of Dirac gauge implies that the system is
strongly hyperbolic
@ can write it as conservation laws
e no incoming characteristic in the case of black hole Qe o
excision technique



ELLIPTIC PART
UNIQUENESS ISSUE
From the 4 constraints and the choice of time-slicing
(gauge), an elliptic system of 5 non-linear equations can be
formed
e Elliptic part of Einstein equations, to be solved at
every time-step
e When setting 7% = f¥. the system reduces to the
Conformal-Flatness Condition (CFC).

0.151— -

Because of non-linear terms, the
elliptic system may not converge
=-the case appears for dynamical,
very compact matter and GW
configurations (before appearance N

.0 05 10 15 20

of the black hole). t (o won

0.10 -

M\ [artbitrary units]




A SOLUTION TO THE
UNIQUENESS ISSUE

Considering local uniqueness theorems for non-linear
elliptic PDEs, it is possible to address the problem:
=-introducing auxiliary variables, to solve directly for the
momentum constraints (Cordero-Carrién et al. (2009)

274 fundamental form is rescaled by
the conformal factor A% = WIOK4
and decomposed into transverse
and longitudinal parts =solving for
each part:

e longitudinal <= momentum
constraint,

3liuaias eroceeli] f\'\’\l\.uH.“.\‘\”\H\H\‘HHHH\‘HHHH\E
V520 30 =20 -10 0 ¢
t

e transverse <= zero (CFC) or -1,
. I‘.@v“at‘ojre LUTH
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SUMMARY OF EINSTEIN
EQUATIONS

CONSTRAINED SCHEME

CONSTRAINTS
oA" = Vkvk’?ij—i-
ot Al 10 g
o V,;AY = 8n¥s,
T oNUSAY 4 AU = —270'E
ot Al A,
with _\I,f7TZJ7
l]_

de(tf? ANU = 2aNO 4 ..

VJ JZO. )
with

lim 49 = f%, hm U =lim N=1.
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Spectral methods

for numerical relativity



SIMPLIFIED PICTURE
(SEE ALSO GRANDCLEMENT & JN 2009)
How to deal with functions on a computer?
=a computer can manage only integers
In order to represent a function ¢(z) (e.g. interpolate), one
can use:
e a finite set of its values {¢;},_, , on a grid {z;},_ -
e a finite set of its coefficients in a functional basis
o) = 3Ly ¢ Vi)
In order to manipulate a function (e.g. derive), each
approach leads to:
o finite differences schemes

¢/(xi) ~ P(Tiv1) — d(;)

Lit1 — g
@ spectral methods

N
(b/({,[j‘) ~ Z Cl\I/; ({E) I’.@vﬂat‘ojre LUTH
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CONVERGENCE OF FOURIER

SERIES
N é(x) = /1.5 + cos(z) + sin” x
$(x) ~ Y a;Wi(x) with Wy, = cos(kx), Vapyr = sin(kz)

N =18
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USE OF ORTHOGONAL POLYNOMIALS

The solutions (A;, u;)ien of a singular Sturm-Liouville
problem on the interval x € [—1,1]:

— (pu) + qu = \wu,
with p > 0,C!, p(£1) =0

e are orthogonal with respect to the measure w:
1
(s, ;) = / wi(w)uy (2)w(x)dz = 0 for m # n,
-1

e form a spectral basis such that, if f(x) is smooth (C*)

E ciui(w

converges faster than any power of N (usually as e V).
Gauss quadrature to compute the integrals giving the ¢;’s
Chebyshev, Legendre and, more generally any type of |'

O[Fvatoire  LuTH
Jacobi polynomial enters this category. @'



METHOD OF WEIGHTED RESIDUALS
General form of an ODE of unknown u(z):

YV € [a,b], Lu(z) = s(z), and Bu(x)|m:a}b =0,
The approximate solution is sought in the form
N
i=0
The {¥;},_, y are called trial functions: they belong to a
finite-dimension sub-space of some Hilbert space Hjq ).
@ is said to be a numerical solution if:
o Bu=0 for x = a,b,
e Ru= Lu— sis “small”.
Defining a set of test functions {&},_, y and a scalar

product on H,y, R is small iff:
Vi=0...N, (&, R)=0.

It is expected that limy_.o, @ = u, “true” solution of the ODE. ‘ |‘.@\{gt‘qire LUTH




VARIOUS NUMERICAL METHODS

TYPE OF TRIAL FUNCTIONS W

finite-differences methods for local, overlapping polynomials
of low order,

finite-elements methods for local, smooth functions, which
are non-zero only on a sub-domain of [a, b],

spectral methods for global smooth functions on [a, b].

TYPE OF TEST FUNCTIONS € FOR SPECTRAL METHODS

tau method: &(z) = ¥;(z), but some of the test conditions
are replaced by the boundary conditions.

collocation method (pseudospectral): &;(z) = 6(z — x;), at
collocation points. Some of the test conditions are replaced
by the boundary conditions.

Galerkin method: the test and trial functions are chosen
to fulfill the boundary conditions.
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INVERSION OF LINEAR ODES

Thanks to the well-known recurrence relations of Legendre
and Chebyshev polynomials, it is possible to express the

coefficients {b Yo Of
, with u(z) = Zai Bi(x) :

-S| g 2| 1)

If L =d/dz, a:>< and u(x) is represented by the vector
{a;},_y n- L can be approximated by a matrix.

N

Resolution of a linear ODE J

v

inversion of an (N + 1) x (N + 1) matrix |

With non-trivial ODE kernels, one must add the boundary
conditions to the matrix to make it invertible! y.@v“aw‘;re e



SOME SINGULAR OPERATORS
u(z)
X

u(z)

is a linear operator, inverse of u(x) — zu(z).

Its action on the coefficients {a;},_, , representing the
N-order approximation to a function u(z) can be computed
as the product by a regular matrix.=The computation in
the coefficient space of u(z)/x, on the interval [—1, 1]
always gives a finite result (both with Chebyshev and
Legendre polynomials).

=The actual operator which is thus computed is

u(z) — M

x
=Compute operators in spherical coordinates, with
coordinate singularities

* 20 1 |
e.g. A = 7 + —— + T_Aecp ‘I‘.@vﬂat‘?‘lre LUTH



TIME DISCRETIZATION

Formally, the representation (and manipulation) of f(t) is
the same as that of f(z).

=-in principle, one should be able to represent a function
u(x,t) and solve time-dependent PDEs only using spectral
methods...but this is not the way it is done! Two works:

e lerley et al. (1992): study of the Korteweg de Vries
and Burger equations, Fourier in space and Chebyshev
in time =-time-stepping restriction.

e Hennig and Ansorg (2008): study of non-linear (1+1)
wave equation, with conformal compactification in
Minkowski space-time. =-nice spectral convergence.

WHY?

@ poor a priori knowledge of the exact time interval,

@ too big matrices for full 3+1 operators (~ 30% x 30%),

o finite-differences time-stepping errors can be quite riure wn
small.



EXPLICIT / IMPLICIT SCHEMES

Let us look for the numerical solution of (L acts only on x):

Vt>0, Vael-1,1], aug’ D~ Lu(a, ),

with good boundary conditions. Then, with dt the
time-step: VJ € N, u’(z) = u(x, J x §t), it is possible to
discretize the PDE as

o v/ (x) = u’(x) + 6t Lu’(x): explicit time scheme
(forward Euler); easy to implement, fast but limited by
the CFL condition.

o v/ (x) — 6t Lu’T(z) = w’/(x): implicit time scheme
(backward Euler); one must solve an equation (ODE)
to get u’/*!, the matrix approximating it here is
I — 6t L. Allows longer time-steps but slower and Qs o
limited to second-order schemes. —



MULTI-DOMAIN APPROACH

Multi-domain technique : several touching, or overlapping,
domains (intervals), each one mapped on [—1,1].

e boundary between two domains can be the place of a
discontinuity =-recover spectral convergence,

@ one can set a domain with more coefficients
(collocation points) in a region where much resolution
is needed =fixed mesh refinement,

e 2D or 3D, allows to build a complex domain from
several simpler ones,

Domain 1 Domain 2
x,=1 x=1| %=1 x=1|
Iy=a | y=b)|
Y=Y,
Depending on the PDE, matching conditions are imposed

at y =yy <= boundary conditions in each domain.
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MAPPINGS AND MULTI-D

In two spatial dimensions, the usual
technique is to write a function as:

n
f o Q=[-1,1x[-1,1] =R Q | —
Ny Ny
flay) = D> ciPix)Py(y)
i=0 j=0

The domain ) is then mapped to the real physical domain,
trough some mapping I : (z,y) — (X,Y) € Q.
=When computing derivatives, the Jacobian of II is used.

COMPACTIFICATION

A very convenient mapping in spherical coordinates is
1
alx —1)’

to impose boundary condition for r — oo at x = 1.

ze[-1L1—r=

LUTH




EXAMPLE:

3D POISSON EQUATION, WITH NON-COMPACT SUPPORT
To solve Ao(r, 6, p) = s(r,0,¢), with s extending to infinity.

Compactified domain @ setup two domains in the radial
r= g]g]il ; 0<i<1 direction: one to deal with the
-1

singularity at r = 0, the other

Nucleus
with a compactified mapping.

r=o§,0<é<1

T_i@)

T, (&) for I even
T,.,,(€) for | odd

@ In each domain decompose the
angular part of both fields onto
spherical harmonics:

Lmax m={

B(E,0,0) = > dm(©Y™(0, ),

=0 m=—/

LPoom  2ddem L+ Dom
R

@ match between domains, with regularity conditions at
e D i
r = 0, and boundary conditions at r — oo. @V?"‘q’re rur

V(¢, m) solve the ODE:



Numerical simulation of black holes



PUNCTURE METHODS

.. 4t is not yet clear how and why they work. Hannam et al. (2007)

@ black holes are described in the initial data in
coordinates that do not reach the physical singularity,
= the coordinates follow a wormhole through another
copy of the asymptotically flat exterior spacetime,
o this is compactified so that infinity is represented by a
single point, called “puncture”.

1
Vij = \If4f~yij with W ~ —, use of ¢ =log W or y = &%,
r

BUT
During the evolution the time-slice loses contact with the
second asymptotically flat end, and finishes on a cylinder of
finite radius.

U(t=0)=0 (i) evolves into ¥(t > 0) = O (%) .

Use of the shift vector 3 to generate motion.
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EXCISION TECHNIQUES

APPARENT HORIZONS AS A BOUNDARY

@ Remove a neighborhood of the central singularity from
computational domain;

@ Replace it with boundary conditions on this newly obtained
boundary (usually, a sphere),

@ Until now, imposition of apparent horizon / isolated horizon
properties: zero expansion of outgoing light rays.

=New views on the concept of black hole,
following works by Hayward, Ashtekar and
Krishnan:

@ Quasi-local approach, making the
black hole a causal object;

@ For hydrodynamic, electromagnetic
and gravitational waves (Dirac
gauge): no incoming characteristics.




EXCISION TECHNIQUE

KERR SOLUTION FROM BOUNDARY CONDITIONS
Can one recover a Kerr black hole only from boundary
conditions and Einstein equations?
=Many computations with CFC, but there is no time
slicing in which (the spatial part of) Kerr solution can be
conformally flat (Garat & Price 2000).
Vasset, JN & Jaramillo (2009) recover full Kerr solution

e constant value (IV), zero expansion on the horizon (¢);
e rotation state for 5%, 3¢ and isolated horizon for 3;

e NO condition for %

+ asymptotic flatness and Einstein equations!

In particular, no symmetry requirement has been imposed
in the “bulk” (only on the horizon) =-illustration of the
rigidity theorem by Hawking & Ellis (1973). e Lo



SUMMARY - PERSPECTIVES

e Many new results in numerical relativity,

@ The Fully-constrained Formulation is needed for
long-term evolutions, particularly in the cases of
gravitational collapse,

@ This formulation is now well-studied and stable.

Many of the numerical features presented here are available
in the LORENE library: http://lorene.obspm.fr, publicly
available under GPL.

Future directions:

e Implementation of FCF and excision methods in the
collapse code to simulate the formation of a black hole;

e Use of excision techniques in the dynamical case

=most of groups are now heading toward more complex
physics: electromagnetic field, realistic equation of state for
matter, ... iacie Lo
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