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Motivations / Physical model

• Refine core-collapse GW simulations to have a precise catalog of waveforms;

• Bring GR into supernova core-collapse simulations.

Previous works:only in 2D: “approximate” (Dimmelmeier et al., 2001) or full

General Relativity (Shibata & Sekiguchi, 2004)

⇒need to study bar formation after the bounce (Imamaura et al., 2003).

• General Relativity (IWM approximation: conformally-flat 3-metric) for

gravitational field ⇒hydrodynamics in a curved space-time;

• Perfect fluid model with hybrid ideal gas equation of state: polytropic pressure

(stiffening as the density increases) and thermal pressure (after the bounce);

• Neutrinos and radiation transfers are not taken into account.

Initial model is a rotating polytrope with an effective adiabatic index γ . 4/3.

During the collapse, γ → γ2 & 2 at nuclear level (Van Riper, 1978).
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High-Resolution Shock-Capturing Methods

General relativistic hydrodynamics are writ-

ten as a flux-conservative first order hyper-

bolic system:
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with U = (ρW, ρhW 2vi, ρhW 2−P−D) the

conserved variables.

⇒use of analytic solution of (approximate)

Riemann problems.

Mart́ı & Müller Liv. Rev. Relat. 2003

⇒convergence to the physical solution

⇒sharp resolution of discontinuities
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Spectral methods

Multidomain spectral methods + spherical polar coordinates, implemented in the

numerical library Lorene (http://www.lorene.obspm.fr)
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Decomposition:

Chebyshev polynomials for ξ,

Fourier or Y m
l for the angular part

(θ, φ),
symmetries and regularity condi-

tions of the fields at the origin and

on the axis of spherical coordinate

system.

compactified variable for elliptic

PDEs ⇒boundary conditions are

well imposed.
Drawback: Gibbs phenomenon!
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Solving for the gravitational field
3+1 decomposition :ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt)
IWM approximation : γij = φ4fij
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⇒set of 5 coupled Poisson-like non-linear equations (2 scalar + 1 vector) solved

iteratively thanks to linear spectral scalar and vectorial Poisson solvers.

• ∀(l,m),
(

∂2

∂r2 + 2
r

∂
∂r − l(l+1)

r2

)
φlm(r) = σlm(r) in each domain (∼ 30× 30

matrix + combination with homogeneous solutions to match across domains;

• vector Poisson equation is transformed to Cartesian components, turning it to

4 scalar Poisson equations.
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Numerical setup

HRSC methods ⇒hydro evolution / spectral methods ⇒metric iteration
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• initial profiles→ HRSC evolution on

finite-differences grid;

• interpolation of new hydro fields to

spectral grid + filtering (smoothing

shocks);

• iteration of metric system on spec-

tral grid → spectral summation of

the metric to the finite-differences

grid.

⇒biggest sensitivity on domains setup (keep resolution and well-conditioned

spectral matrices);
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Summary and future work

Using modern high-level numerical methods (high-resolution shock-capturing for

relativistic hydro and multidomain spectral ones for Einstein equations) we have

constructed a 3D code, using spherical coordinates and solving the constraint

equations in an affordable way during evolution, for the simulation of stellar core

collapses and the prediction of the resulting gravitational radiation ... which can

be improved:

GW are extracted through the Newtonian quadrupole formula:

• plugging in the constrained evolution of Einstein equations (presented by

E.Gourgoulhon) with Dirac gauge, neglecting back-reaction of GW on hydro

evolution ...

• ... or going to full Einstein;

• incorporating more detailed physical model.

Details and references in astro-ph/0407174


