Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue

Jérôme Novak (Jerome.Novak@obspm.fr)

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

based on collaboration with I. Cordero-Carrión, P. Cerdá-Durán, H. Dimmelmeier, J.L. Jaramillo and É. Gourgoulhon. CORDERO-CARRIÓN et al. Phys. Rev. D 79, 024017 (2009)

 $12^{\rm th}$ Marcel Grossman meeting, Paris, July, $15^{\rm th}$ 2009

3+1 FORMALISM

Decomposition of spacetime and of Einstein equations

EVOLUTION EQUATIONS:

$$\begin{split} & \frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = \\ & -D_i D_j N + N R_{ij} - 2N K_{ik} K^k_{\ j} + \\ & N \left[K K_{ij} + 4\pi ((S-E)\gamma_{ij} - 2S_{ij}) \right] \\ & K^{ij} = \frac{1}{2N} \left(\frac{\partial \gamma^{ij}}{\partial t} + D^i \beta^j + D^j \beta^i \right). \end{split}$$

CONSTRAINT EQUATIONS:

 $R + K^{2} - K_{ij}K^{ij} = 16\pi E,$ $D_{j}K^{ij} - D^{i}K = 8\pi J^{i}.$

 $g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + \gamma_{ij} \left(dx^i + \beta^i dt \right) \left(dx^j + \beta^j dt \right)$

FREE VS. CONTRAINED FORMULATIONS

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations,
- recover a solution of all Einstein equations.

 \Rightarrow apparition of constraint violating modes from round-off errors. Considered cures:

- Using of constraint damping terms and adapted gauges (many groups).
- Solving the constraints at every time-step (efficient elliptic solver?).

Conformal flatness condition (CFC)and Fully constrained formulation (FCF)

CONFORMAL FLATNESS CONDITION

Within 3+1 formalism, one imposes that :

$$\gamma_{ij} = \psi^4 f_{ij}$$

with f_{ij} the flat metric and $\psi(t, x^1, x^2, x^3)$ the conformal factor. First devised by Isenberg in 1978 as a waveless approximation to GR, it has been widely used for generating initial data, ...

SET OF 5 NON-LINEAR ELLIPTIC PDES
$$(K = 0)$$

$$\Delta \psi = -2\pi \psi^{-1} \left(E^* + \frac{\psi^6 K_{ij} K^{ij}}{16\pi} \right),$$

$$\Delta (N\psi) = 2\pi N \psi^{-1} \left(E^* + 2S^* + \frac{7\psi^6 K_{ij} K^{ij}}{16\pi} \right),$$

$$\Delta \beta^i + \frac{1}{3} \nabla^i \nabla_j \beta^j = 16\pi N \psi^{-2} (S^*)^i + 2\psi^{10} K^{ij} \nabla_j \frac{N}{\psi^6}.$$

FULLY CONSTRAINED FORMULATION BONAZZOLA *et al.* (2004)

With no approximation: $\tilde{\gamma}^{ij} = \psi^4 \gamma^{ij}$ and the choice of generalized Dirac gauge (and maximal slicing)

$$\nabla_j \tilde{\gamma}^{ij} = \nabla_j h^{ij} = 0. \qquad (\tilde{\gamma}^{ij} = f^{ij} + h^{ij})$$

 \Rightarrow very similar equations to the CFC system + evolution equations for $\tilde{\gamma}^{ij}$:

$$\frac{\partial K^{ij}}{\partial t} - \mathcal{L}_{\beta} K^{ij} = N D_k D^k h^{ij} - D^i D^j N + \mathcal{S}^{ij},$$
$$\frac{\partial h^{ij}}{\partial t} - \mathcal{L}_{\beta} h^{ij} = 2N K^{ij}.$$

When combined, reduce to a wave-like (strongly hyperbolic) operator on h^{ij} , with no incoming characteristics from a black hole excision boundary (CORDERO-CARRIÓN *et al.* (2008)). Possatere - LUTH

FULLY CONSTRAINED FORMULATION

MOTIVATIONS FOR THE FCF:

- Easy to use CFC initial data for an evolution using the constrained formulation,
- Evolution of two scalar fields: the rest of the tensor h^{ij} can be reconstructed using the gauge conditions.
 ⇔ dynamical degrees of freedom of the gravitational field.
- Elliptic systems have good stability properties (what about uniqueness?).
- Constraints are verified!

+ the generalized Dirac gauge gives the property that h^{ij} is asymptotically transverse-traceless \Rightarrow straightforward extraction of gravitational waves ...

Non-uniqueness problem

Spherical collapse of matter

We consider the case of the collapse of an unstable relativistic star, governed by the equations for the hydrodynamics

$$\frac{1}{\sqrt{-g}} \left[\frac{\partial \sqrt{\gamma} \boldsymbol{U}}{\partial t} + \frac{\partial \sqrt{-g} \boldsymbol{F}^i}{\partial x^i} \right] = \boldsymbol{Q},$$

with $\boldsymbol{U} = (\rho W, \rho h W^2 v_i, \rho h W^2 - P - D).$

At every time-step, we solve the equations of the CFC system (elliptic)

 \Rightarrow exact in spherical symmetry! (isotropic gauge)

- During the collapse, when the star becomes very compact, the elliptic system would no longer converge, or give a wrong solution (wrong ADM mass).
- Even for equilibrium configurations, if the iteration is done only on the metric system, it may converge to a wrong solution.

Collapse of gravitational waves

Using FCF (full 3D Einstein equations), the same phenomenon is observed for the collapse of a gravitational wave packet.

- Initial data: vacuum spacetime with Gaussian gravitational wave packet,
- if the initial amplitude is sufficiently large, the waves collapse to a black hole.
- As in the fluid-CFC case, the elliptic system of the FCF suddenly starts to converge to a wrong solution.

 \Rightarrow effect on the ADM mass computed from ψ at $r = \infty_{\text{PDservatore} \vdash \text{LL}}$

OTHER STUDIES

- In the extended conformal thin sandwich approach for initial data, the system of PDEs is the same as in CFC.
- PFEIFFER & YORK (2005) have numerically oberved a parabolic branching in the solutions of this system for perturbation of Minkowski spacetime.
- Some analytical studies have been performed by BAUMGARTE *et al.* (2007), which have shown the genericity of the non-uniqueness behavior.

from Pfeiffer & York (2005)

A cure in the CFC case

ORIGIN OF THE PROBLEM

In the simplified non-linear scalar-field case, of unknown function \boldsymbol{u}

 $\Delta u = \alpha u^p + s.$

Local uniqueness of solutions can be proven using a maximum principle:

if α and p have the same sign, the solution is locally unique.

In the CFC system (or elliptic part of FCF), the case appears for the Hamiltonian constraint:

$$\Delta \psi = -2\pi \psi^5 E - \frac{1}{8} \psi^5 K_{ij} K^{ij};$$

Both terms (matter and gravitational field) on the r.h.s. have wrong signs.

APPROXIMATE CFC

vatoire

Let
$$L, V^i \mapsto (LV)^{ij} = \nabla^i V^j + \nabla^j V^i - \frac{2}{3} f^{ij} \nabla_k V^k$$
.
In CFC, $K^{ij} = \psi^{-4} \tilde{A}^{ij}$, with $\tilde{A}^{ij} = \frac{1}{2N} (L\beta)^{ij}$,
here $K^{ij} = \psi^{-10} \hat{A}^{ij}$, with $\hat{A}^{ij} = (LX)^{ij} + \hat{A}^{ij}_{\text{TT}}$.

Neglecting \hat{A}_{TT}^{ij} , we can solve in a hierarchical way:

- Momentum constraints \Rightarrow linear equation for X^i from the actually computed hydrodynamic quantity $S_i^* = \psi^6 S_j$,
- 2 Hamiltonian constraint $\Rightarrow \Delta \psi = -2\pi \psi^{-1} E^* \psi^{-7} \hat{A}^{ij} \hat{A}_{ij}/8$
- 0 linear equation for $N\psi$,
- **(**) linear equation for β , from the definitions of \tilde{A}^{ij} .

It can be shown that the error made neglecting \hat{A}_{TT}^{ij} falls within the error of CFC approximation.

APPLICATION

AXISYMMETRIC COLLAPSE TO A BLACK HOLE

Using the code CoCoNuT combining Godunov-type methods for the solution of hydrodynamic equations and spectral methods for the gravitational fields.

- Unstable rotating neutron star initial data, with polytropic equation of state,
- approximate CFC equations are solved every time-step.
- Collapse proceeds beyond the formation of an apparent horizon;
- Results compare well with those of BAOITTI *et al.* (2005) in GR, $t^{-t_{AH}}$ although in approximate CFC. Cordero-CARRIÓN *et* Cordero the test: migration of unstable neutron star toward the

stable branch.

New constrained formulation

NEW CONSTRAINED FORMULATION Evolution equations

In the general case, one cannot neglect the TT-part of \hat{A}^{ij} and one must therefore evolve it numerically.

sym. tensor	longitudinal part	transverse part
$\hat{A}^{ij} =$	$(LX)^{ij}$	$+\hat{A}^{ij}_{\mathrm{TT}}$
$h^{ij} =$	0 (gauge)	$+h^{ij}$

The evolution equations are written only for the transverse parts:

$$\frac{\partial \hat{A}_{\text{TT}}^{ij}}{\partial t} = \left[\mathcal{L}_{\beta} \hat{A}^{ij} + N \psi^2 \Delta h^{ij} + \mathcal{S}^{ij} \right]^{\text{TT}}, \\ \frac{\partial h^{ij}}{\partial t} = \left[\mathcal{L}_{\beta} h^{ij} + 2N \psi^{-6} \hat{A}^{ij} - (L\beta)^{ij} \right]^{\text{TT}}$$

NEW CONSTRAINED FORMULATION

If all metric and matter quantities are supposed known at a given time-step.

- **1** Advance hydrodynamic quantities to new time-step,
- **2** advance the TT-parts of \hat{A}^{ij} and h^{ij} ,
- **3** obtain the logitudinal part of \hat{A}^{ij} from the momentum constraint, solving a vector Poisson-like equation for X^i (the Δ^i_{jk} 's are obtained from h^{ij}):

$$\Delta X^i + \frac{1}{3} \nabla^i \nabla_j X^j = 8\pi (S^*)^i - \Delta^i_{jk} \hat{A}^{jk},$$

- (1) recover \hat{A}^{ij} and solve the Hamiltonian constraint to obtain ψ at new time-step,
- **(b)** solve for $N\psi$ and recover β^i .

SUMMARY - PERSPECTIVES

- We have presented, implemented and tested an approach to cure the uniqueness problem in the elliptic part of Einstein equations;
- This problem was appearing in the CFC approximation to GR and in the constrained formulation;
- Based on previous works (e.g. by SAIJO (2004)) in the CFC case, it has been generalized to the fully constrained case (full GR).
- \Rightarrow the accuracy has been checked: the additional approximation does not introduce any new errors.

The numerical codes are present in the LORENE library: http://lorene.obspm.fr, publicly available under GPL. Future directions:

- Implementation of the new FCF and tests in the case of gravitational wave collapse;
- Use of the CFC approach together with excision methods in the collapse code to simulate the formation of a black hole (see talk by N. Vasset);

