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3+1 formalism

Decomposition of spacetime and of Einstein equations

Evolution equations:

∂Kij

∂t
−LβKij =

−DiDjN +NRij − 2NKikK
k
j +

N [KKij + 4π((S − E)γij − 2Sij)]

Kij =
1

2N

(
∂γij

∂t
+Diβj +Djβi

)
.

Constraint equations:

R+K2 −KijK
ij = 16πE,

DjK
ij −DiK = 8πJ i.

gµν dx
µ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)



Free vs. contrained
formulations

As in electromagnetism, if the constraints are satisfied initially,
they remain so for a solution of the evolution equations.

free evolution

start with initial data verifying the constraints,
solve only the 6 evolution equations,
recover a solution of all Einstein equations.

⇒apparition of constraint violating modes from round-off
errors. Considered cures:

Using of constraint damping terms and adapted gauges
(many groups).
Solving the constraints at every time-step (efficient elliptic
solver?).



Conformal flatness condition
(CFC)

and
Fully constrained formulation

(FCF)



Conformal flatness condition
Within 3+1 formalism, one imposes that :

γij = ψ4fij

with fij the flat metric and ψ(t, x1, x2, x3) the conformal factor.
First devised by Isenberg in 1978 as a waveless approximation
to GR, it has been widely used for generating initial data, . . .

set of 5 non-linear elliptic PDEs (K = 0)

∆ψ = − 2πψ−1

(
E∗ +

ψ6KijK
ij

16π

)
,

∆(Nψ) = 2πNψ−1

(
E∗ + 2S∗ +

7ψ6KijK
ij

16π

)
,

∆βi +
1
3
∇i∇jβ

j = 16πNψ−2(S∗)i + 2ψ10Kij∇j
N

ψ6
.



Fully constrained formulation
bonazzola et al. (2004)

With no approximation: γ̃ij = ψ4γij and the choice of
generalized Dirac gauge (and maximal slicing)

∇j γ̃
ij = ∇jh

ij = 0. (γ̃ij = f ij + hij)

⇒very similar equations to the CFC system + evolution
equations for γ̃ij :

∂Kij

∂t
− LβK

ij = NDkD
khij −DiDjN + Sij ,

∂hij

∂t
− Lβh

ij = 2NKij .

When combined, reduce to a wave-like (strongly hyperbolic)
operator on hij , with no incoming characteristics from a black
hole excision boundary (cordero-carrión et al. (2008)).



Fully constrained formulation

Motivations for the FCF:

Easy to use CFC initial data for an evolution using the
constrained formulation,
Evolution of two scalar fields: the rest of the tensor hij can
be reconstructed using the gauge conditions.
⇐⇒ dynamical degrees of freedom of the gravitational
field.
Elliptic systems have good stability properties (what about
uniqueness?).
Constraints are verified!

+ the generalized Dirac gauge gives the property that hij is
asymptotically transverse-traceless
⇒straightforward extraction of gravitational waves . . .



Non-uniqueness problem



Spherical collapse of matter

We consider the case of the collapse of an unstable relativistic
star, governed by the equations for the hydrodynamics

1√−g
[
∂
√
γU

∂t
+
∂
√−gF i

∂xi

]
= Q,

with U = (ρW, ρhW 2vi, ρhW
2 − P −D).

At every time-step, we solve the equations of the CFC system
(elliptic)
⇒exact in spherical symmetry! (isotropic gauge)

During the collapse, when the star becomes very compact,
the elliptic system would no longer converge, or give a
wrong solution (wrong ADM mass).
Even for equilibrium configurations, if the iteration is done
only on the metric system, it may converge to a wrong
solution.



Collapse of gravitational waves
Using FCF (full 3D Einstein equations), the same phenomenon
is observed for the collapse of a gravitational wave packet.
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Initial data: vacuum
spacetime with Gaussian
gravitational wave packet,
if the initial amplitude is
sufficiently large, the waves
collapse to a black hole.
As in the fluid-CFC case, the
elliptic system of the FCF
suddenly starts to converge to
a wrong solution.

⇒effect on the ADM mass
computed from ψ at r = ∞.



Other studies

In the extended conformal thin
sandwich approach for initial
data, the system of PDEs is the
same as in CFC.
Pfeiffer & York (2005) have
numerically oberved a parabolic
branching in the solutions of this
system for perturbation of
Minkowski spacetime.
Some analytical studies have
been performed by Baumgarte
et al. (2007), which have shown
the genericity of the
non-uniqueness behavior.
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A cure in the CFC case



Origin of the problem
In the simplified non-linear scalar-field case, of unknown
function u

∆u = αup + s.

Local uniqueness of solutions can be proven using a maximum
principle:

if α and p have the same sign, the solution is locally unique.

In the CFC system (or elliptic part of FCF), the case appears
for the Hamiltonian constraint:

∆ψ = −2πψ5E − 1
8
ψ5KijK

ij ;

Both terms (matter and gravitational field) on the r.h.s.
have wrong signs.



Approximate CFC

Let L, V i 7→ (LV )ij = ∇iV j +∇jV i − 2
3
f ij∇kV

k.

In CFC, Kij = ψ−4Ãij , with Ãij =
1

2N
(Lβ)ij ,

here Kij = ψ−10Âij , with Âij = (LX)ij + Âij
TT.

Neglecting Âij
TT, we can solve in a hierarchical way:

1 Momentum constraints ⇒linear equation for Xi from the
actually computed hydrodynamic quantity S∗j = ψ6Sj ,

2 Hamiltonian constraint ⇒∆ψ = −2πψ−1E∗−ψ−7ÂijÂij/8,
3 linear equation for Nψ,
4 linear equation for β, from the definitions of Ãij .

It can be shown that the error made neglecting Âij
TT falls

within the error of CFC approximation.



Application
Axisymmetric collapse to a black hole

Using the code CoCoNuT combining Godunov-type methods
for the solution of hydrodynamic equations and spectral
methods for the gravitational fields.

Unstable rotating neutron star
initial data, with polytropic
equation of state,
approximate CFC equations are
solved every time-step.
Collapse proceeds beyond the
formation of an apparent horizon;
Results compare well with those
of Baoitti et al. (2005) in GR,
although in approximate CFC.
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Other test: migration of unstable neutron star toward the
stable branch.



New constrained formulation



New constrained formulation
Evolution equations

In the general case, one cannot neglect the TT-part of Âij and
one must therefore evolve it numerically.

sym. tensor longitudinal part transverse part
Âij = (LX)ij +Âij

TT

hij = 0 (gauge) +hij

The evolution equations are written only for the transverse
parts:

∂Âij
TT

∂t
=

[
LβÂ

ij +Nψ2∆hij + Sij
]TT

,

∂hij

∂t
=

[
Lβh

ij + 2Nψ−6Âij − (Lβ)ij
]TT

.



New constrained formulation

If all metric and matter quantities are supposed known at a
given time-step.

1 Advance hydrodynamic quantities to new time-step,
2 advance the TT-parts of Âij and hij ,
3 obtain the logitudinal part of Âij from the momentum

constraint, solving a vector Poisson-like equation for Xi

(the ∆i
jk’s are obtained from hij):

∆Xi +
1
3
∇i∇jX

j = 8π(S∗)i −∆i
jkÂ

jk,

4 recover Âij and solve the Hamiltonian constraint to obtain
ψ at new time-step,

5 solve for Nψ and recover βi.



Summary - Perspectives

We have presented, implemented and tested an approach to
cure the uniqueness problem in the elliptic part of Einstein
equations;
This problem was appearing in the CFC approximation to
GR and in the constrained formulation;
Based on previous works (e.g. by Saijo (2004)) in the CFC
case, it has been generalized to the fully constrained case
(full GR).

⇒ the accuracy has been checked: the additional approximation
does not introduce any new errors.

The numerical codes are present in the lorene library:
http://lorene.obspm.fr, publicly available under GPL.
Future directions:

Implementation of the new FCF and tests in the case of
gravitational wave collapse;
Use of the CFC approach together with excision methods in
the collapse code to simulate the formation of a black hole
(see talk by N. Vasset);

http://www.lorene.obspm.fr
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