

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evolut

Mothod

Results

Summary

Solution of the Gravitational Wave Tensor Equation Using Spectral Methods

Jérôme Novak

Jerome.Novak(at)obspm.fr

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris, France

based on collaboration with Silvano Bonazzola, Isabel Cordero & José-Luis Jaramillo

New Frontiers in Numerical Relativity, July 17th 2006

OUTLINE

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinate

Vector Evolution

Spherical Harmonics PDEs

Time Evolution

Tensor Evolutio Method Results

Summary

1 INTRODUCTION

- Maximally-constrained evolution scheme
- Evolution Equation
- Boundary Conditions

2 Numerical Methods

- Multidomain Spectral Methods with spherical coordinates
- Solutions of Poisson and wave equations
- Spherical coordinates and tensor components

8 DIVERGENCE-FREE EVOLUTION OF A VECTOR

- Pure-spin vector spherical harmonics
- Differential operators in terms of new potentials
- New system for time evolution
- DIVERGENCE-FREE EVOLUTION OF A SYMMETRIC TENSOR
 - Method
 - Results

3+1 Formalism

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evoluti Tensor Evolut

Results

Summary

Decomposition of spacetime and of Einstein equations

EVOLUTION EQUATIONS:	
$\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = -D_i D_j N + N R_{ij} - 2N K_{ik} K_j^k + N [K K_{ij} + 4\pi ((S - E)\gamma_{ij} - 2S_{ij})]$	
$K^{ij} = \frac{1}{2N} \left(\frac{\partial \gamma^{ij}}{\partial t} + D^i \beta^j + D^j \beta^i \right).$	

CONSTRAINT EQUATIONS:

 $R + K^{2} - K_{ij}K^{ij} = 16\pi E,$ $D_{j}K^{ij} - D^{i}K = 8\pi J^{i}.$

 $g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + \gamma_{ij} \left(dx^i + \beta^i dt \right) \left(dx^j + \beta^j dt \right)$

FLAT METRIC AND DIRAC GAUGE FOLLOWING BONAZZOLA et al. (2004)

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinate

Vector Evolution

Spherical Harmonics PDEs Time Evolutio Tensor Evoluti

Method Results

Summary

We introduce f_{ij} (with $\frac{\partial f_{ij}}{\partial t} = 0$) as the asymptotic structure of γ_{ij} , and \mathcal{D}_i the associated covariant derivative.

DEFINE:

$$\tilde{\gamma}_{ij} := \Psi^{-4} \gamma_{ij}$$
 or $\gamma_{ij} =: \Psi^4 \tilde{\gamma}_{ij}$ with $\Psi := \left(rac{\gamma}{f}
ight)^{1/12}$

 $\tilde{\gamma}_{ij}$ is invariant under any conformal transformation of γ_{ij} and verifies $\det\tilde{\gamma}_{ij}=f$ Finally,

$$\tilde{\gamma}^{ij} = f^{ij} + h^{ij}$$

is the deviation of the 3-metric from conformal flatness. Generalization the gauge introduced by Dirac (1959) to any type of coordinates:

DIVERGENCE-FREE CONDITION ON $\tilde{\gamma}^{ij}$

$$\mathcal{D}_j \tilde{\gamma}^{ij} = \mathcal{D}_j h^{ij} = 0$$

EINSTEIN EQUATIONS Dirac gauge and maximal slicing (K = 0)

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evoluti Tensor Evolut

Method Results

Summary

CONSTRAINT EQUATIONS

$$\Delta \Psi = S_{\text{Ham}},$$

 $\Delta \beta^i + \frac{1}{3} D^i \left(D_j \beta^j \right) = S_{\text{Mom}}$

TRACE OF DYNAMICAL EQUATIONS

$$\Delta N = \mathcal{S}_{\dot{K}}$$

EVOLUTION EQUATIONS

$$-\frac{\partial^2 h^{ij}}{\partial t^2} - \frac{N^2}{\Psi^4} \Delta h^{ij} - 2\pounds_\beta \frac{\partial h^{ij}}{\partial t} + \pounds_\beta \pounds_\beta h^{ij} = S^{ij}_{\rm Dyn}$$

EVOLUTION EQUATION POSITION OF THE PROBLEM

Tensor Wave Equation

Jérôme Novak

- Introduction
- Constrained evolution Evolution Equation Boundary
- Numerical Methods
- Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evolutio Tensor Evoluti

Method Results

Summary

- Wave-like equation for a symmetric tensor: 6 components - 3 Dirac gauge conditions - $(\det \tilde{\gamma}^{ij} = 1)$ $\Rightarrow 2$ degrees of freedom
- Work with $h = f_{ij}h^{ij} = 0$ (for the moment): asymptotically equivalent to $(\det \tilde{\gamma}^{ij} = 1)$ non-linear condition;
- the evolution operator appearing is not, in general, hyperbolic (complex eigenvalues); with the Dirac gauge, it is (result by I. Cordero).

Simplified numerical problem:

- solve a flat wave equation for a symmetric tensor $\Box h^{ij} = S^{ij}$,
- ensure the gauge condition $\mathcal{D}_j h^{ij} = 0$,
- has a given value of the trace.

OUTGOING BOUNDARY CONDITIONS

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evolutic Tensor Evolutic

Method Results

Summary

- If no compactification is done, it is necessary to impose boundary condition at a finite distance *R*;
- Far enough from the source, one can consider the evolution operator as being a flat Dalembert operator;
- It is then possible to use outgoing-wave boundary condition.

BUT

- Usual outgoing-wave condition (Sommerfeld) is exact, up to numerical scheme precision, only for $\ell = 0$ mode.
- \Rightarrow Use of enhanced condition (Novak & Bonazzola (2004)):
 - exact (up to discretization error) $\forall \ell \leq 2$,
 - for $\ell > 2$, the reflected wave decreases as $1/R^4$ (versus $1/R^2$ for Sommerfeld).

BOUNDARY CONDITIONS AT A BLACK HOLE HORIZON UNDER DEVELOPMENT...

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evoluti Tensor Evoluti

Method Results

Summary

- Use of excision technique for black hole evolution ⇒at the apparent horizon (See talk by E. Gourgoulhon);
- In this region, the evolution operator for h^{ij} must be taken with all (linear) terms,

Then, in the Dirac gauge, for a dynamical horizon:

- All characteristics are outgoing...
- ... no boundary condition must be imposed.

Study by I. Cordero

OK with the intuition of a spacelike boundary of the computational domain.

MULTIDOMAIN 3D DECOMPOSITION NUMERICAL LIBRARY LORENE (http://www.lorene.obspm.fr)

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods

Poisson & Dalembert Spherical coordinate

Vector Evolution

Spherical Harmonics PDEs Time Evolutic Tensor Evoluti

Method Results

Summary

DECOMPOSITION:

Chebyshev polynomials for ξ , Fourier or Y_{ℓ}^m for the angular part (θ, ϕ) ,

- symmetries and regularity conditions of the fields at the origin and on the axis of spherical coordinate system
- compactified variable for elliptic PDEs ⇒boundary conditions are well imposed

Drawback: Gibbs phenomenon!

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson &

Dalembert Spherical

Vector Evolution

Spherical Harmonics PDEs Time Evolutic Tensor Evolutic

Method Results

Summary

The angular part of any field ϕ is decomposed on a set of spherical harmonics $Y_{\ell}^{m}(\theta,\varphi)$, which are eigenvectors of the angular part of the Laplace operator

 $\Delta_{\theta\varphi}Y_{\ell}^{m} = -\ell(\ell+1)Y_{\ell}^{m}$

$\Delta \phi = \sigma$	$\Box \phi = \sigma$	
$\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{\ell(\ell+1)}{r^2}\right)\phi_{\ell m}(r) = \sigma_{\ell m}(r)$	$\left[1-\frac{\delta t^2}{2}\left(\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}-\frac{\ell(\ell+1)}{r^2}\right)\right]\phi_{\ell m}^{J+1}=\sigma_{\ell m}^J$	
Accuracy on the solution $\sim 10^{-13}$ (exponential decay)	Accuracy on the solution $\sim 10^{-10}$ (time-differencing)	

 $\forall (\ell, m)$ the operator inversion \iff inversion of a $\sim 30 \times 30$ matrix Non-linear parts are evaluated in the physical space and contribute as sources to the equations.

Spherical coordinates and components

Tensor Wave Equation

Jérôme Novak

Introduction

- Constrained evolution Evolution Equation Boundary Conditions
- Numerical Methods
- Spectral Methods Poisson & Dalembert

Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evoluti

- Tensor Evolutio Method Results
- Summary

Choice for f_{ij} : spherical polar coordinates

- stars and black holes are of spheroidal shape
- compactification made easy (only r)
- use of spherical harmonics
- grid boundaries are smooth surfaces

Use of spherical orthonormal triad (tensor components)

- Dirac gauge can easily be imposed
- asymptotically, it is easier to extract gravitational waves

VECTOR SPHERICAL HARMONICS Following e.g. Thorne (1980)

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolutior

Spherical Harmonics PDEs Time Evolutio Tensor Evoluti Method

Results

Summary

A 3D vector field V can be decomposed onto a set of vector spherical harmonics

 $\boldsymbol{V} = \sum_{\ell,m} R_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{R}(\theta,\varphi) + E_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{E}(\theta,\varphi) + B_{\ell m}(r) \boldsymbol{Y}_{\ell m}^{B}(\theta,\varphi),$

- pure spin vector harmonics,
- orthonormal set of regular angular functions,
- not eigenfunctions of vector angular Laplacian

 $egin{array}{rcl} Y^R_{\ell m} & \propto & Y_{\ell m} m{r}, \ (ext{longitudinal}) \ Y^E_{\ell m} & \propto & {\cal D} Y_{\ell m}, \ (ext{transverse}) \ Y^B_{\ell m} & \propto & m{r} imes {\cal D} Y_{\ell m} \ (ext{transverse}) \end{array}$

 $V^r = \sum R_{\ell m}(r) Y_{\ell m}(heta, arphi)$, and we define two other potentials

$$\begin{array}{lll} V^{\theta} & = & \displaystyle \frac{\partial \eta}{\partial \theta} - \displaystyle \frac{1}{\sin \theta} \displaystyle \frac{\partial \mu}{\partial \varphi}, \\ V^{\varphi} & = & \displaystyle \frac{1}{\sin \theta} \displaystyle \frac{\partial \eta}{\partial \varphi} + \displaystyle \frac{\partial \mu}{\partial \theta}; \end{array}$$

 $\eta(r,\theta,\varphi) = \sum_{\ell,m} E_{\ell m}(r) Y_{\ell m},$ $\mu(r,\theta,\varphi) = \sum_{\ell,m} B_{\ell m}(r) Y_{\ell m}$

DIFFERENTIAL OPERATORS IN TERMS OF NEW POTENTIALS

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics

Time Evolution

Tensor Evolution Method Results

Summary

Flat wave operator $\Box V^i = S^i$ (divergence-free case)

$$-\frac{\partial^2 V^r}{\partial t^2} + \Delta V^r + \frac{2}{r} \frac{\partial V^r}{\partial r} + \frac{2V^r}{r^2} = S^r,$$
$$-\frac{\partial^2 \eta}{\partial t^2} + \Delta \eta + \frac{2}{r} \frac{\partial V^r}{\partial r} = \eta_S,$$
$$-\frac{\partial^2 \mu}{\partial t^2} + \Delta \mu = \mu_S.$$

DIVERGENCE-FREE CONDITION $\mathcal{D}_i V^i = 0$

$$\frac{\partial V^r}{\partial r} + \frac{2V^r}{r} + \frac{1}{r} \Delta_{\theta \varphi} \eta = 0$$

... thus μ does not depend on the divergence of V.

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evolution Tensor Evolution Method

Results

Any vector field V on \mathbb{R}^3 , twice continuously differentiable and with rapid enough decay at infinity can be uniquely written as

 $oldsymbol{V} = ilde{oldsymbol{V}} + oldsymbol{\mathcal{D}} \phi, ext{ with } \mathcal{D}_i ilde{V}^i = 0.$

from $\mathcal{D} imes \mathbf{V} = \mathcal{D} imes ilde{\mathbf{V}}$, one gets

 $\begin{array}{rcl} \mu_V &=& \mu_{\tilde{V}} \mbox{ (twice: } r\mbox{- and } \eta\mbox{- components)} \ ,\\ \frac{\partial \eta_V}{\partial r} + \frac{\eta_V}{r} - \frac{V^r}{r} &=& \frac{\partial \eta_{\tilde{V}}}{\partial r} + \frac{\eta_{\tilde{V}}}{r} - \frac{\tilde{V}^r}{r} \mbox{ (} \mu\mbox{- component)} \ . \end{array}$

 \Rightarrow the quantities

$$A=\frac{\partial\eta}{\partial r}+\frac{\eta}{r}-\frac{V^r}{r}$$

and μ are not sensitive to the gradient part of a vector.

EVOLUTION EQUATIONS ENSURING DIVERGENCE-FREE CONDITION...

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evolution

Tensor Evolutio Method Results

Summary

From the definition of A and the expression of the wave operator for a vector, one gets for the source $(\Box V^i = S^i)$

$$A_S = \frac{\partial \eta_S}{\partial r} + \frac{\eta_S}{r} - \frac{S^r}{r},$$

and

 $\Box A_V = A_S$

once A is known, one can reconstruct the vector V^i from

$$\frac{\partial \eta}{\partial r} + \frac{\eta}{r} - \frac{V^r}{r} = A,$$

$$\frac{\partial V^r}{\partial r} + \frac{2V^r}{r} + \frac{1}{r} \Delta_{\theta\varphi} \eta = 0 \text{ divergence-free condition.}$$

and μ (since $\Box \mu = \mu_S$).

Tensor Wave Equation

Jérôme Novak

- Introduction
- Constrained evolution Evolution Equation Boundary Conditions
- Numerical Methods
- Spectral Methods Poisson & Dalembert Spherical coordinate
- Vector Evolution
- Spherical Harmonics PDEs **Time Evolution** Tensor Evolution
- Method Results
- Summary

- from S^i compute A_S and μ_S ,
- 2 solve the equation for μ ,
- \odot solve the equation for A,
- solve the coupled system given by the divergence-free condition and the definition of A to get V^r and η ,
- reconstruct V^i from V^r, η and μ .

TENSOR SPHERICAL HARMONICS

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolutic Spherical Harmonics

Time Evolution

Tensor Evolutio

Method Results

Summary

A 3D symmetric tensor field h can be decomposed onto a set of tensor pure spin spherical harmonics and one can get 6 scalar potentials to represent the tensor:

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline \boldsymbol{T}^{L_0} & \boldsymbol{T}^{T_0} & \boldsymbol{T}^{E_1} & \boldsymbol{T}^{B_1} & \boldsymbol{T}^{E_2} & \boldsymbol{T}^{B_2} \\ \hline h^{rr} & \tau = h^{\theta\theta} + h^{\varphi\varphi} & \eta & \mu & W & X \\ \hline \end{array}$$

with the following relations:

$$\begin{split} h^{r\theta} &= \frac{\partial \eta}{\partial \theta} - \frac{1}{\sin \theta} \frac{\partial \mu}{\partial \varphi}, \\ h^{r\varphi} &= \frac{1}{\sin \theta} \frac{\partial \eta}{\partial \varphi} + \frac{\partial \mu}{\partial \theta}, \\ \frac{h^{\theta\theta} - h^{\varphi\varphi}}{2} &= \frac{\partial^2 W}{\partial \theta^2} - \frac{1}{\tan \theta} \frac{\partial W}{\partial \theta} - \frac{1}{\sin^2 \theta} \frac{\partial^2 W}{\partial \varphi^2} - 2 \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial X}{\partial \varphi} \right), \\ h^{\theta\varphi} &= \frac{\partial^2 X}{\partial \theta^2} - \frac{1}{\tan \theta} \frac{\partial X}{\partial \theta} - \frac{1}{\sin^2 \theta} \frac{\partial^2 X}{\partial \varphi^2} + 2 \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial W}{\partial \varphi} \right). \end{split}$$

DIFFERENTIAL OPERATORS

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evoluti

Method Results

Summary

DIVERGENCE-FREE CONDITION $H^i = \mathcal{D}_j h^{ij} = 0$

$$H^{r} = \frac{\partial h^{rr}}{\partial r} + \frac{2h^{rr}}{r} + \frac{1}{r}\Delta_{\theta\varphi}\eta - \frac{\tau}{r} = 0,$$

$$H^{\eta} = \frac{\partial \eta}{\partial r} + \frac{3\eta}{r} + (\Delta_{\theta\varphi} + 2)\frac{W}{r} + \frac{\tau}{2r} = 0,$$

$$H^{\mu} = \frac{\partial \mu}{\partial r} + \frac{3\mu}{r} + (\Delta_{\theta\varphi} + 2)X = 0;$$

DIVERGENCE-FREE PART OF A SYMMETRIC TENSOR

Tensor Wave Equation

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolutior

Spherical Harmonics PDEs Time Evoluti Tensor Evoluti

Method Results

Summary

As for the Helmholtz decomposition:

$$h^{ij} = \tilde{h}^{ij} + \mathcal{D}^i V^j + \mathcal{D}^j V^i$$

.. but no possibility to use the curl operator on a symmetric tensor!

DIVERGENCE-FREE EVOLUTION

Tensor Wave Equation

Jérôme Novak

D

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods

Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evolutic

Tensor Evolut Method

Results

Summary

EFINE ℓ by ℓ	Wave equation $\Box h^{ij} = S^{ij}$
$egin{array}{rcl} ilde{B}_{\ell m} &=& 2B_{\ell m}+rac{C_{\ell m}}{2(\ell+1)}, \ ilde{C}_{\ell m} &=& 2B_{\ell m}-rac{C_{\ell m}}{2\ell}; \end{array}$	$\Box \tilde{B} + \frac{2\ell \tilde{B}}{r^2} = \tilde{B}_S,$ $\Box \tilde{C} - \frac{2(\ell+1)\tilde{C}}{r^2} = \tilde{C}_S.$

In the case where $f_{ij}h^{ij} = 0$ $(h^{rr} = -\tau)$:

• compute A_S and \ddot{B}_S ,

 ${f O}$ solve wave equations for A and ${ildsymbol{ ilde B}}$ (a wave operator shifted in ℓ),

- solve the system composed of
- definition of A
- $H^{\mu} = 0$ (Dirac gauge)
- on the one hand, and

- definition of \tilde{B}
- $H^r = 0$
- $H^{\eta} = 0$

on the other hand,

recover the tensor components.

NUMERICAL TESTS IS THE WAVE EQUATION SOLVED?

Jérôme Novak

Introduction

Constrained evolution Evolution Equation Boundary Conditions

Numerical Methods Spectral Methods Poisson & Dalembert Spherical coordinates

Vector Evolution

Spherical Harmonics PDEs Time Evoluti

Method Results

Summary

NUMERICAL TESTS Is the solution divergence-free?

NUMERICAL TESTS

ARE THE BOUNDARY CONDITIONS STILL TRANSPARENT?

SUMMARY AND OUTLOOK

Tensor Wave Equation

Jérôme Novak

Introduction

- Constrained evolution Evolution Equation Boundary Conditions
- Numerical Methods
- Spectral Methods Poisson & Dalembert Spherical
- Vector Evolution
- Spherical Harmonics PDEs Time Evolutio
- Tensor Evolutio Method Results

Summary

- Algorithm to solve the tensor wave equation, ensuring the divergence-free condition,
- In the traceless case, solve only for two scalar wave equations,
- Designed for spectral methods in spherical coordinates (gain in CPU).
- Test it with the full Einstein equations,
- Take into account the full linear operator (with the "shift advection"),
- Evolution of one black hole,
- Extension to bi-spherical coordinates (Ansorg 2005)...

REFERENCES

Tensor Wave Equation

Jérôme Novak

Appendix

References Inversion formulas

- M. Ansorg, Phys. Rev. D **72** 024018 (2005).
- S. Bonazzola, E. Gourgoulhon, P. Grandcément and J. Novak, Phys. Rev. D **70** 104007 (2004).
- 🔋 J. Mathews, J. Soc. Indust. Appl. Math. 10, 768 (1962).
- J. Novak and S. Bonazzola, J. Comput. Phys. 197, 186 (2004).
- K. Thorne, Rev. Mod. Physics **52**, 299 (1980).
- F.J. Zerilli, J. Math. Physics **11**, 2203 (1970).

INVERSION FORMULAS

Tensor Wave Equation

Jérôme Noval

Appendix References

Inversion formulas

$$\begin{split} \Delta_{\theta\varphi}\eta &= \left(\frac{\partial h^{r\theta}}{\partial \theta} + \frac{h^{r\theta}}{\tan \theta} + \frac{1}{\sin \theta}\frac{\partial h^{r\varphi}}{\partial \varphi}\right) \\ \Delta_{\theta\varphi}\mu &= \left(\frac{\partial h^{r\varphi}}{\partial \theta} + \frac{h^{r\varphi}}{\tan \theta} - \frac{1}{\sin \theta}\frac{\partial h^{r\theta}}{\partial \varphi}\right), \\ \Delta_{\theta\varphi}\left(\Delta_{\theta\varphi} + 2\right)W &= \frac{\partial^2 P}{\partial \theta^2} + \frac{3}{\tan \theta}\frac{\partial P}{\partial \theta} - \frac{1}{\sin^2 \theta}\frac{\partial^2 P}{\partial \varphi^2} - 2P \\ &+ \frac{2}{\sin \theta}\frac{\partial}{\partial \varphi}\left(\frac{\partial h^{\theta\varphi}}{\partial \theta} + \frac{h^{\theta\varphi}}{\tan \theta}\right), \\ \Delta_{\theta\varphi}\left(\Delta_{\theta\varphi} + 2\right)X &= \frac{\partial^2 h^{\theta\varphi}}{\partial \theta^2} + \frac{3}{\tan \theta}\frac{\partial h^{\theta\varphi}}{\partial \theta} - \frac{1}{\sin^2 \theta}\frac{\partial^2 h^{\theta\varphi}}{\partial \varphi^2} - 2h^{\theta\varphi} \\ &- \frac{2}{\sin \theta}\frac{\partial}{\partial \varphi}\left(\frac{\partial P}{\partial \theta} + \frac{P}{\tan \theta}\right). \end{split}$$