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EVOLUTION EQUATIONS:

Constrained
evolution ) % oKy =
—D;D;N + NR;; — 2NKx K*; +
N[KKi; +4n((S — E)vij — 2545)]
Ki=_L (W] +D'B + D"ﬂi> :
2N \ ot

| _ EQUATIONS:

R+ K?— K;; K" = 167E,
D;K" — D'K = 8n.J".

G dz* dz” = —N? dt? + ;; (da* + Bdt) (da? + p7dt)
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FLAT METRIC AND DIRAC GAUGE

FOLLOWING BONAZZOLA et al. (2004)

We introduce f;; (with i
and D; the associated covariant derivative.

= 0) as the asymptotic structure of ~;;,

_ B y _ 1/12
Fij =V s or vy = U3, with W= (1)

f

#i; is invariant under any conformal transformation of ~;; and verifies
det ’h)'/u = f
Finally,

&ij — fii 4 pid

is the deviation of the 3-metric from conformal flatness.
Generalization the gauge introduced by Dirac (1959) to any type of
coordinates:

DIVERGENCE-FREE CONDITION ON A%
AU — DR —
D;4Y =D;jhY =0
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Constrained
evolution

EINSTEIN EQUATIONS

DIRAC GAUGE AND MAXIMAL SLICING (K = 0)

CONSTRAINT EQUATIONS

AV = Suam,
Lpi (Djﬁj) — S

AB 4+ =
B +3

TRACE OF DYNAMICAL EQUATIONS

AN =Sy

EVOLUTION EQUATIONS

PrY  N* 4 On
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POSITION OF THE PROBLEM
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@ Wave-like equation for a symmetric tensor:
6 components - 3 Dirac gauge conditions - (det A4 = 1)
Evolution =2 degrees of freedom

Equation .
e Work with /» = f;;h"/ = 0 (for the moment): asymptotically
equivalent to (det§" = 1) - non-linear condition;

@ the evolution operator appearing is not, in general, hyperbolic
(complex eigenvalues); with the Dirac gauge, it is (result by .
Cordero).

Simplified numerical problem:
@ solve a flat wave equation for a symmetric tensor [(Jh"/ = S%,
@ ensure the gauge condition Djhij =0,

@ has a given value of the trace.



OUTGOING BOUNDARY CONDITIONS
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Jérsme Nova @ If no compactification is done, it is necessary to impose
boundary condition at a finite distance R;

@ Far enough from the source, one can consider the evolution

operator as being a flat Dalembert operator;

Boundary
Conditions

@ It is then possible to use outgoing-wave boundary condition.

BUT

@ Usual outgoing-wave condition (Sommerfeld) is exact, up to
numerical scheme precision, only for £ = 0 mode.

=-Use of enhanced condition (Novak & Bonazzola (2004) ):

@ exact (up to discretization error) V¢ < 2,

o for £ > 2, the reflected wave decreases as 1/R* (versus 1/R? for
Sommerfeld).



BOUNDARY CONDITIONS AT A BLACK HOLE
15(0) N VAO

UNDER DEVELOPMENT...
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@ Use of excision technique for black hole evolution =-at the
apparent horizon (See talk by E. Gourgoulhon);

@ In this region, the evolution operator for 2/ must be taken with
Boundary all (linear) terms,

Conditions

Then, in the Dirac gauge, for a dynamical horizon:
@ All characteristics are outgoing...

@ ... no boundary condition must be imposed.

Study by I. Cordero

OK with the intuition of a spacelike boundary of the computational
domain.



MULTIDOMAIN 3D DECOMPOSITION

NUMERICAL LIBRARY LORENE (http://www.lorene.obspm.fr)
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DECOMPOSITION:

Chebyshev polynomials for &,

external compactified

domain Fourier or Y™ for the angular
part (0, ¢),
1 @ symmetries and regularity
Meshods T ai conditions of the fields at the
~1<E<l origin and on the axis of

spherical coordinate system

@ compactified variable for
elliptic PDEs =boundary
conditions are well imposed

Drawback: Gibbs phenomenon!



SOLUTIONS OF POISSON AND WAVE EQUATIONS
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The angular part of any field ¢ is decomposed on a set of spherical

harmonics Y, (6, ¢), which are eigenvectors of the angular part of

the Laplace operator

A(J:pnm — —e((‘F 1)}/5777/

2 2 2
Poisson & & 2 8 200+ 1) 5t ) 2 8 00 +1) T 7
Dalembert (aﬂ Y an T 2 Pem (1) = o () e B B Pom =
Accuracy on the solution ~ 10713 Accuracy on the solution ~ 107
(exponential decay) (time-differencing)

V(¢,m) the operator inversion <= inversion of a ~ 30 x 30 matrix
Non-linear parts are evaluated in the physical space and contribute as
sources to the equations.
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CHOICE FOR f;; : SPHERICAL POLAR COORDINATES

@ stars and black holes are of spheroidal shape

e compactification made easy (only r)

@ use of spherical harmonics

@ grid boundaries are smooth surfaces

Spherical
coordinates

USE OF SPHERICAL ORTHONORMAL TRIAD (TENSOR

COMPONENTS)

@ Dirac gauge can easily be imposed
@ asymptotically, it is easier to extract gravitational waves




VECTOR SPHERICAL HARMONICS

FOLLOWING e.g. THORNE (1980)

e O A 3D vector field V' can be decomposed onto a set of vector

Equation

rome Nova spherical harmonics

V= Z anl(T)Yéi(ev ¢) + Eem(T)YeyL;(Qv ¢) + Bﬂm(r)YZﬁ(‘gv ®),

m
@ pure spin vector harmonics,

YE o« Yi,r, (longitudinal)

Y,E o« DYy, (transverse)

Y2 o« 7 x DYy, (transverse)

@ orthonormal set of regular
angular functions,

@ not eigenfunctions of vector
angular Laplacian

V= Z R (1)Yern (6, ), and we define two other potentials

Spherical
V@ . @ o 1 87/.1 n(Ta 9, (p) = Z Eém(r)}/ln“
00 sinfoyp’ &m
th — 1 @ + @ M(T7 0, (P) = Z Bgm(’f')}/[rn
sinfdp 00’ &m




POTENTIALS
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DIFFERENTIAL OPERATORS IN TERMS OF NEW

Jérome Nova! FLAT WAVE OPERATOR [(JV*¢ = S* (DIVERGENCE-FREE CASE)

o2V 20V" 2V"
——— + AV 4 - = &
ot? r Or - 72 ’

0°n 20V"

—_—— A —_ f—
ot? tant r Or 1
0%u

—ﬁ‘FA/II = HMs.

2V"

r

1
ZDpn =0
T 7 9@7]

... thus 1 does not depend on the divergence of V.



HELMHOLTZ DECOMPOSITION
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e Nows Any vector field V' on R3, twice continuously differentiable and with
rapid enough decay at infinity can be uniquely written as

V =V + D¢, with D,V = 0.

from D x V =D x V, one gets

py = pyp (twice: - and 1- components) |
oy nvy V" ong . Ny VT
— = - — = —Y 4+ Y — — (u- component) .
or + r r or * r r (1 P )
=-the quantities
Time Evolution a Vr
A= ﬁ L ﬂ - J
or r 7

and g are not sensitive to the gradient part of a vector.



EVOLUTION EQUATIONS

ENSURING DIVERGENCE-FREE CONDITION...
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From the definition of A and the expression of the wave operator for
a vector, one gets for the source (V"' = S*)

Jérdme Nova

ong . ST
AS — i + 777‘5 - —,
or r r
and
DAV = AS J
once A is known, one can reconstruct the vector V'’ from
0 vr
J + Q I — A7
Time Evolution a,r r r
ovr 2Vt 1
3 + + —Ag,n = 0 divergence-free condition.
& r r

and p (since Op = pug).



INTEGRATION PROCEDURE
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from S? compute Ag and pg,
solve the equation for p,
solve the equation for A,

solve the coupled system given by the divergence-free condition
and the definition of A to get V" and 7,

reconstruct V* from V", 1 and p.

© 6000

Time Evolution



TENSOR SPHERICAL HARMONICS
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A 3D symmetric tensor field h can be decomposed onto a set of
tensor pure spin spherical harmonics and one can get 6 scalar
potentials to represent the tensor:

| T | TR | TR TR TR | T |
T T =R R | g | p | W | X

with the following relations:

pre — %,L@
09  sinf oy’
e _ L0 on
sind 0p 00’
R —hee  OPW 1 oW 1 0°wW 0 1 0X
R R e E o )

wo _ PX 10X 1 @X o (1w
002 tanf 00 sin?f 0¢? 90 \sin0 dp )~



DIFFERENTIAL OPERATORS
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DIVERGENCE-FREE CONDITION H® = D;h% =0

on™ 2h"™ 1 T

H" = —A - — =
or + +r = 0,
dn  3n 1% T

H = —+—+(A 2) — + — =
67" + 7 +( 6<p+ ) , +2T 0,
ouw  3u

HY = —+—+(A 2) X =0;
or * T +(Bop +2)

“ELECTRIC TYPE” POTENTIALS “MAGNETIC TYPE”

Method

=-two groups of coupled equations for the wave operator.



DIVERGENCE-FREE PART OF A SYMMETRIC
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As for the Helmholtz decomposition:

Jérome Novak

hi = R 4 DVI 4 DIV
... but no possibility to use the curl operator on a symmetric tensor!

WAVE EQUATION

3 DEGREES OF FREEDOM FOR h

Oh¥ = S

0X

A = ———
or r’
ow 1 n T

B = — - — — Y .
or 2r RopW T - 4y’
or 2h"" ow W

= — — 2A —_—
Method C (97“ T 4 ( 87‘ .




DIVERGENCE-FREE EVOLUTION
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Method

/E EQUATION Oh% = S%

5 Com . 2B -
Bon = 2B+ =5, = =
Y2 o 2(£+ 1) OB + 2 Bs,
x Com .~ 2 1)C -
Com = 2By — ‘ ) ac (g B )O =Cs.
20 2

In the case where f;;h"/ =0 (h'" = —7):
@ compute Ag and Bg, 3
@ solve wave equations for A and B (a wave operator shifted in £),
@ solve the system composed of

o definition of B

e H' =0

e H"=0

o definition of A
o H" =0 (Dirac gauge)

on the one hand, and
on the other hand,

@ recover the tensor components.



NUMERICAL TESTS

IS THE WAVE EQUATION SOLVED?
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Initial data: Gaussian profile for A" and p,
with £ =2 and ¢ = 3 modes.

Evolution compared to the method of
Bonazzola et al. (2004)
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Aceuracy (L norm)

leOBZ ‘
T 109
5o
g
5
Ok = 0, with 8 tew
Results dt = 0.02, R = 20.
4 domains with 33
points in each. teds : ‘ :



NUMERICAL TESTS

IS THE SOLUTION DIVERGENCE-FREE?
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Eauation Amplitude of H !

le10 ‘
— - component
— n - component
lell — M- component

le-12

AR

e ———

1le-13

T
Ll

Divergence (L, norm)

le-14

T
—

le-15

IERLL
Ll

Results

le-16

o
5
=
o
=
o
N
=]

Time
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NUMERICAL TESTS

ARE THE BOUNDARY CONDITIONS STILL TRANSPARENT?

Energy inside the grid

0,01

0,0001

1le-06

1e-08

— dt=0.02
— dt=001
— dt =0.005

o

Time

30




SUMMARY AND OUTLOOK
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Summary

Algorithm to solve the tensor wave equation, ensuring the
divergence-free condition,

In the traceless case, solve only for two scalar wave equations,

Designed for spectral methods in spherical coordinates (gain in
CPU).

Test it with the full Einstein equations,

Take into account the full linear operator (with the “shift
advection”),

Evolution of one black hole,

Extension to bi-spherical coordinates (Ansorg 2005)...
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Inversion
formulas

Aeapluf

DNgy (Do +2) W

AG@ (Aﬁgp + 2) X

onr?  pro 1 On™?
( 00 N tand  sinf dyp )
Oh™  h"¢ 1 onr?
(5‘9 +tan9_sin€8<p>’

#P 3 OP 1 9%p
002 + tan® 00  sin?0 0p?
2 9 [0h%¥ Ko
sinf g ( 96 " tan 9) '
O?ho¢ 3 On¥ 1 02%h'¢
902 Ttand 06 snZo 072

2 0 (op P
sinfdp \ 90  tanf )’

_opf¥
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