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MOTIVATIONS

e Neutron stars represent a very complex physical system,
far beyond experimental capacities of Earth-based
laboratories.

@ Observations can be done in many parts of the
electro-magnetic spectrum, from neutrino and, possibly
with gravitational wave emission.

= Need for realistic stationary models, used to determine
some of the observable data (maximal rotation frequency,
mass, ... ).

= Need for initial data for dynamical models: collapse to a
black hole, oscillations and glitches (superfluidity,
two-stream instability).

Inversely, having detailed models permits some “inversion”
of observational data to infer composition of neutron stars
and very dense matter properties (e.g. if gravitational y.@v“a“o‘;,e Lo
waves from oscillations are observed). ‘



MODEL
Two-fluid model

“PROTONS”

Superfluid neutrons in the crust | Nuclei, electrons, muons and
and the outer core. No viscosity, | protons are locked together
so they can flow freely through on short timescales by

the other component. viscosity and magnetic field.

=-these two components are coupled together by strong
nuclear force.

o General Relativity for the gravitational field
e stationarity and axisymmetry

e uniform rotation of both components / common axis,
but different rotation rates. P o



(GRAVITATIONAL FIELD
EQUATIONS

Stationarity, axisymmetry and circularity (no meridional
currents) =coordinates and metric adapted to the Killing
vector fields + quasi-isotropic gauge:

ds® = — (N? — NyN¥) dt*—2N,dtdp+A? (dr® + r*d6*)+B*r? sin® 0dp?
Set of four elliptic PDEs (¥ =InN,a =In A, 3 = In B):

AgV = 47TA2(E—|—SZZ) +A2K”KZ] —8Va(l/+/8),

As(rsinN¥?) = —167NA%J? — rsin0 OIN?I(36 — v),
Ay [(NB—1)rsinb] = 8rNA’Brsinf (S +5y) ,
3

AQ (7/ + Oé) = SWAQSLS; + §A2Kinij - (8y)2 s

where F, Sf and J* come from the 3+1 decomposition of e Lo
the stress-energy tensor 1T+, ‘ '



(GLOBAL QUANTITIES

Knowing the matter and gravitational fields, one can compute
some global quantities:

o The gravitational mass M, is determined from the
asymptotic behavior of the lapse function N:

M, = /A2 (E+S;) +2B%rsin ON?J?| r? sin drdfde.

@ The angular momentum J is determined from the
asymptotic behavior of the shift vector N%:

J = / (AQBB’I“ sin ij> 2 sin drdfdep.
@ The 2D- and 3D-virial identities serve as useful checks of

consistency and precision of numerical results: these .
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relations are not imposed in the model.



TWO-FLUID HYDRODYNAMICS

FROM CARTER, LANGLOIS, et al.

e For each fluid define the conserved 4-current nf and nk,

e The Lagrangian density A = —& depends only on the
three possible scalar products between these 4-vectors.

@ Define momenta as conjugates of currents:

dA = pidnj + phdnk.
@ The equations of motions (in the absence of direct
dissipative forces) are:
ny Vi, py = 0 and ngV[Hpi] =0
@ The stress-energy tensor 7' L, =Dy T phng + \Ifélj’,

e with the generalized pressure ¥ = —& — pinfl — pg%vﬂawe .



EQUATION OF STATE
The EOS depends only on densities and “relative speed” A:
E(ny,ny, A?), and the first law of thermodynamics reads
(defining the chemical potentials p™ and p?)

d€ = p"dn, + pPdn, + e dA?,

and the equations of motion take the integral form:

N N
S r = (O™ and — P = (P
r wer H ¢

We have used a simple (2-fluid polytrope) EOS

1 1
E=pc?+ 5/%71121 + é/fpnf) + Knplnfp + Kananp A2,
=-all physical features: entrainment + symmetry energy,
and the inversion (p", uP) < (n,,np) is made easy (linep@
system). :
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NUMERICAL METHODS
SPECTRAL, MULTIDOMAIN METHODS
Need: solve Poisson-like PDEs with sources of non-compact
support.
=-use a linear Poisson solver with iteration and relaxation.

DECOMPOSITION f(r, 6, p):

el come e Chebyshev polynomials for &,
external compactitie: .
dona Fourier or Y™ for the angular part.

L @ symmetries and coordinate
singularity at the origin and on the
axis of spherical coordinates

@ compactified variable for elliptic
PDEs =-boundary conditions are
well imposed

v
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Crude initial guess— FE,J?, Sg — metric —  (u", ,up2
—  E,J%, SZJ e ‘
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COMPARISON TO PREVIOUS
WORKS

Most models have been devised in the “slow-rotation”
approximation:

e Prix et al. 2002 in the Newtonian regime,

@ Anderson & Comer 2001 in Relativistic theory.

R —— e T

2 In the Newtonian cas
4 can obtain an analyti

‘s and, depending on th
1w of EOS inversion, the

wd 14

4 3 -2 -1 0
logl00m_n logl00m_n

In the relativistic case, the agreement on
gauge-independent quantities ranges from 10~ to a few
percents, depending on the rotation rate.

e, one
cal

"6 expression for the solution

e type

¢, behavior of the difference as
a function of € is recovered.
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RESULTS

OBLATE / PROLATE CONFIGURATIONS

e It is possible with
non-realistic
parameters to get a
configuration with one
fluid surface having
oblate shape, while the
other has a prolate
one.

e made possible by
counter-rotation and
the effective
interaction potential,
which tends to
“separate” both fluids.




RESULTS

KEPLER LIMIT

x [km]

Slow-rotation approximations overestimate the Kepler
frequencies by ~ 15%.

If no chemical equilibrium at the center, the Kepler
limit is determined by the outer fluid, even if it is
rotating slower than the inner one.
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OUTLOOK

o Allow for differential rotation of superfluid component.

@ Need for more realistic nuclear-physics EOS,
particularly for the entrainment term.

e Add a solid crust...

e Study the dynamical evolution: oscillation modes and
gravitational wave emission.

e What about mutual friction in such situations?
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