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Based on the article:
R. Prix, J. Novak and G. L. Comer, Phys. Rev. D 71,

043005 (2005).

Pulsar Workshop, November, 25th 2008

http://www.luth.obspm.fr


Motivations
Neutron stars represent a very complex physical system,
far beyond experimental capacities of Earth-based
laboratories.
Observations can be done in many parts of the
electro-magnetic spectrum, from neutrino and, possibly
with gravitational wave emission.

⇒ Need for realistic stationary models, used to determine
some of the observable data (maximal rotation frequency,
mass, . . . ).

⇒ Need for initial data for dynamical models: collapse to a
black hole, oscillations and glitches (superfluidity,
two-stream instability).

Inversely, having detailed models permits some “inversion”
of observational data to infer composition of neutron stars
and very dense matter properties (e.g. if gravitational
waves from oscillations are observed).



Model
Two-fluid model

↙ ↘
neutrons

Superfluid neutrons in the crust
and the outer core. No viscosity,
so they can flow freely through
the other component.

“protons”
Nuclei, electrons, muons and
protons are locked together
on short timescales by
viscosity and magnetic field.

⇒these two components are coupled together by strong
nuclear force.

General Relativity for the gravitational field

stationarity and axisymmetry

uniform rotation of both components / common axis,
but different rotation rates.



Gravitational field

equations
Stationarity, axisymmetry and circularity (no meridional
currents) ⇒coordinates and metric adapted to the Killing
vector fields + quasi-isotropic gauge:

ds2 = −
(
N2 −NϕNϕ

)
dt2−2Nϕdtdϕ+A2

(
dr2 + r2dθ2

)
+B2r2 sin2 θdϕ2

Set of four elliptic PDEs (ν = ln N, α = ln A, β = ln B):

∆3ν = 4πA2(E + Si
i) + A2KijK

ij − ∂ν ∂(ν + β) ,

∆̃3 (r sin θNϕ) = −16πNA2J̃ϕ − r sin θ ∂Nϕ∂(3β − ν) ,

∆2 [(NB − 1)r sin θ] = 8πNA2Br sin θ
(
Sr

r + Sθ
θ

)
,

∆2 (ν + α) = 8πA2Sϕ
ϕ +

3

2
A2KijK

ij − (∂ν)2 ,

where E, Sj
i and J i come from the 3+1 decomposition of

the stress-energy tensor T µν .



Global quantities
Knowing the matter and gravitational fields, one can compute
some global quantities:

The gravitational mass Mg is determined from the
asymptotic behavior of the lapse function N :

Mg =

∫
A2B

[
N

(
E + Si

i

)
+ 2B2r sin θNϕJ̃ϕ

]
r2 sin θdrdθdϕ.

The angular momentum J is determined from the
asymptotic behavior of the shift vector N i:

J =

∫ (
A2B3r sin θJ̃ϕ

)
r2 sin θdrdθdϕ.

The 2D- and 3D-virial identities serve as useful checks of
consistency and precision of numerical results: these
relations are not imposed in the model.



Two-fluid hydrodynamics
from Carter, Langlois, et al.

For each fluid define the conserved 4-current nµ
n and nµ

p,

The Lagrangian density Λ = −E depends only on the
three possible scalar products between these 4-vectors.

Define momenta as conjugates of currents:

dΛ = pn
µdnµ

n + pp
µdnµ

p.

The equations of motions (in the absence of direct
dissipative forces) are:

nµ
n∇[µ pn

µ] = 0 and nµ
p∇[µ pp

µ] = 0

The stress-energy tensor T ν
µ = pn

µn
ν
n + pp

µn
ν
p + Ψδ ν

µ ,

with the generalized pressure Ψ = −E − pn
µn

µ
n − pp

µn
µ
p



Equation of state
The EOS depends only on densities and “relative speed” ∆:
E(nn, np, ∆

2), and the first law of thermodynamics reads
(defining the chemical potentials µn and µp)

dE = µndnn + µpdnp + e d∆2,

and the equations of motion take the integral form:

N

Γn

µn = Cn and
N

Γp

µp = Cp

We have used a simple (2-fluid polytrope) EOS

E = ρc2 +
1

2
κnn

2
n +

1

2
κpn

2
p + κnpnnnp + κ∆nnnp∆

2.

⇒all physical features: entrainment + symmetry energy,
and the inversion (µn, µp) ↔ (nn, np) is made easy (linear
system).



Numerical methods
spectral, multidomain methods

Need: solve Poisson-like PDEs with sources of non-compact
support.
⇒use a linear Poisson solver with iteration and relaxation.

Decomposition f(r, θ, ϕ):
Chebyshev polynomials for ξ,
Fourier or Y m

` for the angular part.

symmetries and coordinate
singularity at the origin and on the
axis of spherical coordinates

compactified variable for elliptic
PDEs ⇒boundary conditions are
well imposed

Crude initial guess→ E, Jϕ, Sj
i → metric → (µn, µp)

→ E, Jϕ, Sj
i · · ·



Comparison to previous

works
Most models have been devised in the “slow-rotation”
approximation:

Prix et al. 2002 in the Newtonian regime,
Anderson & Comer 2001 in Relativistic theory.
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In the Newtonian case, one
can obtain an analytical
expression for the solution
and, depending on the type
of EOS inversion, the
behavior of the difference as
a function of Ω is recovered.

In the relativistic case, the agreement on
gauge-independent quantities ranges from 10−4 to a few
percents, depending on the rotation rate.



Results
oblate / prolate configurations

It is possible with
non-realistic
parameters to get a
configuration with one
fluid surface having
oblate shape, while the
other has a prolate
one.
made possible by
counter-rotation and
the effective
interaction potential,
which tends to
“separate” both fluids.
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Results
Kepler limit

(a) (b) Om
Om

Slow-rotation approximations overestimate the Kepler
frequencies by ∼ 15%.

If no chemical equilibrium at the center, the Kepler
limit is determined by the outer fluid, even if it is
rotating slower than the inner one.



Outlook

Allow for differential rotation of superfluid component.

Need for more realistic nuclear-physics EOS,
particularly for the entrainment term.

Add a solid crust...

Study the dynamical evolution: oscillation modes and
gravitational wave emission.

What about mutual friction in such situations?
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