Sources astrophysiques d'ondes gravitationnelles

Jérôme Novak

LUTH : Laboratoire de l'Univers et de ses THéories CNRS / Observatoire de Paris F-92195 Meudon Cedex, France http://www.luth.obspm.fr/

En collaboration avec

Silvano Bonazzola, Dorota Gondek, Éric Gourgoulhon, Philippe Grandclément, Christian Klein et Loïc Villain.

- 1. Relativité générale et ondes gravitationnelles
- 2. Détecteurs Analyse du signal
- 3. Sources attendues
- 4. Techniques numériques
- 5. Simulations
- 6. Conclusions

Relativité générale et ondes gravitationnelles

Dans le cadre de la relativité générale, toute concentration de matière ou d'énergie déforme l'espace-temps. Si une telle source est en mouvement ou change de forme, les déformations se propagent.

 \Rightarrow ondes gravitationnelles (en champ faible).

En utilisant les équations d'Einstein linéarisées:

- au premier ordre $h \sim \ddot{Q}$ (moment quadrupolaire de la source), ou encore $h \sim \frac{G}{c^4} \frac{E^{NS}}{r}$;
- l'effet d'une onde gravitationnelle sur deux particules de masses négligeables est la variation de leur distance au cours du temps $\Delta l/l \simeq h$;
- le flux émis à une fréquence f est

$$F = 0.3 \left(\frac{f}{1 \text{ kHz}}\right)^2 \left(\frac{h}{10^{-21}}\right)^2 \quad \text{Wm}^{-2}.$$

• la puissance (ou luminosité) gravitationnelle rayonnée par une source est

$$L \sim \frac{G}{c^5} s^2 \omega^6 M^2 R^4.$$

La détection indirecte des ondes gravitationnelles a été réalisée grâce au chronométrage radio de pulsars binaires (PSR1913+16 par Hulse et Taylor, Prix Nobel en 1993).

 \Rightarrow la perte de moment cinétique correspond exactement à celle prédite par la relativité générale, par le biais d'ondes gravitationnelles.

Détecteurs

2 types de détecteurs:

- 1. <u>Barres résonnantes</u>: Masses résonnantes d'aliages à base d'aluminium, refroidies par cryogénie à 1 K. Cinq sont actuellement en fonctionnement: EXPLORER, AURIGA, NAUTILUS (Italie); ALLEGRO (États-Unis) et NIOBE (Australie). La bande passante est très étroite ($\sim 1Hz$) autour de ($\sim 1kHz$). Le réseau de ces barres cherche surtout à détecter des signaux de type "sursauts" en coïncidence.
- 2. Interféromètres LASER: Interféromètres de type Michelson mesurant la variation de distance relative des deux bras. TAMA (Japon) est en fonctionnement et 4 sont en construction: GEO600 (Allemagne), LIGO (2 aux États-Unis) et VIRGO (Italie). Ils ont une large bande passante $(10 \rightarrow 6000 Hz \text{ pour VIRGO})$ permettant la recherche de sources quasi-périodiques.

VIRGO

Signal de sortie du détecteur: $\sigma(t) = h(t) + n(t)$, avec h(t) < n(t). \Rightarrow Nécessité de *filtrer*, en utilisant la quantité $c(\lambda) = \int_{-\infty}^{+\infty} \sigma(t)F(t,\lambda)dt$.

Le rapport signal/bruit:

$$\frac{S}{N} = \frac{\langle c(\boldsymbol{\lambda}) \rangle}{\sqrt{\langle c(\boldsymbol{\lambda})^2 \rangle_{h=0}}} \sim \frac{h\sqrt{T}}{S(f)^{1/2}},$$

pour un filtre optimal

$$ilde{F}_{\mathsf{opt}}(f, oldsymbol{\lambda}) = rac{h(f)}{S(f)},$$

et la densité spectrale de puissance du bruit à la fréquence f

$$\int_{-\infty}^{+\infty} S(f)df = \langle n(t)^2 \rangle.$$

Ainsi, l'amplitude minimale d'onde gravitationnelle détectable pendant un temps d'intégration T est:

$$h_{\min} \sim \frac{S(f)^{1/2}}{\sqrt{T}}.$$

Sources astrophysiques

$$L \sim \frac{c^5}{G} s^2 \left(\frac{R_S}{R}\right)^2 \left(\frac{v}{c}\right)^6.$$

 \Rightarrow Objets compacts en mouvement relativiste et non sphériques.

Pour les hautes fréquences (10 $Hz \rightarrow 10 \ kHz$):

- systèmes binaires d'astres compacts en coalescence (étoiles à neutrons ou trous noirs)
- instabilités et déformations des étoiles à neutrons
- supernovæ

Contact pour les étoiles à neutrons / Dernière orbite stable pour les trous noirs.

Signaux très puissants, mais combien de sources possibles?

Étoiles à neutrons en rotation

Déformations produites par:

- Le champ magnétique (qqs GT): dans les modèles de pulsars, le moment magnétique n'est pas aligné avec l'axe de rotation.
- Instabilités du cœur: la perte de moment cinétique par émission d'ondes gravitationnelles induit la croissance de certains modes oscillatoires pour les étoiles en rotation (modes r).
- Réarrangements de l'écorce (phénomènes de glitch).

• ...

Sources nombreuses, mais quelle efficacité?

supernovæ

Étape ultime de la vie d'une étoile massive ($\gtrsim 12 M_{\odot}$), elle donne naissance à une étoile à neutrons ou un trou noir.

 \Rightarrow phénomène relativiste impliquant un astre compact.

Les ondes gravitationnelles ne sont pas absorbées par la matière, elles peuvent donc arrriver depuis le cœur dense des *supernovæ*.

Première source étudiée car l'énergie libérée $\sim 0.1 M_{\odot}c^2$ (essentiellement sous forme de neutrinos).

Sources très nombreuses, mais quelle efficacité?

Méthodes numériques

Modèle:

- système de 10 équations (couplées) aux dérivées partielles du second ordre, non-linéaires et dépendant de (t, r, θ, φ) ;
- système hydrodynamique + conservation des particules (5 EDP);
- une équation d'état.
- \Rightarrow les solutions analytiques font appel à des hypothèses simplificatrices.

Méthodes spectrales et méthodes aux différences finies

Méthodes spectrales: représentation d'un champ physique u par une autre fonction I u appartenant à un certain espace vectoriel de dimension finie \mathcal{H} . Si $(\varphi_0, \ldots, \varphi_N)$ est une base orthonormée de \mathcal{H} , alors la projection de u sur \mathcal{H} est donnée par:

$$P u = \sum_{n=0}^{N} \tilde{u}_n \varphi_n.$$

Les coefficients $(\tilde{u}_0, \ldots, \tilde{u}_N)$ sont obtenus par le produit scalaire de u avec les fonctions de la base:

 $\tilde{u}_n = \langle u, \varphi_n \rangle.$

Différences finies: représentation d'un champ physique u par un tableau fini de nombres: les valeurs (u_1, \ldots, u_n) prises par u aux points de la grille (x_1, \ldots, x_n) . Cette différence — fonction/nombres — explique pourquoi les méthodes spectrales sont d'habitude beaucoup plus précises que les méthodes aux différences finies.

Décomposition sur plusieurs domaines

Les méthodes spectrales à plusieurs domaines permettent de décrire la surface des étoiles à neutrons, ainsi que d'imposer les bonnes conditions à l'infini (seul endroit où elles sont bien définies en relativité générale).

coordonnées physiques

 (r, θ, φ)

coordonnées numériques

 (ξ, θ, φ)

Possibilité d'adapter les grilles à la surface des étoiles par le mapping suivant:

 $r = \alpha[\xi + A(\xi)F(\theta',\varphi') + B(\xi)G(\theta',\varphi')] + \beta, \quad \theta = \theta', \quad \varphi = \varphi'$

Bases de fonctions pour la décomposition spectrale

$$u(\xi,\theta,\varphi) = \sum_{m=0}^{N_{\varphi}/2} \sum_{j=0}^{N_{\theta}-1} \sum_{i=0}^{N_{r}-1} \hat{u}_{mji} X_{i}(\xi) \Theta_{j}(\theta) e^{im\varphi}$$

- Décomposition en φ : *Séries de Fourier*
- Décomposition en θ: Polynômes trigonométriques ou fonctions de Legendre associées
 - pour *m* pair: $\Theta_j(\theta) = \cos(2j\theta)$ ou $\Theta_j(\theta) = P_{2j}^m(\cos\theta)$
 - pour *m* impair: $\Theta_j(\theta) = \sin((2j+1)\theta)$ ou $\Theta_j(\theta) = P_{2j+1}^m(\cos\theta)$
- Décomposition en ξ (radiale): *Polynômes de Tchebychev*
 - dans le noyau: $X_i(\xi) = T_{2i}(\xi)$ pour m pair, $X_i(\xi) = T_{2i+1}(\xi)$ pour m impair
 - dans les cocquilles et le domaine externe compactifié $X_i(\xi) = T_i(\xi)$

Résultats de simulations – supernovæ

Phénomène physique très riche (neutrinos, transfert, convection, matière nucléaire, ...).

 \Rightarrow étude de la dynamique du champ gravitationnel et du fluide (équation d'état analytique, ...).

Pas de calculs à ce jour en *vraie* relativité générale. Jusqu'en 2001, seules des simulations dans le cadre de la théorie newtonienne.

- Bonazzola & Marck (1993) ont réalisé la première simulation 3D, s'arrêtant au rebond. ⇒ amplitude très faible, détectable seulement jusqu'à qqs kpc.
- Modèles à symétrie axiale (incluant le rebond) ont été étudiés par Zwerger & Müller (1997) et ne sont pas plus optimistes: l'énergie rayonnée est $6 \times 10^{-11} M_{\odot} c^2 \lesssim E_{OG} \lesssim 8 \times 10^{-8} M_{\odot} c^2$.
- Dimmelmeier *et al.* (2001) ont considéré des modèles relativistes "approchés": l'énergie émise est dans l'intervalle $2 \times 10^{-10} M_{\odot} c^2 \lesssim E_{OG} \lesssim 3 \times 10^{-7} M_{\odot} c^2$.

Simulations numériques d'effondrements stellaires

 \Rightarrow II n'y a pas effondrement des étoiles à neutrons (en trou noir) avant leur rencontre. \bullet

⇒ On retrouve la troisième loi de Kepler pour de grandes séparations des trous noirs.

 \Rightarrow La position de la dernière orbite stable est en bon accord avec l'estimation analytique (développements post-newtoniens d'ordre élevé).

Conclusions

- Les détecteurs d'ondes gravitationnelles ne sont plus des projets... mais une réalité.
- Projet d'un détecteur dans l'espace pour les basses fréquences (LISA).
- La simulation de signaux fiables est une absolue nécessité pour la détection des ondes gravitationnelles.
- Il reste beaucoup à faire: les simulations font toujours appel à des hypothèses (très) simplificatrices.
- Nouvelle fenêtre d'observations → surprises?