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Meudon, France,

Harald Dimmelmeier

Max-Planck-Institut für Astrophysik

Garching, Germany

and
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Gravitational radiation from supernovæ

VIRGO, in Pisa, Italy

(CNRS/INFN)

Freq. range: 10 Hz → 10 kHz

Main sources for high-frequency interferometric GW detectors: coalescing binaries

(black holes, neutrons stars) and supernovæ.

⇒need to know waveforms with the highest possible precision.

Within this framework, we are looking for waveforms, not for explosion scenarios.

Available results only in 2D: “approximate” (Dimmelmeier et al., 2001) of full

General Relativity (Shibata & Sekiguchi, 2004)
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Physical model

• General Relativity for gravitational field ⇒hydrodynamics in a curved

space-time;

• Perfect fluid model with hybrid ideal gas equation of state: polytropic pressure

(stiffening as the density increases) and thermal pressure (after the bounce);

• Neutrinos and radiation transfers are not taken into account.

Initial model is a rotating polytrope with an effective adiabatic index γ . 4/3.

During the collapse, when the density reaches the nuclear level, γ → γ2 & 2 (Van

Riper, 1978).

General relativistic hydrodynamics are written as a flux-conservative first order

hyperbolic system:
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with U = (ρW, ρhW 2vi, ρhW 2 − P −D) the conserved variables.
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Approximation for the gravitational field

3+1 decomposition :

ds2 = −N2dt2 + γij(dxi + N idt)(dxj + N jdt)
IWM approximation : γij = ψ4fij

Σt+dt

Σt

xi=cte

O 0

N dt

Ni dt

IWM approximation is exact in spherical symmetry or at first post-newtonian order

but inhibits any gravitational radiation! ⇒GW are extracted using standard

quadrupole formula.

⇒set of 5 coupled Poisson-like non-linear equations (instead of ∼ 7− 10): we are

neglecting the two dynamical degrees of freedom of the gravitational field.

neglecting acoustic waves...
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Numerical techniques

• General relativistic simulations of core collapses were limited to 2D because of

computational power ⇒the equations for gravitational field are difficult to

solve in 3D using finite diferences.

• Group of numerical relativity at LUTH uses spectral methods for Einstein

equations with much less CPU and memory ⇒unable to handle shocks in

hydrodynamics.

⇒use of Godunov-type methods (shock-capturing) for hydro equations and

spectral techniques for Einstein equations (grav. field is always smooth enough).

Use of two numerical grids (spectral and finite-difference) with sophisticated

interpolation procedures, but the overall code can run in 3D on “reasonable”

computers.
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Spectral methods

Multidomain spectral methods + spherical coordinates (and tensor components),

implemented in the numerical library Lorene

kernel
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Decomposition:

Chebyshev polynomials for ξ,

Fourier or Y m
l for the angular part

(θ, φ),
use of symmetries and regularity

conditions of the fields at the ori-

gin and on the axis of spherical co-

ordinate system.

Use of compactified variable ⇒boundary conditions are well imposed (grav. field is

also a source of gravity)
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Tests
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Finite differences

Quadrupole amplitude

rs p/rs e = 0.65

Code fF [kHz] fH1 [kHz]

current (3D) 1.20 (0.4) 3.68 (1.0)

current (2D) 1.219(2.0) 3.659 (1.6)

Cactus 1.195 3.717

• The new 3D code is able to reproduce the axisymmetric results by

Dimmelmeier et al. (2001) obtained with pure finite-differences code;

• we retrieve the correct values for the relativistic oscillation modes for rotating

neutron stars.
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Long term evolution of 3D pertubed star
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Initial model: uniformly rotating neutron star + non-axisymmetric (l = 2,m = 2,

at 10% level) perturbation in density.
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Summary and future work

Stable, accurate and not too CPU-consuming 3D code for the simulation of stellar

core collapses and the prediction of the resulting gravitational radiation, which

could be used to:

• explore 3D runs were bar-mode instabilities may occur, for strongly rotating

stellar cores;

• study neutron star oscillations in General Relativity (some of which are

unstable) and the resulting gravitational waves;

• add more “micro-physics” to the model: realistic equations of state, neutrino

transport, ...

• ... and eventually study the supernova phenomenon.

But then, the computers might not be powerfull enough again!!


