Simulations of gravitational waves from core collapse events in general relativity

✬

 $\overline{}$

Jérôme Novak Laboratoire de l'Univers et de ses THéories Meudon, France, Harald Dimmelmeier Max-Planck-Institut für Astrophysik Garching, Germany and José-Antonio Font Departamento d'Astronomia y Astrofisica Valencia, Spain

Gravitational radiation from supernovæ

VIRGO, in Pisa, Italy (CNRS/INFN) Freq. range: 10 Hz \rightarrow 10 kHz

✬

 $\overline{}$

Main sources for high-frequency interferometric GW detectors: coalescing binaries (black holes, neutrons stars) and $supernovæ$.

 \Rightarrow need to know waveforms with the highest possible precision.

Within this framework, we are looking for waveforms, not for explosion scenarios. Available results only in 2D: "approximate" (Dimmelmeier et al., 2001) of full General Relativity (Shibata & Sekiguchi, 2004)

Physical model

- General Relativity for gravitational field ⇒hydrodynamics in a curved space-time;
- Perfect fluid model with hybrid ideal gas equation of state: polytropic pressure (stiffening as the density increases) and thermal pressure (after the bounce);
- Neutrinos and radiation transfers are not taken into account.

✬

 $\overline{}$

Initial model is a rotating polytrope with an effective adiabatic index $\gamma \lesssim 4/3.$ During the collapse, when the density reaches the nuclear level, $\gamma \rightarrow \gamma_2 \gtrsim 2$ (Van Riper, 1978).

General relativistic hydrodynamics are written as a flux-conservative first order hyperbolic system: · \overline{a}

$$
\frac{1}{\sqrt{-g}}\left[\frac{\partial \sqrt{\gamma} \bm{U}}{\partial t} + \frac{\partial \sqrt{-g} \bm{F}^i}{\partial x^i}\right] = \bm{Q},
$$

with $\boldsymbol{U} = (\rho W, \rho h W^2 v_i, \rho h W^2 - P - D)$ the conserved variables.

Approximation for the gravitational field

3+1 decomposition : $ds^2 = -N^2 dt^2 + \gamma_{ij} (dx^i + N^i dt)(dx^j + N^j dt)$ IWM approximation : $\gamma_{ij}=\psi^4f_{ij}$

✬

 $\overline{}$

IWM approximation is exact in spherical symmetry or at first post-newtonian order but inhibits any gravitational radiation! \Rightarrow GW are extracted using standard quadrupole formula.

 \Rightarrow set of 5 coupled Poisson-like non-linear equations (instead of $\sim 7-10$): we are neglecting the two dynamical degrees of freedom of the gravitational field. neglecting acoustic waves...

Numerical techniques

✬

 $\overline{}$

- General relativistic simulations of core collapses were limited to 2D because of computational power \Rightarrow the equations for gravitational field are difficult to solve in 3D using finite diferences.
- Group of numerical relativity at LUTH uses spectral methods for Einstein equations with much less CPU and memory \Rightarrow unable to handle shocks in hydrodynamics.

⇒use of Godunov-type methods (shock-capturing) for hydro equations and spectral techniques for Einstein equations (grav. field is always smooth enough). Use of two numerical grids (spectral and finite-difference) with sophisticated interpolation procedures, but the overall code can run in 3D on "reasonable" computers.

Spectral methods

Multidomain spectral methods $+$ spherical coordinates (and tensor components), implemented in the numerical library LORENE

✬

 $\overline{}$

Decomposition:

Chebyshev polynomials for ξ , Fourier or Y_l^m \mathcal{V}^{m}_{l} for the angular part (θ, ϕ) ,

use of symmetries and regularity conditions of the fields at the origin and on the axis of spherical coordinate system.

Use of compactified variable \Rightarrow boundary conditions are well imposed (grav. field is also a source of gravity)

• The new 3D code is able to reproduce the axisymmetric results by Dimmelmeier et $al.$ (2001) obtained with pure finite-differences code;

 $\overline{}$

• we retrieve the correct values for the relativistic oscillation modes for rotating neutron stars.

 $\overline{}$

Summary and future work

Stable, accurate and not too CPU-consuming 3D code for the simulation of stellar core collapses and the prediction of the resulting gravitational radiation, which could be used to:

- explore 3D runs were bar-mode instabilities may occur, for strongly rotating stellar cores;
- study neutron star oscillations in General Relativity (some of which are unstable) and the resulting gravitational waves;
- add more "micro-physics" to the model: realistic equations of state, neutrino transport, ...
- \bullet ... and eventually study the $supernova$ phenomenon.

✬

 $\overline{}$

But then, the computers might not be powerfull enough again!!