SPECTRAL METHODS FOR THE SOLUTION OF EINSTEIN EQUATIONS AND SIMULATION OF BLACK HOLES

Jérôme Novak (Jerome.Novak@obspm.fr)

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot, France

> based on collaboration with Silvano Bonazzola, Philippe Grandclément, Éric Gourgoulhon & Nicolas Vasset

Department of Physics, Rikkyo University, Tokyo, October. $14^{\rm th}$ 2010

- Introduction
- FORMULATIONS OF EINSTEIN EQUATIONS
- SPECTRAL METHODS FOR NUMERICAL RELATIVITY
- NUMERICAL SIMULATION OF BLACK HOLES

- Introduction
- 2 FORMULATIONS OF EINSTEIN EQUATIONS
- SPECTRAL METHODS FOR NUMERICAL RELATIVITY
- NUMERICAL SIMULATION OF BLACK HOLES

- Introduction
- PORMULATIONS OF EINSTEIN EQUATIONS
- 3 Spectral methods for numerical relativity
- NUMERICAL SIMULATION OF BLACK HOLES

- Introduction
- 2 FORMULATIONS OF EINSTEIN EQUATIONS
- 3 Spectral methods for numerical relativity
- Numerical simulation of black holes

In general relativity (1915), space-time is a four-dimensional Lorentzian manifold, where gravitational interaction is described by the metric $g_{\mu\nu}$.

EINSTEIN EQUATIONS
$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi T_{\mu\nu}$$

They form a set of 10 second-order non-linear PDEs, with very few (astro-)physically relevant exact solutions (Schwarzschild, Oppenheimer-Snyder, Kerr, ...). ⇒approximate solutions:

e.g. linearizing around the flat (Minkowski) solution in vacuum $q_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$:

$$\Box \left(h_{\mu\nu} - \frac{1}{2} h \eta_{\mu\nu} \right) = -16\pi T_{\mu\nu}.$$

In general relativity (1915), space-time is a four-dimensional Lorentzian manifold, where gravitational interaction is described by the metric $g_{\mu\nu}$.

EINSTEIN EQUATIONS

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi T_{\mu\nu}$$

They form a set of 10 second-order non-linear PDEs, with very few (astro-)physically relevant exact solutions (Schwarzschild, Oppenheimer-Snyder, Kerr, ...). ⇒approximate solutions:

e.g. linearizing around the flat (Minkowski) solution in vacuum $q_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$:

$$\Box \left(h_{\mu\nu} - \frac{1}{2} h \eta_{\mu\nu} \right) = -16\pi T_{\mu\nu}.$$

In general relativity (1915), space-time is a four-dimensional Lorentzian manifold, where gravitational interaction is described by the metric $g_{\mu\nu}$.

EINSTEIN EQUATIONS

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi T_{\mu\nu}$$

They form a set of 10 second-order non-linear PDEs, with very few (astro-)physically relevant exact solutions (Schwarzschild, Oppenheimer-Snyder, Kerr, ...).

 \Rightarrow approximate solutions:

e.g. linearizing around the flat (Minkowski) solution in vacuum $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$:

$$\Box \left(h_{\mu\nu} - \frac{1}{2} h \eta_{\mu\nu} \right) = -16\pi T_{\mu\nu}.$$

In general relativity (1915), space-time is a four-dimensional Lorentzian manifold, where gravitational interaction is described by the metric $g_{\mu\nu}$.

EINSTEIN EQUATIONS

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi T_{\mu\nu}$$

They form a set of 10 second-order non-linear PDEs, with very few (astro-)physically relevant exact solutions (Schwarzschild, Oppenheimer-Snyder, Kerr, ...).

- \Rightarrow approximate solutions:
- e.g. linearizing around the flat (Minkowski) solution in vacuum $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$:

$$\Box \left(h_{\mu\nu} - \frac{1}{2} h \eta_{\mu\nu} \right) = -16\pi T_{\mu\nu}.$$

ASTROPHYSICAL SOURCES

Using the linearized Einstein equations:

- at first order $h \sim \ddot{Q}$ (mass quadrupole momentum of the source), or further from the source $h \sim \frac{G}{c^4} \frac{E^{(\ell \geq 2)}}{r}$.
- the total gravitational power of a source is

$$L \sim \frac{G}{c^5} s^2 \omega^6 M^2 R^4.$$

... introducing the Schwarzschild radius $R_S = \frac{2GM}{c^2}$ and

$$v = v/R$$
: $L \sim \frac{c^5}{G} s^2 \left(\frac{R_S}{R}\right)^2 \left(\frac{v}{c}\right)^6$

⇒non-spherical, relativistic compact objects:

- binary neutron stars or black holes,
- supernovae and neutron star oscillations.

ASTROPHYSICAL SOURCES

Using the linearized Einstein equations:

- at first order $h \sim \ddot{Q}$ (mass quadrupole momentum of the source), or further from the source $h \sim \frac{G}{c^4} \frac{E^{(\ell \geq 2)}}{r}$.
- the total gravitational power of a source is

$$L \sim \frac{G}{c^5} s^2 \omega^6 M^2 R^4.$$

...introducing the Schwarzschild radius $R_S = \frac{2GM}{c^2}$ and

$$\omega = v/R$$
:
$$L \sim \frac{c^5}{G} s^2 \left(\frac{R_S}{R}\right)^2 \left(\frac{v}{c}\right)^6$$

⇒non-spherical, relativistic compact objects:

- binary neutron stars or black holes.
- supernovae and neutron star oscillations.

ASTROPHYSICAL SOURCES

Using the linearized Einstein equations:

- at first order $h \sim \ddot{Q}$ (mass quadrupole momentum of the source), or further from the source $h \sim \frac{G}{c^4} \frac{E^{(\ell \geq 2)}}{r}$.
- the total gravitational power of a source is

$$L \sim \frac{G}{c^5} s^2 \omega^6 M^2 R^4.$$

...introducing the Schwarzschild radius $R_S = \frac{2GM}{c^2}$ and

$$\omega = v/R$$
:
$$L \sim \frac{c^5}{G} s^2 \left(\frac{R_S}{R}\right)^2 \left(\frac{v}{c}\right)^6$$

⇒non-spherical, relativistic compact objects:

- binary neutron stars or black holes,
- supernovae and neutron star oscillations.

DETECTORS

The effect of a wave on two tests-masses is the variation of their distance $\Delta l/l \sim h$, measured by a LASER beam.

Arms of Michelson-type interferometers are 3 km (VIRGO), 4 km (LIGO) and 300 m (TAMA) long ... almost perfect vacuum.

VIRGO+LIGO are acquiring data since 2005, all with a very complex data analysis

⇒ need for accurate wave patterns: perturbative and numerical approaches.

- 1966 : May & White, Calculations of General-Relativistic Collapse
- 1975: Butterworth & Ipser, Rapidly rotating fluid bodies in general relativity
- 1976: Smarr, Čadež, DeWitt & Eppley, Collision of two black holes
- 1985 : Stark & Piran, Gravitational-Wave Emission from Rotatina Gravitational Collarse
- 1993 : Abrahams & Evans, Vacuum axisymmetric gravitational collarse
- 1999: Shibata, Fully general relativistic simulation of coalescing binary neutron stars
- 2005: Pretorius, Evolution of Binary Black-Hole Spacetimes

- 1966 : May & White, Calculations of General-Relativistic Collapse
- 1975 : Butterworth & Ipser, Rapidly rotating fluid bodies in general relativity
- 1976 : Smarr, Čadež, DeWitt & Eppley, Collision of two black holes
- 1985 : Stark & Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse
- 1993 : Abrahams & Evans, Vacuum axisymmetric gravitationa collarse
- 1999 : Shibata, Fully general relativistic simulation of coalescing binary neutron stars
- 2005: Pretorius, Evolution of Binary Black-Hole Spacetime

- 1966 : May & White, Calculations of General-Relativistic Collapse
- 1975 : Butterworth & Ipser, Rapidly rotating fluid bodies in general relativity
- 1976 : Smarr, Čadež, DeWitt & Eppley, Collision of two black holes
- 1985 : Stark & Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse
- 1993 : Abrahams & Evans, Vacuum axisymmetric gravitational collarse
- 1999 : Shibata, Fully general relativistic simulation of coalescing binary neutron stars
- 2005: Pretorius, Evolution of Binary Black-Hole Spacetim

- 1966 : May & White, Calculations of General-Relativistic Collapse
- 1975 : Butterworth & Ipser, Rapidly rotating fluid bodies in general relativity
- 1976 : Smarr, Čadež, DeWitt & Eppley, Collision of two black holes
- 1985 : Stark & Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse
- 1993 : Abrahams & Evans, Vacuum axisymmetric gravitational collarse
- 1999 : Shibata, Fully general relativistic simulation of
- 2005: Pretorius, Evolution of Binary Black-Hole Spacetim

- 1966 : May & White, Calculations of General-Relativistic Collapse
- 1975 : Butterworth & Ipser, Rapidly rotating fluid bodies in general relativity
- 1976 : Smarr, Čadež, DeWitt & Eppley, Collision of two black holes
- 1985 : Stark & Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse
- 1993 : Abrahams & Evans, Vacuum axisymmetric gravitational collapse
- 1999 : Shibata, Fully general relativistic simulation of coalescing binary neutron stars
- 2005: Pretorius, Evolution of Binary Black-Hole Spacetime

- 1966 : May & White, Calculations of General-Relativistic Collapse
- 1975 : Butterworth & Ipser, Rapidly rotating fluid bodies in general relativity
- 1976 : Smarr, Čadež, DeWitt & Eppley, Collision of two black holes
- 1985 : Stark & Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse
- 1993 : Abrahams & Evans, $Vacuum\ axisymmetric\ gravitational\ collapse$
- 1999 : Shibata, Fully general relativistic simulation of coalescing binary neutron stars

- 1966 : May & White, Calculations of General-Relativistic Collapse
- 1975 : Butterworth & Ipser, Rapidly rotating fluid bodies in general relativity
- 1976 : Smarr, Čadež, DeWitt & Eppley, Collision of two black holes
- 1985 : Stark & Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse
- 1993 : Abrahams & Evans, $Vacuum\ axisymmetric\ gravitational\ collapse$
- 1999 : Shibata, Fully general relativistic simulation of coalescing binary neutron stars
- 2005: Pretorius, Evolution of Binary Black-Hole Spacetimes

Formulations of Einstein equations

FOUR-DIMENSIONAL APPROACH

Classic approach in analytic studies: harmonic coordinate condition, the coordinates $\{x^{\mu}\}_{\mu=0...3}$ verify

$$\Box x^{\mu} = 0.$$

 \Rightarrow nice form of Einstein equations, with $\Box g_{\alpha\beta} = S_{\alpha\beta}$, \Rightarrow existence and uniqueness proofs in some cases. However, the gauge can be pathological (e.g. in presence of matter): necessity of some generalization for numerical implementation.

$$\Box x^{\mu} = H^{\mu},$$

with an arbitrary source. Generalized Harmonic gauge Choice of $H^{\mu} \iff$ choice of gauge

- arbitrary function,
- evolution toward harmonic gauge $\partial_t H_\mu = -\kappa(t) H_{\mu}$;
- prescription from 3+1 formulations (see later)

FOUR-DIMENSIONAL APPROACH

Classic approach in analytic studies: harmonic coordinate condition, the coordinates $\{x^{\mu}\}_{\mu=0...3}$ verify

$$\Box x^{\mu} = 0.$$

 \Rightarrow nice form of Einstein equations, with $\Box g_{\alpha\beta} = S_{\alpha\beta}$, \Rightarrow existence and uniqueness proofs in some cases. However, the gauge can be pathological (e.g. in presence of matter): necessity of some generalization for numerical implementation.

$$\Box x^{\mu} = H^{\mu},$$

with an arbitrary source. Generalized Harmonic gauge

Choice of $H^{\mu} \iff$ choice of gauge

- arbitrary function,
- evolution toward harmonic gauge $\partial_t H_\mu = -\kappa(t) H_{\mu}$,
- prescription from 3+1 formulations (see later).

FOUR-DIMENSIONAL APPROACH

Classic approach in analytic studies: harmonic coordinate condition, the coordinates $\{x^{\mu}\}_{\mu=0...3}$ verify

$$\Box x^{\mu} = 0.$$

 \Rightarrow nice form of Einstein equations, with $\Box g_{\alpha\beta} = S_{\alpha\beta}$, \Rightarrow existence and uniqueness proofs in some cases. However, the gauge can be pathological (e.g. in presence of matter): necessity of some generalization for numerical implementation.

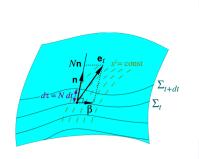
$$\Box x^{\mu} = H^{\mu},$$

with an arbitrary source. Generalized Harmonic gauge Choice of $H^{\mu} \iff$ choice of gauge

- arbitrary function,
- evolution toward harmonic gauge $\partial_t H_\mu = -\kappa(t) H_\mu$,
- prescription from 3+1 formulations (see later).

3+1 FORMALISM

Decomposition of spacetime and of Einstein equations



```
EVOLUTION EQUATIONS:

\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = \\
-D_{i} D_{j} N + N R_{ij} - 2N K_{ik} K_{j}^{k} + \\
N \left[ K K_{ij} + 4\pi ((S - E) \gamma_{ij} - 2 S_{ij}) \right] \\
K^{ij} = \frac{1}{2N} \left( \frac{\partial \gamma^{ij}}{\partial t} + D^{i} \beta^{j} + D^{j} \beta^{i} \right).
```

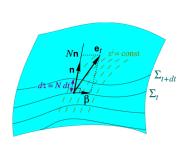
EQUATIONS

 $R + K^{2} - K_{ij}K^{ij} = 16\pi E,$ $D_{i}K^{ij} - D^{i}K = 8\pi J^{i}.$

$$g_{\mu\nu}\,dx^\mu\,dx^\nu = -N^2\,dt^2 + \gamma_{ij}\,(dx^i + \beta^i\!dt)\,(dx^j + \beta^j\!dt) \, \text{(dx^j + \beta^j\!dt)} \, \text{(dx^j + \beta^j\!dt)}$$

3+1 FORMALISM

Decomposition of spacetime and of Einstein equations



EVOLUTION EQUATIONS:

$$\begin{split} \frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} &= \\ -D_i D_j N + N R_{ij} - 2 N K_{ik} K_j^k + \\ N \left[K K_{ij} + 4 \pi ((S - E) \gamma_{ij} - 2 S_{ij}) \right] \\ K^{ij} &= \frac{1}{2 N} \left(\frac{\partial \gamma^{ij}}{\partial t} + D^i \beta^j + D^j \beta^i \right). \end{split}$$

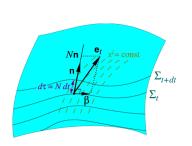
EQUATIONS:

 $R + K^2 - K_{ij}K^{ij} = 16\pi E,$ $D_i K^{ij} - D^i K = 8\pi J^i.$

$$g_{\mu\nu}\,dx^\mu\,dx^\nu = -N^2\,dt^2 + \gamma_{ij}\,(dx^i + \beta^i dt)\,(dx^j + \beta^j dt)$$

3+1 FORMALISM

Decomposition of spacetime and of Einstein equations



EVOLUTION EQUATIONS:

$$\begin{split} &\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = \\ &- D_i D_j N + N R_{ij} - 2 N K_{ik} K_j^k + \\ &N \left[K K_{ij} + 4 \pi ((S - E) \gamma_{ij} - 2 S_{ij}) \right] \\ &K^{ij} = \frac{1}{2 N} \left(\frac{\partial \gamma^{ij}}{\partial t} + D^i \beta^j + D^j \beta^i \right). \end{split}$$

CONSTRAINT EQUATIONS:

$$R + K^2 - K_{ij}K^{ij} = 16\pi E,$$

 $D_j K^{ij} - D^i K = 8\pi J^i.$

$$g_{\mu\nu}\,dx^\mu\,dx^\nu = -N^2\,dt^2 + \gamma_{ij}\,(dx^i + \beta^i_{\tiny{\tiny{a}}}dt)\,(dx^j + \beta^j_{\tiny{\tiny{a}}}dt)\, \text{(}dx^j + \beta^j_{\tiny{\tiny{a}}}dt)\, \text{(}dx^j_{\tiny{\tiny{a}}}dt)\, \text{(}dx^j_{\tiny{\tiny{a}}$$

CONSTRAINED / FREE FORMULATIONS

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations.
- recover a solution of all Einstein equations.

⇒apparition of constraint violating modes from round-off errors. Considered cures:

- Using of constraint damping terms and adapted gauges (e.g. BSSN: Baumgarte-Shapiro, Shibata-Nakamura).
- Solving the constraints at every time-step

CONSTRAINED / FREE FORMULATIONS

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations,
- recover a solution of all Einstein equations.

⇒apparition of constraint violating modes from round-off errors. Considered cures:

- Using of constraint damping terms and adapted gauges (e.g. BSSN: Baumgarte-Shapiro, Shibata-Nakamura).
- Solving the constraints at every time-step

CONSTRAINED / FREE FORMULATIONS

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations,
- recover a solution of all Einstein equations.
- ⇒apparition of constraint violating modes from round-off errors. Considered cures:
 - Using of constraint damping terms and adapted gauges (e.g. BSSN: Baumgarte-Shapiro, Shibata-Nakamura).
 - Solving the constraints at every time-step (efficient elliptic solver?).

FULLY-CONSTRAINED FORMULATION IN DIRAC GAUGE

Proposed by Bonazzola, Gourgoulhon, Grandclément & Novak (2004): Define the conformal metric (carrying the dynamical degrees of freedom)

$$\tilde{\gamma}^{ij} = \Psi^4 \gamma^{ij} \text{ with } \Psi = \left(\frac{\det \gamma_{ij}}{\det f_{ij}}\right)^{1/12},$$

choose the generalized Dirac gauge

$$\nabla_j^{(f)} \tilde{\gamma}^{ij} = 0,$$

Then, one solves 4 constraint equations + 4 gauge equations (elliptic) at each time-step. Only 2 evolution equations

FULLY-CONSTRAINED FORMULATION

Properties of the hyperbolic part

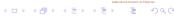
The hyperbolic part is obtained combining the evolution equations:

$$\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = \mathcal{S}_{ij} \text{ and } K^{ij} = \frac{1}{2N} \left(\frac{\partial \gamma^{ij}}{\partial t} + \dots \right),$$

to obtain a wave-type equation for $\tilde{\gamma}^{ij}$.

This system of evolution equations has been studied by Cordero-Carrión *et al.* (2008):

- the choice of Dirac gauge implies that the system is strongly hyperbolic
- can write it as conservation laws
- no incoming characteristic in the case of black hole



FULLY-CONSTRAINED FORMULATION

Properties of the hyperbolic part

The hyperbolic part is obtained combining the evolution equations:

$$\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = \mathcal{S}_{ij} \text{ and } K^{ij} = \frac{1}{2N} \left(\frac{\partial \gamma^{ij}}{\partial t} + \dots \right),$$

to obtain a wave-type equation for $\tilde{\gamma}^{ij}$.

This system of evolution equations has been studied by Cordero-Carrión *et al.* (2008):

- the choice of Dirac gauge implies that the system is strongly hyperbolic
- can write it as conservation laws
- no incoming characteristic in the case of black hole excision technique

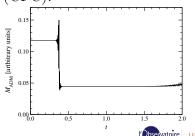
ELLIPTIC PART

Uniqueness issue

From the 4 constraints and the choice of time-slicing (gauge), an elliptic system of 5 non-linear equations can be formed

- Elliptic part of Einstein equations, to be solved at every time-step
- When setting $\tilde{\gamma}^{ij} = f^{ij}$, the system reduces to the Conformal-Flatness Condition (CFC).

Because of non-linear terms, the elliptic system may not converge ⇒the case appears for dynamical, very compact matter and GW configurations (before appearance of the black hole).



A SOLUTION TO THE UNIQUENESS ISSUE

Considering local uniqueness theorems for non-linear elliptic PDEs, it is possible to address the problem:

⇒new variables to solve directly for the momentum constraints (Saijo (2004); Cordero-Carrión *et al.* (2009)

 $2^{\rm nd}$ fundamental form is rescaled by the conformal factor $A^{ij} = \Psi^{10} K^{ij}$, and decomposed into transverse and longitudinal parts \Rightarrow solving for each part:

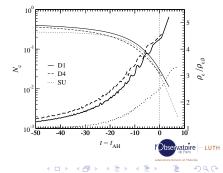
- longitudinal ←→ momentum constraint,
- transverse \iff zero (CFC) or

A SOLUTION TO THE UNIQUENESS ISSUE

Considering local uniqueness theorems for non-linear elliptic PDEs, it is possible to address the problem: ⇒new variables to solve directly for the momentum constraints (Saijo (2004); Cordero-Carrión *et al.* (2009))

 $2^{\rm nd}$ fundamental form is rescaled by the conformal factor $A^{ij} = \Psi^{10}K^{ij}$, and decomposed into transverse and longitudinal parts \Rightarrow solving for each part:

- longitudinal ← momentum constraint,
- transverse \iff zero (CFC) or evolution.



SUMMARY OF EINSTEIN EQUATIONS

CONSTRAINED SCHEME

EVOLUTION

$$\frac{\partial A^{ij}}{\partial t} = \nabla^k \nabla_k \tilde{\gamma}^{ij} + \dots$$

$$\frac{\partial \tilde{\gamma}^{ij}}{\partial t} = 2N\Psi^{-6}A^{ij} + \dots$$
with
$$\det \tilde{\gamma}^{ij} = 1,$$

$$\nabla_i^{(f)} \tilde{\gamma}^{ij} = 0.$$

CONSTRAINTS

$$\nabla_{j}A^{ij} = 8\pi\Psi^{10}S^{i},$$

$$\Delta\Psi = -2\pi\Psi^{-1}E$$

$$-\Psi^{-7}\frac{A^{ij}A_{ij}}{8},$$

$$\Delta N\Psi = 2\pi N\Psi^{-1} + \dots$$

with

$$\lim_{r \to \infty} \tilde{\gamma}^{ij} = f^{ij}, \lim_{r \to \infty} \Psi = \lim_{r \to \infty} N = 1.$$

Spectral methods for numerical relativity

SIMPLIFIED PICTURE

(SEE ALSO GRANDCLÉMENT & NOVAK 2009)

How to deal with functions on a computer?

⇒a computer can manage only integers

$$\phi(x) \simeq \sum_{i=0}^{N} c_i \Psi_i(x).$$

$$\phi'(x_i) \simeq \frac{\phi(x_{i+1}) - \phi(x_i)}{x_{i+1} - x_i}$$

$$'(x) \simeq \sum_{i=1}^{N} c_i \Psi_i'(x)$$

SIMPLIFIED PICTURE

(SEE ALSO GRANDCLÉMENT & NOVAK 2009)

How to deal with functions on a computer?

⇒a computer can manage only integers In order to represent a function $\phi(x)$ (e.g. interpolate), one can use:

- a finite set of its values $\{\phi_i\}_{i=0...N}$ on a grid $\{x_i\}_{i=0...N}$,
- a finite set of its coefficients in a functional basis $\phi(x) \simeq \sum_{i=0}^{N} c_i \Psi_i(x)$.

$$\phi'(x_i) \simeq \frac{\phi(x_{i+1}) - \phi(x_i)}{x_{i+1} - x_i}$$

$$\phi'(x) \simeq \sum_{i=1}^{N} c_i \Psi'_i(x)$$

SIMPLIFIED PICTURE

(SEE ALSO GRANDCLÉMENT & NOVAK 2009)

How to deal with functions on a computer?

⇒a computer can manage only integers

In order to represent a function $\phi(x)$ (e.g. interpolate), one can use:

- a finite set of its values $\{\phi_i\}_{i=0...N}$ on a grid $\{x_i\}_{i=0...N}$,
- a finite set of its coefficients in a functional basis $\phi(x) \simeq \sum_{i=0}^{N} c_i \Psi_i(x)$.

In order to manipulate a function (e.g. derive), each approach leads to:

• finite differences schemes

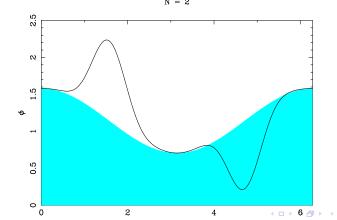
$$\phi'(x_i) \simeq \frac{\phi(x_{i+1}) - \phi(x_i)}{x_{i+1} - x_i}$$

• spectral methods

$$\phi'(x) \simeq \sum_{i=1}^{N} c_i \Psi'_i(x)$$

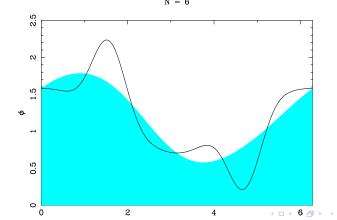
$$\phi(x) = \sqrt{1.5 + \cos(x)} + \sin^7 x$$

$$\phi(x) \simeq \sum_{i=0}^{N} a_i \Psi_i(x) \text{ with } \Psi_{2k} = \cos(kx), \ \Psi_{2k+1} = \sin(kx)$$



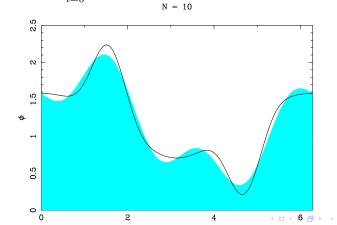
$$\phi(x) = \sqrt{1.5 + \cos(x)} + \sin^7 x$$

$$\phi(x) \simeq \sum_{i=0}^{N} a_i \Psi_i(x) \text{ with } \Psi_{2k} = \cos(kx), \ \Psi_{2k+1} = \sin(kx)$$



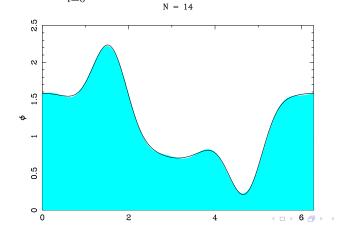
$$\phi(x) = \sqrt{1.5 + \cos(x)} + \sin^7 x$$

$$\phi(x) \simeq \sum_{i=0}^{N} a_i \Psi_i(x) \text{ with } \Psi_{2k} = \cos(kx), \ \Psi_{2k+1} = \sin(kx)$$



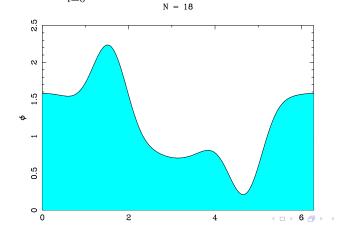
$$\phi(x) = \sqrt{1.5 + \cos(x)} + \sin^7 x$$

$$\phi(x) \simeq \sum_{i=0}^{N} a_i \Psi_i(x) \text{ with } \Psi_{2k} = \cos(kx), \ \Psi_{2k+1} = \sin(kx)$$



$$\phi(x) = \sqrt{1.5 + \cos(x)} + \sin^7 x$$

$$\phi(x) \simeq \sum_{i=0}^{N} a_i \Psi_i(x) \text{ with } \Psi_{2k} = \cos(kx), \ \Psi_{2k+1} = \sin(kx)$$



Use of orthogonal polynomials

The solutions $(\lambda_i, u_i)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in [-1, 1]$:

$$-(pu')' + qu = \lambda wu,$$

with $p > 0, C^1, p(\pm 1) = 0$

$$(u_i, u_j) = \int_{-1}^{1} u_i(x)u_j(x)w(x)dx = 0 \text{ for } m \neq n,$$

$$f(x) \simeq \sum_{i=0}^{N} c_i u_i(x)$$

Jacobi polynomial enters this category.

USE OF ORTHOGONAL POLYNOMIALS

The solutions $(\lambda_i, u_i)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in [-1, 1]$:

$$-\left(pu'\right)' + qu = \lambda wu,$$

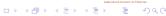
with $p > 0, C^1, p(\pm 1) = 0$

• are orthogonal with respect to the measure w:

$$(u_i, u_j) = \int_{-1}^{1} u_i(x)u_j(x)w(x)dx = 0 \text{ for } m \neq n,$$

$$f(x) \simeq \sum_{i=0}^{N} c_i u_i(x)$$

Jacobi polynomial enters this category.



USE OF ORTHOGONAL POLYNOMIALS

The solutions $(\lambda_i, u_i)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in [-1, 1]$:

$$-\left(pu'\right)' + qu = \lambda wu,$$

with $p > 0, C^1, p(\pm 1) = 0$

• are orthogonal with respect to the measure w:

$$(u_i, u_j) = \int_{-1}^{1} u_i(x)u_j(x)w(x)dx = 0 \text{ for } m \neq n,$$

• form a spectral basis such that, if f(x) is smooth (\mathcal{C}^{∞})

$$f(x) \simeq \sum_{i=0}^{N} c_i u_i(x)$$

converges faster than any power of N (usually as e^{-N}).

Gauss quadrature to compute the integrals giving the c_i 's. Chebyshev, Legendre and, more generally any type of Jacobi polynomial enters this category.

USE OF ORTHOGONAL POLYNOMIALS

The solutions $(\lambda_i, u_i)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in [-1, 1]$:

$$-(pu')' + qu = \lambda wu,$$

with $p > 0, C^1, p(\pm 1) = 0$

• are orthogonal with respect to the measure w:

$$(u_i, u_j) = \int_{-1}^{1} u_i(x)u_j(x)w(x)dx = 0 \text{ for } m \neq n,$$

• form a spectral basis such that, if f(x) is smooth (\mathcal{C}^{∞})

$$f(x) \simeq \sum_{i=0}^{N} c_i u_i(x)$$

converges faster than any power of N (usually as e^{-N}).

Gauss quadrature to compute the integrals giving the c_i 's. Chebyshev, Legendre and, more generally any type of

Jacobi polynomial enters this category.

General form of an ODE of unknown u(x):

$$\forall x \in [a, b], \ Lu(x) = s(x), \ \text{and} \ Bu(x)|_{x=a,b} = 0,$$

$$\bar{u}(x) = \sum_{i=0}^{N} c_i \Psi_i(x).$$

$$\forall i = 0 \dots N, \quad (\xi_i, R) = 0.$$

Here in the control of the control

General form of an ODE of unknown u(x):

$$\forall x \in [a,b], \ Lu(x) = s(x), \ \text{and} \ \left. Bu(x) \right|_{x=a,b} = 0,$$

The approximate solution is sought in the form

$$\bar{u}(x) = \sum_{i=0}^{N} c_i \Psi_i(x).$$

The $\{\Psi_i\}_{i=0}$ N are called trial functions: they belong to a finite-dimension sub-space of some Hilbert space $\mathcal{H}_{[a,b]}$.

$$\forall i = 0 \dots N, \quad (\xi_i, R) = 0.$$

General form of an ODE of unknown u(x):

$$\forall x \in [a,b], \ Lu(x) = s(x), \ \text{and} \ \left. Bu(x) \right|_{x=a,b} = 0,$$

The approximate solution is sought in the form

$$\bar{u}(x) = \sum_{i=0}^{N} c_i \Psi_i(x).$$

The $\{\Psi_i\}_{i=0}$ N are called trial functions: they belong to a finite-dimension sub-space of some Hilbert space $\mathcal{H}_{[a,b]}$. \bar{u} is said to be a numerical solution if:

- $B\bar{u}=0$ for x=a,b,
- $R\bar{u} = L\bar{u} s$ is "small".

$$\forall i = 0 \dots N, \quad (\xi_i, R) = 0.$$

This expected that him a limit is a solution of the ODE (Observatoire Luth

General form of an ODE of unknown u(x):

$$\forall x \in [a, b], \ Lu(x) = s(x), \ \text{and} \ Bu(x)|_{x=a,b} = 0,$$

The approximate solution is sought in the form

$$\bar{u}(x) = \sum_{i=0}^{N} c_i \Psi_i(x).$$

The $\{\Psi_i\}_{i=0}$ N are called trial functions: they belong to a finite-dimension sub-space of some Hilbert space $\mathcal{H}_{[a,b]}$. \bar{u} is said to be a numerical solution if:

- $B\bar{u}=0$ for x=a,b,
- $R\bar{u} = L\bar{u} s$ is "small".

Defining a set of test functions $\{\xi_i\}_{i=0,N}$ and a scalar product on $\mathcal{H}_{[a,b]}$, R is small iff:

$$\forall i = 0 \dots N, \quad (\xi_i, R) = 0.$$

It is expected that $\lim_{N\to\infty} \bar{u} = u$, "true" solution of the ODE. | Posetvatoire |- Luth

VARIOUS NUMERICAL METHODS

TYPE OF TRIAL FUNCTIONS Ψ

- finite-differences methods for local, overlapping polynomials of low order,
- finite-elements methods for local, smooth functions, which are non-zero only on a sub-domain of [a, b],
- spectral methods for global smooth functions on [a, b].

TYPE OF TEST FUNCTIONS ξ FOR SPECTRAL METHODS

- tau method: $\xi_i(x) = \Psi_i(x)$, but some of the test conditions are replaced by the boundary conditions.
- collocation method (pseudospectral): $\xi_i(x) = \delta(x x_i)$, at collocation points. Some of the test conditions are replaced by the boundary conditions.
- Galerkin method: the test and trial functions are chosen to fulfill the boundary conditions.

VARIOUS NUMERICAL METHODS

TYPE OF TRIAL FUNCTIONS Ψ

- finite-differences methods for local, overlapping polynomials of low order,
- finite-elements methods for local, smooth functions, which are non-zero only on a sub-domain of [a, b],
- spectral methods for global smooth functions on [a, b].

TYPE OF TEST FUNCTIONS ξ FOR SPECTRAL METHODS

- tau method: $\xi_i(x) = \Psi_i(x)$, but some of the test conditions are replaced by the boundary conditions.
- collocation method (pseudospectral): $\xi_i(x) = \delta(x x_i)$, at collocation points. Some of the test conditions are replaced by the boundary conditions.
- Galerkin method: the test and trial functions are chosen to fulfill the boundary conditions.

Inversion of Linear ODEs

Thanks to the well-known recurrence relations of Legendre and Chebyshev polynomials, it is possible to express the coefficients $\{b_i\}_{i=0...N}$ of

$$Lu(x) = \sum_{i=0}^{N} b_i \begin{vmatrix} P_i(x) \\ T_i(x) \end{vmatrix}, \text{ with } u(x) = \sum_{i=0}^{N} a_i \begin{vmatrix} P_i(x) \\ T_i(x) \end{vmatrix}.$$
 If $L = d/dx, x \times, \dots$, and $u(x)$ is represented by the vector

 $\{a_i\}_{i=0...N}$, L can be approximated by a matrix.

INVERSION OF LINEAR ODES

Thanks to the well-known recurrence relations of Legendre and Chebyshev polynomials, it is possible to express the coefficients $\{b_i\}_{i=0...N}$ of

$$Lu(x) = \sum_{i=0}^{N} b_i \begin{vmatrix} P_i(x) \\ T_i(x) \end{vmatrix}, \text{ with } u(x) = \sum_{i=0}^{N} a_i \begin{vmatrix} P_i(x) \\ T_i(x) \end{vmatrix}.$$

If $L = d/dx, x \times, \ldots$, and u(x) is represented by the vector $\{a_i\}_{i=0...N}$, L can be approximated by a matrix.

Resolution of a linear ODE

inversion of an $(N+1) \times (N+1)$ matrix

With non-trivial ODE kernels, one must add the bounds conditions to the matrix to make it invertible!

INVERSION OF LINEAR ODES

Thanks to the well-known recurrence relations of Legendre and Chebyshev polynomials, it is possible to express the coefficients $\{b_i\}_{i=0...N}$ of

$$Lu(x) = \sum_{i=0}^{N} b_i \begin{vmatrix} P_i(x) \\ T_i(x) \end{vmatrix}$$
, with $u(x) = \sum_{i=0}^{N} a_i \begin{vmatrix} P_i(x) \\ T_i(x) \end{vmatrix}$.

If $L = d/dx, x \times, \ldots$, and u(x) is represented by the vector $\{a_i\}_{i=0...N}$, L can be approximated by a matrix.

Resolution of a linear ODE

inversion of an $(N+1) \times (N+1)$ matrix

With non-trivial ODE kernels, one must add the boundary conditions to the matrix to make it invertible!

 $u(x) \mapsto \frac{u(x)}{x}$ is a linear operator, inverse of $u(x) \mapsto xu(x)$.

Its action on the coefficients $\{a_i\}_{i=0...N}$ representing the N-order approximation to a function u(x) can be computed as the product by a regular matrix. The computation in always gives a finite result (both with Chebyshev and Legendre polynomials)

 \Rightarrow The actual operator which is thus computed is

$$u(x) \mapsto \frac{u(x) - u(0)}{x}$$
.

⇒Compute operators in spherical coordinates, with coordinate singularities

$$u(x) \mapsto \frac{u(x)}{x}$$
 is a linear operator, inverse of $u(x) \mapsto xu(x)$.

Its action on the coefficients $\{a_i\}_{i=0...N}$ representing the N-order approximation to a function u(x) can be computed as the product by a regular matrix. \Rightarrow The computation in the coefficient space of u(x)/x, on the interval [-1,1] always gives a finite result (both with Chebyshev and Legendre polynomials).

 \Rightarrow The actual operator which is thus computed is

$$u(x) \mapsto \frac{u(x) - u(0)}{x}.$$

 \Rightarrow Compute operators in spherical coordinates, with coordinate singularities

$$u(x) \mapsto \frac{u(x)}{x}$$
 is a linear operator, inverse of $u(x) \mapsto xu(x)$.

Its action on the coefficients $\{a_i\}_{i=0...N}$ representing the N-order approximation to a function u(x) can be computed as the product by a regular matrix. \Rightarrow The computation in the coefficient space of u(x)/x, on the interval [-1,1] always gives a finite result (both with Chebyshev and Legendre polynomials).

⇒The actual operator which is thus computed is

$$u(x) \mapsto \frac{u(x) - u(0)}{x}.$$

⇒Compute operators in spherical coordinates, with coordinate singularities

$$u(x) \mapsto \frac{u(x)}{x}$$
 is a linear operator, inverse of $u(x) \mapsto xu(x)$.
Its action on the coefficients $\{a_i\}_{i=0...N}$ representing the

Its action on the coefficients $\{a_i\}_{i=0...N}$ representing the N-order approximation to a function u(x) can be computed as the product by a regular matrix. \Rightarrow The computation in the coefficient space of u(x)/x, on the interval [-1,1] always gives a finite result (both with Chebyshev and Legendre polynomials).

⇒The actual operator which is thus computed is

$$u(x) \mapsto \frac{u(x) - u(0)}{x}$$
.

⇒Compute operators in spherical coordinates, with coordinate singularities

e.g.
$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_{\theta \varphi}$$

TIME DISCRETIZATION

Formally, the representation (and manipulation) of f(t) is the same as that of f(x).

⇒in principle, one should be able to represent a function u(x,t) and solve time-dependent PDEs only using spectral methods...but this is not the way it is done! Two works:

- finite-differences time-stepping errors can be quite Poservatoire LUTH

TIME DISCRETIZATION

Formally, the representation (and manipulation) of f(t) is the same as that of f(x).

 \Rightarrow in principle, one should be able to represent a function u(x,t) and solve time-dependent PDEs only using spectral methods...but this is not the way it is done! Two works:

- Ierley et al. (1992): study of the Korteweg de Vries and Burger equations, Fourier in space and Chebyshev in time ⇒time-stepping restriction.
- Hennig and Ansorg (2008): study of non-linear (1+1) wave equation, with conformal compactification in Minkowski space-time. ⇒nice spectral convergence.

WHY?

- poor a priori knowledge of the exact time interval,
- too big matrices for full 3+1 operators ($\sim 30^4 \times 30^4$)
- finite-differences time-stepping errors can be quite been a small

TIME DISCRETIZATION

Formally, the representation (and manipulation) of f(t) is the same as that of f(x).

⇒in principle, one should be able to represent a function u(x,t) and solve time-dependent PDEs only using spectral methods...but this is not the way it is done! Two works:

- Ierley et al. (1992): study of the Korteweg de Vries and Burger equations, Fourier in space and Chebyshev in time \Rightarrow time-stepping restriction.
- Hennig and Ansorg (2008): study of non-linear (1+1)wave equation, with conformal compactification in Minkowski space-time. \Rightarrow nice spectral convergence.

WHY?

- poor a priori knowledge of the exact time interval,
- too big matrices for full 3+1 operators ($\sim 30^4 \times 30^4$),
- finite-differences time-stepping errors can be quite | Doservatoire | LUTH small. 4 D > 4 A > 4 B > 4 B > B

EXPLICIT / IMPLICIT SCHEMES

Let us look for the numerical solution of (L acts only on x):

$$\forall t \ge 0, \quad \forall x \in [-1, 1], \quad \frac{\partial u(x, t)}{\partial t} = Lu(x, t),$$

with good boundary conditions. Then, with δt the time-step: $\forall J \in \mathbb{N}$, $u^J(x) = u(x, J \times \delta t)$, it is possible to discretize the PDE as

- $u^{J+1}(x) = u^J(x) + \delta t L u^J(x)$: explicit time scheme (forward Euler); easy to implement, fast but limited by the CFL condition.
- $u^{J+1}(x) \delta t L u^{J+1}(x) = u^J(x)$; implicit time scheme (backward Euler); one must solve an equation (ODE) to get u^{J+1} , the matrix approximating it here is $I \delta t L$. Allows longer time-steps but slower and limited to second-order schemes.

EXPLICIT / IMPLICIT SCHEMES

Let us look for the numerical solution of (L acts only on x):

$$\forall t \ge 0, \quad \forall x \in [-1, 1], \quad \frac{\partial u(x, t)}{\partial t} = Lu(x, t),$$

with good boundary conditions. Then, with δt the time-step: $\forall J \in \mathbb{N}$, $u^J(x) = u(x, J \times \delta t)$, it is possible to discretize the PDE as

- $u^{J+1}(x) = u^J(x) + \delta t L u^J(x)$: explicit time scheme (forward Euler); easy to implement, fast but limited by the CFL condition.
- $w^{J+1}(x) \delta t L w^{J+1}(x) = w^J(x)$; implicit time scheme (backward Euler); one must solve an equation (ODE) to get w^{J+1} , the matrix approximating it here is $I \delta t L$. Allows longer time-steps but slower and limited to second-order schemes.

EXPLICIT / IMPLICIT SCHEMES

Let us look for the numerical solution of (L acts only on x):

$$\forall t \ge 0, \quad \forall x \in [-1, 1], \quad \frac{\partial u(x, t)}{\partial t} = Lu(x, t),$$

with good boundary conditions. Then, with δt the time-step: $\forall J \in \mathbb{N}$, $u^J(x) = u(x, J \times \delta t)$, it is possible to discretize the PDE as

- $u^{J+1}(x) = u^J(x) + \delta t L u^J(x)$: explicit time scheme (forward Euler); easy to implement, fast but limited by the CFL condition.
- $u^{J+1}(x) \delta t L u^{J+1}(x) = u^J(x)$: implicit time scheme (backward Euler); one must solve an equation (ODE) to get u^{J+1} , the matrix approximating it here is $I \delta t L$. Allows longer time-steps but slower and limited to second-order schemes.

Multi-domain approach

Multi-domain technique : several touching, or overlapping, domains (intervals), each one mapped on [-1, 1].

- boundary between two domains can be the place of a discontinuity ⇒recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed \$\Rightarrow\$ fixed mesh refinement.
- 2D or 3D, allows to build a complex domain from several simpler ones,

Multi-domain approach

Multi-domain technique : several touching, or overlapping, domains (intervals), each one mapped on [-1, 1].

- boundary between two domains can be the place of a discontinuity ⇒recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed ⇒fixed mesh refinement,
- 2D or 3D, allows to build a complex domain from several simpler ones,

Multi-domain approach

Multi-domain technique : several touching, or overlapping, domains (intervals), each one mapped on [-1, 1].

- boundary between two domains can be the place of a discontinuity ⇒recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed ⇒fixed mesh refinement,
- 2D or 3D, allows to build a complex domain from several simpler ones,

Multi-domain approach

Multi-domain technique : several touching, or overlapping, domains (intervals), each one mapped on [-1, 1].

- boundary between two domains can be the place of a discontinuity ⇒recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed ⇒fixed mesh refinement,
- 2D or 3D, allows to build a complex domain from several simpler ones,

Depending on the PDE, matching conditions are imposed at $y = y_0 \iff$ boundary conditions in each domain.

Mappings and multi-D

In two spatial dimensions, the usual technique is to write a function as:

$$f : \hat{\Omega} = [-1, 1] \times [-1, 1] \to \mathbb{R} \qquad \widehat{\Omega} \qquad \xrightarrow{\Pi} \Omega$$

$$f(x, y) = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} c_{ij} P_i(x) P_j(y)$$

The domain $\hat{\Omega}$ is then mapped to the real physical domain, trough some mapping $\Pi:(x,y)\mapsto (X,Y)\in \Omega$.

 \Rightarrow When computing derivatives, the Jacobian of Π is used.

COMPACTIFICATION

A very convenient mapping in spherical coordinates is

$$x \in [-1, 1] \mapsto r = \frac{1}{\rho(x-1)} \in [R, +\infty),$$

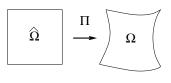
to impose boundary condition for $r \to \infty$ at x = 1.

Mappings and multi-D

In two spatial dimensions, the usual technique is to write a function as:

$$f : \hat{\Omega} = [-1, 1] \times [-1, 1] \to \mathbb{R}$$

$$f(x, y) = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} c_{ij} P_i(x) P_j(y)$$



The domain $\hat{\Omega}$ is then mapped to the real physical domain, trough some mapping $\Pi:(x,y)\mapsto (X,Y)\in\Omega.$

 \Rightarrow When computing derivatives, the Jacobian of Π is used.

COMPACTIFICATION

A very convenient mapping in spherical coordinates is

$$x \in [-1, 1] \mapsto r = \frac{1}{\alpha(x - 1)} \in [R, +\infty),$$

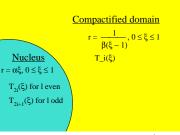
to impose boundary condition for $r \to \infty$ at x = 1.

...

EXAMPLE:

3D Poisson equation, with non-compact support

To solve $\Delta \phi(r, \theta, \varphi) = s(r, \theta, \varphi)$, with s extending to infinity.



- setup two domains in the radial direction: one to deal with the singularity at r=0, the other with a compactified mapping.
- In each domain decompose the angular part of both fields onto spherical harmonics:

$$\phi(\xi, \theta, \varphi) \simeq \sum_{\ell=0}^{\ell_{\text{max}}} \sum_{m=-\ell}^{m=\ell} \phi_{\ell m}(\xi) Y_{\ell}^{m}(\theta, \varphi),$$

- $\forall (\ell, m) \text{ solve the ODE: } \frac{\mathrm{d}^2 \phi_{\ell m}}{\mathrm{d}\xi^2} + \frac{2}{\xi} \frac{\mathrm{d}\phi_{\ell m}}{\mathrm{d}\xi} \frac{\ell(\ell+1)\phi_{\ell m}}{\xi^2} = s_{\ell m}(\xi)$
- match between domains, with regularity conditions at r = 0, and boundary conditions at $r \to \infty$.

EXAMPLE:

3D Poisson equation, with non-compact support

To solve $\Delta \phi(r, \theta, \varphi) = s(r, \theta, \varphi)$, with s extending to infinity.

$\begin{array}{c} \underline{Compactified\ domain} \\ r = \frac{1}{\beta(\xi-1)}, 0 \leq \xi \leq 1 \\ T_{2i}(\xi) \\ T_{2i+1}(\xi)\ for\ l\ odd \end{array}$

- setup two domains in the radial direction: one to deal with the singularity at r=0, the other with a compactified mapping.
- In each domain decompose the angular part of both fields onto spherical harmonics:

$$\phi(\xi, \theta, \varphi) \simeq \sum_{\ell=0}^{\ell_{\text{max}}} \sum_{m=-\ell}^{m=\ell} \phi_{\ell m}(\xi) Y_{\ell}^{m}(\theta, \varphi),$$

$$\forall (\ell, m) \text{ solve the ODE: } \frac{\mathrm{d}^2 \phi_{\ell m}}{\mathrm{d} \xi^2} + \frac{2}{\xi} \frac{\mathrm{d} \phi_{\ell m}}{\mathrm{d} \xi} - \frac{\ell(\ell+1)\phi_{\ell m}}{\xi^2} = s_{\ell m}(\xi),$$

• match between domains, with regularity conditions at r = 0, and boundary conditions at $r \to \infty$.

Numerical simulation of black holes

PUNCTURE METHODS

it is not yet clear how and why they work. Hannam et al. (2007)

$$\gamma_{ij} = \Psi^4 \tilde{\gamma}_{ij}$$
 with $\Psi \sim \frac{1}{r}$, use of $\phi = \log \Psi$ or $\chi = \Psi^{-4}$.

$$\Psi(t=0) = \mathcal{O}\left(\frac{1}{r}\right)$$
 evolves into $\Psi(t>0) = \mathcal{O}\left(\frac{1}{\sqrt{r}}\right)$

Use of the shift vector β^i to generate motion.

PUNCTURE METHODS

... it is not yet clear how and why they work. Hannam et al. (2007)

- black holes are described in the initial data in coordinates that do not reach the physical singularity,
- ⇒ the coordinates follow a wormhole through another copy of the asymptotically flat exterior spacetime,
 - this is compactified so that infinity is represented by a single point, called "puncture".

$$\gamma_{ij} = \Psi^4 \tilde{\gamma}_{ij}$$
 with $\Psi \sim \frac{1}{r}$, use of $\phi = \log \Psi$ or $\chi = \Psi^{-4}$.

BUT

During the evolution the time-slice loses contact with the second asymptotically flat end, and finishes on a cylinder of finite radius.

$$\Psi(t=0) = \mathcal{O}\left(\frac{1}{r}\right) \text{ evolves into } \Psi(t>0) = \mathcal{O}\left(\frac{1}{\sqrt{r}}\right)$$

PUNCTURE METHODS

... it is not yet clear how and why they work. Hannam et al. (2007)

- black holes are described in the initial data in coordinates that do not reach the physical singularity,
- ⇒ the coordinates follow a wormhole through another copy of the asymptotically flat exterior spacetime,
 - this is compactified so that infinity is represented by a single point, called "puncture".

$$\gamma_{ij} = \Psi^4 \tilde{\gamma}_{ij}$$
 with $\Psi \sim \frac{1}{r}$, use of $\phi = \log \Psi$ or $\chi = \Psi^{-4}$.

BUT

During the evolution the time-slice loses contact with the second asymptotically flat end, and finishes on a cylinder of finite radius.

$$\Psi(t=0) = \mathcal{O}\left(\frac{1}{r}\right) \text{ evolves into } \Psi(t>0) = \mathcal{O}\left(\frac{1}{\sqrt{r}}\right).$$

Use of the shift vector β^i to generate motion.

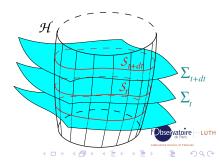
EXCISION TECHNIQUES

APPARENT HORIZONS AS A BOUNDARY

- Remove a neighborhood of the central singularity from computational domain;
- Replace it with boundary conditions on this newly obtained boundary (usually, a sphere),
- Until now, imposition of apparent horizon / isolated horizon properties: zero expansion of outgoing light rays.

⇒New views on the concept of black hole, following works by Hayward, Ashtekar and Krishnan:

- Quasi-local approach, making the black hole a causal object;
- For hydrodynamic, electromagnetic and gravitational waves (Dirac gauge): no incoming characteristics.



EXCISION TECHNIQUE

KERR SOLUTION FROM BOUNDARY CONDITIONS

Can one recover a Kerr black hole only from boundary conditions and Einstein equations?

⇒Many computations with CFC, but there is no time slicing in which (the spatial part of) Kerr solution can be conformally flat (Garat & Price 2000).

Vasset, Novak & Jaramillo (2009) recover full Kerr solution

- constant value (N), zero expansion on the horizon (ψ)
- rotation state for β^{θ} , β^{ϕ} and isolated horizon for β^{r} :
- NO condition for $\tilde{\gamma}^{ij}$;
- + asymptotic flatness and Einstein equations!

In particular, no symmetry requirement has been imposed in the "bulk" (only on the horizon) ⇒illustration of the rigidity theorem by Hawking & Ellis (1973)

EXCISION TECHNIQUE

KERR SOLUTION FROM BOUNDARY CONDITIONS

Can one recover a Kerr black hole only from boundary conditions and Einstein equations?

⇒Many computations with CFC, but there is no time slicing in which (the spatial part of) Kerr solution can be conformally flat (Garat & Price 2000).

Vasset, Novak & Jaramillo (2009) recover full Kerr solution

- constant value (N), zero expansion on the horizon (ψ) ;
- rotation state for β^{θ} , β^{ϕ} and isolated horizon for β^{r} ;
- NO condition for $\tilde{\gamma}^{ij}$;
- + asymptotic flatness and Einstein equations!

In particular, no symmetry requirement has been imposed in the "bulk" (only on the horizon) ⇒illustration of the rigidity theorem by Hawking & Ellis (1973).

EXCISION TECHNIQUE

KERR SOLUTION FROM BOUNDARY CONDITIONS

Can one recover a Kerr black hole only from boundary conditions and Einstein equations?

⇒Many computations with CFC, but there is no time slicing in which (the spatial part of) Kerr solution can be conformally flat (Garat & Price 2000).

Vasset, Novak & Jaramillo (2009) recover full Kerr solution

- constant value (N), zero expansion on the horizon (ψ) ;
- rotation state for β^{θ} , β^{ϕ} and isolated horizon for β^{r} ;
- NO condition for $\tilde{\gamma}^{ij}$;
- + asymptotic flatness and Einstein equations!

In particular, no symmetry requirement has been imposed in the "bulk" (only on the horizon) ⇒illustration of the rigidity theorem by Hawking & Ellis (1973).

Summary - Perspectives

- Many new results in numerical relativity,
- The Fully-constrained Formulation is needed for long-term evolutions, particularly in the cases of gravitational collapse,
- This formulation is now well-studied and stable.

Many of the numerical features presented here are available in the LORENE library: http://lorene.obspm.fr, publicly available under GPL.

Future directions:

- Implementation of FCF and excision methods in the collapse code to simulate the formation of a black hole
- Use of excision techniques in the dynamical case ⇒most of groups are now heading toward more complex physics: electromagnetic field, realistic equation of state for matter

SUMMARY - PERSPECTIVES

- Many new results in numerical relativity,
- The Fully-constrained Formulation is needed for long-term evolutions, particularly in the cases of gravitational collapse,
- This formulation is now well-studied and stable.

Many of the numerical features presented here are available in the LORENE library: http://lorene.obspm.fr, publicly available under GPL.

Future directions:

- Implementation of FCF and excision methods in the collapse code to simulate the formation of a black hole
- Use of excision techniques in the dynamical case ⇒most of groups are now heading toward more complex physics: electromagnetic field, realistic equation of state for matter

SUMMARY - PERSPECTIVES

- Many new results in numerical relativity,
- The Fully-constrained Formulation is needed for long-term evolutions, particularly in the cases of gravitational collapse,
- This formulation is now well-studied and stable.

Many of the numerical features presented here are available in the LORENE library: http://lorene.obspm.fr, publicly available under GPL.

Future directions:

- Implementation of FCF and excision methods in the collapse code to simulate the formation of a black hole;
- Use of excision techniques in the dynamical case

⇒most of groups are now heading toward more complex physics: electromagnetic field, realistic equation of state for matter, . . .