#### L'Univers comme laboratoire

Jérôme Novak (Jerome.Novak@obspm.fr)

GdR Phénomènes Cosmiques de Hautes Énergies

Séminaire de prospective, École Polytechnique, 28-29 septembre 2009





#### Introduction



- Les phénomènes cosmiques de hautes énergies ont été les premiers accélérateurs naturels pour les expériences de physique des particules.
- Puis, à partir de la construction de grands accélérateurs et collisionneurs, l'univers a été moins intéressant comme laboratoire, sauf pour la gravitation.

⇒depuis une douzaine d'années, le domaine des astroparticules a favorisé les échanges entre astrophysiciens, physiciens nucléaires et physiciens des particules.





#### PLAN

- 1 Particules exotiques
  - Quelle est la nature de la matière noire?
  - D'où vient l'asymétrie matière / antimatière?
- Conditions extrêmes
  - Quelles sont les propriétés de la matière ultra-dense?
  - Comment se comportent les champs magnétiques très intenses?
  - Comment est la transition de phase de la matière nucléaire vers la matière de quarks?
- **3)** Théories fondamentales
  - L'invariance de Lorentz est-elle violée ?
  - Comment tester les théories de gravitation quantiques?
  - La relativité générale décrit-elle bien les trous noirs ?





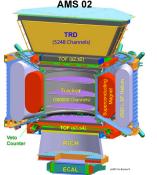
#### PLAN

- PARTICULES EXOTIQUES
  - Quelle est la nature de la matière noire?
  - D'où vient l'asymétrie matière / antimatière?
- 2 CONDITIONS EXTRÊMES
  - Quelles sont les propriétés de la matière ultra-dense?
  - Comment se comportent les champs magnétiques très intenses?
  - Comment est la transition de phase de la matière nucléaire vers la matière de quarks?
- THÉORIES FONDAMENTALES
  - L'invariance de Lorentz est-elle violée?
  - Comment tester les théories de gravitation quantiques?
  - La relativité générale décrit-elle bien les trous noirs ?





### PLAN


- PARTICULES EXOTIQUES
  - Quelle est la nature de la matière noire?
  - D'où vient l'asymétrie matière / antimatière?
- Conditions extrêmes
  - Quelles sont les propriétés de la matière ultra-dense?
  - Comment se comportent les champs magnétiques très intenses?
  - Comment est la transition de phase de la matière nucléaire vers la matière de quarks?
- THÉORIES FONDAMENTALES
  - L'invariance de Lorentz est-elle violée?
  - Comment tester les théories de gravitation quantiques?
  - La relativité générale décrit-elle bien les trous noirs?





## Matière noire

La plupart des modèles cosmologiques prévoient la présence de matière non-baryonique, au-delà du modèle standard et non-détectée directement.



Les candidats comme le neutralino ou les particules résultant de dimensions supplémentaires compactifiées produiront des signatures particulières par leur anihilations dans le halo galactique.

 $\Rightarrow$ détections des modifications des flux d'antiparticules et des rayons  $\gamma$ .

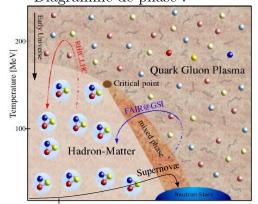
AMS-02 aura la capacité de détecter les particules liées aux dimensions supplémentaires jusqu'à 250  ${\rm GeV}/c^2$ .

INTEGRAL, Fermi, ANTARES, CTA et KM3NeT peuvent aussi rechercher des signaux indirects.



## ANTIMATIÈRE

En physique des particules, l'asymétrie matière/antimatière reste une question ouverte : comment expliquer la baryogénèse?

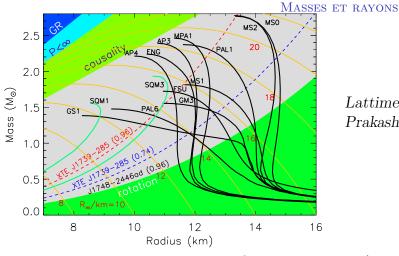

- non conservation du nombre baryonique et forte violation de CP? (au-delà du modèle standard)
- existence de domaines d'antimatière primordiale?
- ⇒recherche d'antinoyaux dans les rayons cosmiques(AMS-02)



⇒observations des raies d'anihilation à 511 keV (SPI/INTEGRAL) a permis de cartographier l'émission du centre galactique.

# ÉQUATION D'ÉTAT DE LA MATIÈRE DENSE

Diagramme de phase :




- Baryon Density [in units of nuclear matter density]
- A priori les supernovae gravitationnelles et les étoiles à neutrons sont dans ces régimes haute densité + basse température.

- Quelles sont la composition et les propriétés (équation d'état) de la matière au-delà de la densité nucléaire?
- ⇒ les expériences terrestres ne permettent pas de tester tous les domaines.



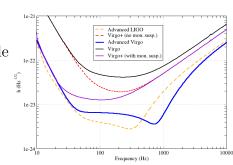
# ÉTOILES COMPACTES:



Lattimer & Prakash (2005)

 $\Rightarrow$ grand intérêt d'observations fiables de couples (M, R)pour les étoiles à neutrons



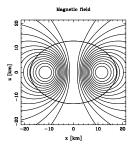



# ÉTOILES COMPACTES:

#### ASTÉROSISMOLOGIE


Les caractéristiques des ondes gravitationnelles émises par oscillations d'étoiles à neutrons dépendent de l'équation d'état

- rapport signal/bruit trop faible pour espérer détecter avec Virgo / LIGO;
- ⇒« Advanced Virgo » et des sources galactiques.




L'étude des éruptions géantes (par ex. SGR 1900+14) et des éventuelles QPO peut aussi contraindre l'équation d'état (Steiner & Watts (2009))





## CHAMP MAGNÉTIQUE EXTRÊME



Le champ magnétique très intense autour de certains pulsars-étoiles à neutrons ( $\rightarrow 10^{15}$  G) permet de tester l'électrodynamique quantique dans des régimes extrêmes, impossibles à mettre en œuvre sur Terre.

⇒phénomènes exotiques : polarisation du vide, dédoublement de photons ou création de paire par un seul photon.

⇒possibilité de tester des candidats matière noire (Light Pseudoscalar Boson) par oscillation en photon en présence de champs magnétique intense : observation par Fermi du pulsar binaire J0737-3039?





### SUPERNOVAE:

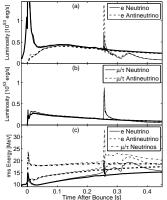
#### LABORATOIRES DE PHYSIQUE DES PARTICULES

Le phénomène de supernova gravitationnelle réunit de nombreuses conditions « extrêmes » pour les théories :

- champ gravitationnel intense (formation d'un astre compact);
- densités nucléaires et plus;
- températures de quelques dizaines de MeV;
- matière opaque aux neutrinos, turbulence, MRI, SASI,...

500 500 500

simulation de Marek & Janka (2009)


⇒pas de consensus sur le mécanisme d'explosion, mais instabilité(s) 3D + neutrinos (+RG) à prendre en compte.



#### SUPERNOVAE:

#### ONDES GRAVITATIONNELLES ET NEUTRINOS

- Les ondes gravitationnelles provenant de supernova galactique seront détectables;
- peu probable d'obtenir des informations sur la matière nucléaire (par ex. la compressibilité) par ce canal.

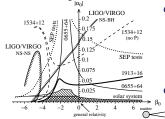


- Possibilité de transition de phase prévue par la QCD;
- formation d'un condensat de quarks peu après le rebond;
- ⇒ apparition d'un second rebond et d'un second pic en neutrinos avec modification des énergies des neutrinos.








# GRAVITATION QUANTIQUE ET INVARIANCE DE LORENTZ

- Les observations de sursauts  $\gamma$  à des distances cosmologiques permettent de contraindre de possibles violations de l'invariance de Lorentz.
- Les mesures des temps d'arrivée des photons les plus énergétiques donnent une limite sur la dépendance de la vitesse de propagation / énergie des photons.
  - Par exemple, l'observation par Fermi de GRB0905510 a permis de mettre des contraintes sur  $\Delta t \lesssim$  qqs centaines ms;
  - photons au-delà du GeV (dont un à 31 GeV);
  - Contraintes sur l'espace des paramètres pour certaines théories quantiques de la gravitation.

## Ondes Gravitationnelles et THÉORIES ALTERNATIVES

• Détection directe des ondes gravitationnelles ⇒vérification de la relativité générale;

Limites basse énergie des théories quantiques de la gravitation = relativité générale + des champs scalaires ou un terme de Chern-Simons.



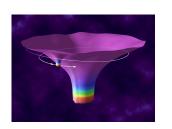
- Composantes monopolaires ⇒contraint les théories tenseurs-scalaires; (Fig. d'après Damour & Esposito-Farèse (1998));
- Ondes gravitationnelles vues par LISA (distances cosmologiques)

permettront de discerner les effets associés aux termes de Chern-Simons et contraindre les corrections quantiques à la relativité générale (Alexander et al. (2008)).






### Trous noirs


- Pour un observateur, un trou noir se définit par son horizon des événements;
- Observations de raies fortement décalées vers le rouge par le champ gravitationnel intense;
- Exemples en X des raies d'émission K et L du fer d'AGN par XMM-Newton (ou ASCA) ⇒émission provient du voisinage proche de l'horizon (1H 0707-495 et MCG-6-30-15) + détermination du spin.
  - Lors de la chute d'un « petit » trou noir dans un trou noir supermassif, il serait possible d'extraire les informations sur le champ gravitationnel de ce dernier:
  - Ondes gravitationnelles dans la bande





#### Trous noirs

- Pour un observateur, un trou noir se définit par son horizon des événements;
- Observations de raies fortement décalées vers le rouge par le champ gravitationnel intense;
- Exemples en X des raies d'émission K et L du fer d'AGN par XMM-Newton (ou ASCA) ⇒émission provient du voisinage proche de l'horizon (1H 0707-495 et MCG-6-30-15) + détermination du spin.



- Lors de la chute d'un « petit » trou noir dans un trou noir supermassif, il serait possible d'extraire les informations sur le champ gravitationnel de ce dernier;
- Ondes gravitationnelles dans la bande de LISA.

### Conclusions

- Les supernovae et les astres compacts sont des sites où les lois de la physique sont soumises à rude épreuve.
- Tous les messagers peuvent potentiellement amener de l'information sur la physique des particules et la physique nucléaire : rayons cosmiques, photons, neutrinos et ondes gravitationnelles.
- De nombreux instruments très intéressants pour utiliser l'Univers comme laboratoire : INTEGRAL, Fermi, HESS, ANTARES, Virgo, ...(existants); CTA, AMS-02, KM3-Net, AdV, LISA, ...(à venir).
- ⇒ Nécessaire travail de modélisation théorique et numérique : ex. les supernovae.
- ⇒ Nécessaires échanges entre astrophysiciens et théoriciens.





### SITUATION EN FRANCE

- D'une manière générale, la France semble très bien impliquée dans les grands projets instrumentaux existants;
- Le PID "Particules et Univers" a beaucoup joué sur le rapprochement astrophysiciens – physiciens des particules (avec l'ex-CID 47);
- Pour les tests de la RG, des liens ont été créés entre théoriciens et expérimentateurs grâce au GdR GREX, maintenant fédération GPhyS;
- Quelles relations avec la physique nucléaire?
- Tous les thèmes scientifiques ne sont pas abordés en France. . .



