A CONSTRAINED SCHEME FOR EINSTEIN EQUATIONS IN NUMERICAL RELATIVITY

Jérôme Novak (Jerome.Novak@obspm.fr)

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

based on collaboration with S. Bonazzola, I. Cordero-Carrión, P. Cerdá-Durán, H. Dimmelmeier, É. Gourgoulhon & J.L. Jaramillo.

Laboratoire Jacques-Louis Lions, Paris, January, 27th 2010

Plan

1 INTRODUCTION

- Constraints issues in 3+1 formalism
- Motivation for a fully-constrained scheme

DESCRIPTION OF THE FORMULATION AND STRATEGY
 • Covariant 3+1 conformal decomposition

- Einstein equations in Dirac gauge and maximal slicing
- Integration strategy

- CFC and FCF
- A cure in CFC
- New constrained formulation

PLAN

bservatoire

ъ

・日本 ・ 西本 ・ 日本 ・ 日本

INTRODUCTION

- Constraints issues in 3+1 formalism
- Motivation for a fully-constrained scheme

2 Description of the formulation and strategy

- \bullet Covariant 3+1 conformal decomposition
- Einstein equations in Dirac gauge and maximal slicing
- Integration strategy

- CFC and FCF
- A cure in CFC
- New constrained formulation

PLAN

・ロッ ・雪 ・ ・ ヨ ・

ъ

1 INTRODUCTION

- Constraints issues in 3+1 formalism
- Motivation for a fully-constrained scheme

2 Description of the formulation and strategy

- Covariant 3+1 conformal decomposition
- Einstein equations in Dirac gauge and maximal slicing
- Integration strategy

- CFC and FCF
- A cure in CFC
- New constrained formulation

3+1 FORMALISM

Decomposition of spacetime and of Einstein equations

Evolution equations:

$$\begin{split} &\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = \\ &-D_i D_j N + N R_{ij} - 2N K_{ik} K^k_{\ j} + \\ &N \left[K K_{ij} + 4\pi ((S-E)\gamma_{ij} - 2S_{ij}) \right] \\ &K^{ij} = \frac{1}{2N} \left(\frac{\partial \gamma^{ij}}{\partial t} + D^i \beta^j + D^j \beta^i \right). \end{split}$$

EQUATIONS:

 $R + K^2 - K_{ij}K^{ij} = 16\pi E,$ $D_j K^{ij} - D^i K = 8\pi J^i.$

 $g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + \gamma_{ij} \left(dx^i + \beta^i dt \right) \left(dx^j + \beta^j dt \right)$

3+1 FORMALISM

Decomposition of spacetime and of Einstein equations

EVOLUTION EQUATIONS:

$$\begin{split} & \frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = \\ & -D_i D_j N + N R_{ij} - 2N K_{ik} K^k_{\ j} + \\ & N \left[K K_{ij} + 4 \pi ((S-E) \gamma_{ij} - 2 S_{ij}) \right] \\ & K^{ij} = \frac{1}{2N} \left(\frac{\partial \gamma^{ij}}{\partial t} + D^i \beta^j + D^j \beta^i \right). \end{split}$$

EQUATIONS:

 $R + K^2 - K_{ij}K^{ij} = 16\pi E,$ $D_j K^{ij} - D^i K = 8\pi J^i.$

 $g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + \gamma_{ij} \left(dx^i + \beta^i dt \right) \left(dx^j + \beta^j dt \right)$

3+1 FORMALISM

Decomposition of spacetime and of Einstein equations

EVOLUTION EQUATIONS:

$$\begin{split} & \frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = \\ & -D_i D_j N + N R_{ij} - 2N K_{ik} K^k_{\ j} + \\ & N \left[K K_{ij} + 4\pi ((S-E)\gamma_{ij} - 2S_{ij}) \right] \\ & K^{ij} = \frac{1}{2N} \left(\frac{\partial \gamma^{ij}}{\partial t} + D^i \beta^j + D^j \beta^i \right). \end{split}$$

CONSTRAINT EQUATIONS:

 $R + K^{2} - K_{ij}K^{ij} = 16\pi E,$ $D_{j}K^{ij} - D^{i}K = 8\pi J^{i}.$

 $g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + \gamma_{ij} \left(dx^i + \beta^i dt \right) \left(dx^j + \beta^j dt \right)$

CONSTRAINT VIOLATION

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations,
- recover a solution of all Einstein equations.

\downarrow

Appearance of constraint violating modes

Some cures have been investigated (and work):

- constraint-preserving boundary conditions (Lindblom *et al.* 2004)
- constraint projection (Holst *et al.* 2004)
- Using of constraint damping terms and adapted gauge rouserative ⊢uv
 ⇒BSSN or Generalized Harmonic approaches, A =

CONSTRAINT VIOLATION

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations,
- recover a solution of all Einstein equations.

Appearance of constraint violating modes

Some cures have been investigated (and work):

- constraint-preserving boundary conditions (Lindblom *et al.* 2004)
- constraint projection (Holst *et al.* 2004)
- Using of constraint damping terms and adapted gauge $r_{\text{Distributive}}$ = BSSN or Generalized Harmonic approaches, r_{R} , $r_{\text{$

CONSTRAINT VIOLATION

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations,
- recover a solution of all Einstein equations.

₩

Appearance of constraint violating modes

Some cures have been investigated (and work):

- constraint-preserving boundary conditions (Lindblom *et al.* 2004)
- constraint projection (Holst *et al.* 2004)
- Using of constraint damping terms and adapted gauges

Some reasons not to solve constraints

computational cost of usual elliptic solvers \ldots

few results of well-posedness for mixed systems versus solid mathematical theory for pure-hyperbolic systems

definition of boundary conditions at finite distance and at black hole excision boundary

MOTIVATIONS FOR A FULLY-CONSTRAINED SCHEME

"Alternate" approach (although most straightforward)

- partially constrained schemes: Bardeen & Piran (1983), Stark & Piran (1985), Evans (1986)
- fully constrained schemes: Evans (1989), Shapiro & Teukolsky (1992), Abrahams *et al.* (1994), Choptuik *et al.* (2003)

 \Rightarrow Rather popular for 2D applications, but disregarded in 3D Still, many advantages:

- constraints are verified!
- elliptic systems have good stability properties
- easy to make link with initial data
- evolution of only two scalar-like fields

USUAL CONFORMAL DECOMPOSITION

Standard definition of conformal 3-metric (e.g. Baumgarte-Shapiro-Shibata-Nakamura formalism)

DYNAMICAL DEGREES OF FREEDOM OF THE GRAVITATIONAL FIELD:

York (1972) : they are carried by the conformal "metric"

$$\hat{\gamma}_{ij} := \gamma^{-1/3} \gamma_{ij} \qquad \text{with } \gamma := \det \gamma_{ij}$$

 $\hat{\gamma}_{ij} = tensor \ density$ of weight -2/3 not always easy to deal with tensor densities... not really covariant!

manualuire

ъ

USUAL CONFORMAL DECOMPOSITION

Standard definition of conformal 3-metric (e.g. Baumgarte-Shapiro-Shibata-Nakamura formalism)

DYNAMICAL DEGREES OF FREEDOM OF THE GRAVITATIONAL FIELD:

York (1972) : they are carried by the conformal "metric"

$$\hat{\gamma}_{ij} := \gamma^{-1/3} \gamma_{ij} \qquad \text{with } \gamma := \det \gamma_{ij}$$

PROBLEM

zuservatull'e

(日)、(四)、(日)、(日)、

 $\hat{\gamma}_{ij} = tensor \ density \ of weight -2/3$ not always easy to deal with tensor densities... not really covariant!

INTRODUCTION OF A FLAT METRIC

We introduce f_{ij} (with $\frac{\partial f_{ij}}{\partial t} = 0$) as the asymptotic structure of γ_{ij} , and \mathcal{D}_i the associated covariant derivative.

DEFINE:

$$\begin{split} \tilde{\gamma}_{ij} &:= \Psi^{-4} \gamma_{ij} \text{ or } \gamma_{ij} =: \Psi^{4} \tilde{\gamma}_{ij} \\ & \text{with} \\ \Psi &:= \left(\frac{\gamma}{f}\right)^{1/12} \\ f &:= \det f_{ij} \end{split}$$

 $\tilde{\gamma}_{ij}$ is invariant under any conformal transformation of γ_{ij} and verifies det $\tilde{\gamma}_{ij} = f$ $\Rightarrow no more tensor densities: only tensors.$

Finally,

$$\tilde{\gamma}^{ij} = f^{ij} + h^{ij}$$

is the deviation of the 3-metric from conformal flatness. \square

INTRODUCTION OF A FLAT METRIC

We introduce f_{ij} (with $\frac{\partial f_{ij}}{\partial t} = 0$) as the asymptotic structure of γ_{ij} , and \mathcal{D}_i the associated covariant derivative.

Define:

$$\begin{split} \tilde{\gamma}_{ij} &:= \Psi^{-4} \gamma_{ij} \text{ or } \gamma_{ij} =: \Psi^{4} \tilde{\gamma}_{ij} \\ & \text{with} \\ \Psi &:= \left(\frac{\gamma}{f}\right)^{1/12} \\ f &:= \det f_{ij} \end{split}$$

 $\tilde{\gamma}_{ij}$ is invariant under any conformal transformation of γ_{ij} and verifies $\det \tilde{\gamma}_{ij} = f$

$$\tilde{\gamma}^{ij} = f^{ij} + h^{ij}$$

INTRODUCTION OF A FLAT METRIC

We introduce f_{ij} (with $\frac{\partial f_{ij}}{\partial t} = 0$) as the asymptotic structure of γ_{ij} , and \mathcal{D}_i the associated covariant derivative.

DEFINE:

$$\begin{split} \tilde{\gamma}_{ij} &:= \Psi^{-4} \gamma_{ij} \text{ or } \gamma_{ij} =: \Psi^{4} \tilde{\gamma}_{ij} \\ & \text{with} \\ \Psi &:= \left(\frac{\gamma}{f}\right)^{1/12} \\ f &:= \det f_{ij} \end{split}$$

 $\tilde{\gamma}_{ij}$ is invariant under any conformal transformation of γ_{ij} and verifies det $\tilde{\gamma}_{ij} = f$ \Rightarrow no more tensor densities: only tensors.

Finally,

$$\tilde{\gamma}^{ij} = f^{ij} + h^{ij}$$

is the deviation of the 3-metric from conformal flatness.

GENERALIZED DIRAC GAUGE

One can generalize the gauge introduced by Dirac (1959) to any type of coordinates:

DIVERGENCE-FREE CONDITION ON $\tilde{\gamma}^{ij}$

 $\mathcal{D}_j \tilde{\gamma}^{ij} = \mathcal{D}_j h^{ij} = 0$

where \mathcal{D}_j denotes the covariant derivative with respect to the flat metric f_{ij} .

Compare

• minimal distortion (Smarr & York 1978) : $D_j \left(\partial \tilde{\gamma}^{ij} / \partial t \right) = 0$

servatoire

ъ

• pseudo-minimal distortion (Nakamura 1994) : $\mathcal{D}^{j} \left(\partial \tilde{\gamma}_{ij} / \partial t \right) = 0$

Notice: Dirac gauge \iff BSSN connection functions vanish: $\tilde{\Gamma}^i = 0$

GENERALIZED DIRAC GAUGE PROPERTIES

- h^{ij} is transverse
- from the requirement det $\tilde{\gamma}_{ij} = 1$, h^{ij} is asymptotically traceless
- ${}^{3}R_{ij}$ is a simple Laplacian in terms of h^{ij}
- ${}^{3}R$ does not contain any second-order derivative of h^{ij}
- with constant mean curvature (K = t) and spatial harmonic coordinates $(\mathcal{D}_j \left[(\gamma/f)^{1/2} \gamma^{ij} \right] = 0)$, Anderson & Moncrief (2003) have shown that the Cauchy problem is *locally strongly well posed*
- the Conformal Flat Condition (CFC) verifies the Dirac gauge ⇒possibility to easily use initial data for binaries now available

GENERALIZED DIRAC GAUGE PROPERTIES

- h^{ij} is transverse
- from the requirement det $\tilde{\gamma}_{ij} = 1$, h^{ij} is asymptotically traceless
- ${}^{3}R_{ij}$ is a simple Laplacian in terms of h^{ij}
- 3R does not contain any second-order derivative of h^{ij}
- with constant mean curvature (K = t) and spatial harmonic coordinates $(\mathcal{D}_j \left[(\gamma/f)^{1/2} \gamma^{ij} \right] = 0)$, Anderson & Moncrief (2003) have shown that the Cauchy problem is *locally strongly well posed*
- the Conformal Flat Condition (CFC) verifies the Dirac gauge ⇒possibility to easily use initial data for binaries now available

GENERALIZED DIRAC GAUGE PROPERTIES

- h^{ij} is transverse
- from the requirement det $\tilde{\gamma}_{ij} = 1$, h^{ij} is asymptotically traceless
- ${}^{3}R_{ij}$ is a simple Laplacian in terms of h^{ij}
- ${}^{3}R$ does not contain any second-order derivative of h^{ij}
- with constant mean curvature (K = t) and spatial harmonic coordinates $(\mathcal{D}_j \left[(\gamma/f)^{1/2} \gamma^{ij} \right] = 0)$, Anderson & Moncrief (2003) have shown that the Cauchy problem is *locally strongly well posed*
- the Conformal Flat Condition (CFC) verifies the Dirac gauge ⇒possibility to easily use initial data for binaries now available

Dirac gauge and maximal slicing $\left(K=0
ight)$

HAMILTONIAN CONSTRAINT

$$\begin{split} \Delta(\Psi^2 N) &= \Psi^6 N \left(4\pi S + \frac{3}{4} \tilde{A}_{kl} A^{kl} \right) - h^{kl} \mathcal{D}_k \mathcal{D}_l (\Psi^2 N) + \Psi^2 \bigg[N \Big(\frac{1}{16} \tilde{\gamma}^{kl} \mathcal{D}_k h^{ij} \mathcal{D}_l \tilde{\gamma}_{ij} \\ &- \frac{1}{8} \tilde{\gamma}^{kl} \mathcal{D}_k h^{ij} \mathcal{D}_j \tilde{\gamma}_{il} + 2 \tilde{D}_k \ln \Psi \tilde{D}^k \ln \Psi \Big) + 2 \tilde{D}_k \ln \Psi \tilde{D}^k N \bigg] \end{split}$$

Momentum constraint

$$\begin{split} \Delta \beta^{i} &+ \frac{1}{3} \mathcal{D}^{i} \left(\mathcal{D}_{j} \beta^{j} \right) \quad = \quad 2 A^{ij} \mathcal{D}_{j} N + 16 \pi N \Psi^{4} J^{i} - 12 N A^{ij} \mathcal{D}_{j} \ln \Psi - 2 \Delta^{i}{}_{kl} N A^{kl} \\ &- h^{kl} \mathcal{D}_{k} \mathcal{D}_{l} \beta^{i} - \frac{1}{3} h^{ik} \mathcal{D}_{k} \mathcal{D}_{l} \beta^{l} \end{split}$$

I'RACE OF DYNAMICAL EQUATIONS

$$\Delta N = \Psi^4 N \left[4\pi (E+S) + \bar{A}_{kl} A^{kl} \right] - h^{kl} \mathcal{D}_k \mathcal{D}_l N - 2\bar{D}_k \ln \Psi \bar{D}^k N$$

⊢ LUTH . ว < . ๛

Dirac gauge and maximal slicing (K = 0)

HAMILTONIAN CONSTRAINT

$$\begin{split} \Delta(\Psi^2 N) &= \Psi^6 N \left(4\pi S + \frac{3}{4} \tilde{A}_{kl} A^{kl} \right) - h^{kl} \mathcal{D}_k \mathcal{D}_l (\Psi^2 N) + \Psi^2 \Biggl[N \Bigl(\frac{1}{16} \tilde{\gamma}^{kl} \mathcal{D}_k h^{ij} \mathcal{D}_l \tilde{\gamma}_{ij} \\ &- \frac{1}{8} \tilde{\gamma}^{kl} \mathcal{D}_k h^{ij} \mathcal{D}_j \tilde{\gamma}_{il} + 2 \tilde{D}_k \ln \Psi \tilde{D}^k \ln \Psi \Bigr) + 2 \tilde{D}_k \ln \Psi \tilde{D}^k N \Biggr] \end{split}$$

Momentum constraint

$$\begin{split} \Delta\beta^{i} + \frac{1}{3}\mathcal{D}^{i}\left(\mathcal{D}_{j}\beta^{j}\right) &= 2A^{ij}\mathcal{D}_{j}N + 16\pi N\Psi^{4}J^{i} - 12NA^{ij}\mathcal{D}_{j}\ln\Psi - 2\Delta^{i}{}_{kl}NA^{kl} \\ &-h^{kl}\mathcal{D}_{k}\mathcal{D}_{l}\beta^{i} - \frac{1}{3}h^{ik}\mathcal{D}_{k}\mathcal{D}_{l}\beta^{l} \end{split}$$

I'RACE OF DYNAMICAL EQUATIONS

$$\Delta N = \Psi^4 N \left[4\pi (E+S) + \tilde{A}_{kl} A^{kl} \right] - h^{kl} \mathcal{D}_k \mathcal{D}_l N - 2\tilde{D}_k \ln \Psi \tilde{D}^k N$$

⊢**luth** . つへで

Dirac gauge and maximal slicing (K=0)

HAMILTONIAN CONSTRAINT

$$\begin{split} \Delta(\Psi^2 N) &= \Psi^6 N \left(4\pi S + \frac{3}{4} \tilde{A}_{kl} A^{kl} \right) - h^{kl} \mathcal{D}_k \mathcal{D}_l(\Psi^2 N) + \Psi^2 \Biggl[N \Bigl(\frac{1}{16} \tilde{\gamma}^{kl} \mathcal{D}_k h^{ij} \mathcal{D}_l \tilde{\gamma}_{ij} \\ &- \frac{1}{8} \tilde{\gamma}^{kl} \mathcal{D}_k h^{ij} \mathcal{D}_j \tilde{\gamma}_{il} + 2 \tilde{D}_k \ln \Psi \tilde{D}^k \ln \Psi \Bigr) + 2 \tilde{D}_k \ln \Psi \tilde{D}^k N \Biggr] \end{split}$$

Momentum constraint

$$\begin{split} \Delta\beta^{i} &+ \frac{1}{3}\mathcal{D}^{i}\left(\mathcal{D}_{j}\beta^{j}\right) = 2A^{ij}\mathcal{D}_{j}N + 16\pi N\Psi^{4}J^{i} - 12NA^{ij}\mathcal{D}_{j}\ln\Psi - 2\Delta^{i}{}_{kl}NA^{kl} \\ &- h^{kl}\mathcal{D}_{k}\mathcal{D}_{l}\beta^{i} - \frac{1}{3}h^{ik}\mathcal{D}_{k}\mathcal{D}_{l}\beta^{l} \end{split}$$

TRACE OF DYNAMICAL EQUATIONS

$$\Delta N = \Psi^4 N \left[4\pi (E+S) + \tilde{A}_{kl} A^{kl} \right] - h^{kl} \mathcal{D}_k \mathcal{D}_l N - 2\tilde{D}_k \ln \Psi \tilde{D}^k N$$

-LUTH

Dirac gauge and maximal slicing (K=0)

EVOLUTION EQUATIONS

$$\frac{\partial^2 h^{ij}}{\partial t^2} - \frac{N^2}{\Psi^4} \Delta h^{ij} - 2\pounds_\beta \frac{\partial h^{ij}}{\partial t} + \pounds_\beta \pounds_\beta h^{ij} = \mathcal{S}^{ij}$$

6 components - 3 Dirac gauge conditions - $(\det \hat{\gamma}) = 1$

DEGREES OF FREEDOM

$$-\frac{\partial^2 A}{\partial t^2} + \Delta A = S_A$$
$$-\frac{\partial^2 \tilde{B}}{\partial t^2} + \Delta X = S_{\tilde{B}}$$

with A and \bar{B} two scalar potentials representing the degrees of freedom.

-LUTH

Dirac gauge and maximal slicing (K = 0)

EVOLUTION EQUATIONS

$$\frac{\partial^2 h^{ij}}{\partial t^2} - \frac{N^2}{\Psi^4} \Delta h^{ij} - 2\pounds_\beta \frac{\partial h^{ij}}{\partial t} + \pounds_\beta \pounds_\beta h^{ij} = \mathcal{S}^{ij}$$

6 components - 3 Dirac gauge conditions - (detail) =

DEGREES OF FREEDOM

$$-\frac{\partial^2 A}{\partial t^2} + \Delta A = S_A$$
$$-\frac{\partial^2 \tilde{B}}{\partial t^2} + \Delta X = S_{\tilde{B}}$$

with A and \bar{B} two scalar potentials representing the degrees of freedom.

LUTH

Dirac gauge and maximal slicing (K = 0)

EVOLUTION EQUATIONS

$$\frac{\partial^2 h^{ij}}{\partial t^2} - \frac{N^2}{\Psi^4} \Delta h^{ij} - 2\pounds_\beta \frac{\partial h^{ij}}{\partial t} + \pounds_\beta \pounds_\beta h^{ij} = \mathcal{S}^{ij}$$

6 components - 3 Dirac gauge conditions - $(\det \tilde{\gamma}^{ij} = 1)$

DEGREES OF FREEDOM

$$-\frac{\partial^2 A}{\partial t^2} + \Delta A = S_A$$
$$-\frac{\partial^2 \tilde{B}}{\partial t^2} + \Delta X = S_{\tilde{B}}$$

with A and \bar{B} two scalar potentials representing the degrees of freedom.

Dirac gauge and maximal slicing (K=0)

EVOLUTION EQUATIONS

$$\frac{\partial^2 h^{ij}}{\partial t^2} - \frac{N^2}{\Psi^4} \Delta h^{ij} - 2\pounds_\beta \frac{\partial h^{ij}}{\partial t} + \pounds_\beta \pounds_\beta h^{ij} = \mathcal{S}^{ij}$$

6 components - 3 Dirac gauge conditions - $(\det \tilde{\gamma}^{ij} = 1)$

DEGREES OF FREEDOM

$$-\frac{\partial^2 A}{\partial t^2} + \Delta A = S_A$$
$$-\frac{\partial^2 \tilde{B}}{\partial t^2} + \Delta X = S_{\tilde{B}}$$

with A and \tilde{B} two scalar potentials representing the degrees of freedom.

Iterate on the system of elliptic equations for $N, \Psi^2 N$ and β^i on Σ_{t+it}

Iterate on the system of elliptic equations for $N, \Psi^2 N$ and β^i on Σ_{t-dt}

CONFORMAL FLATNESS CONDITION

Within 3+1 formalism, one imposes that :

$$\gamma_{ij} = \psi^4 f_{ij}$$

with f_{ij} the flat metric and $\psi(t, x^1, x^2, x^3)$ the conformal factor. First devised by Isenberg in 1978 as a waveless approximation to GR, it has been widely used for generating initial data,

- discards all dynamical degrees of freedom of the gravitational field (A and \tilde{B} are zero by construction)
- exact in spherical symmetry: e.g. the Schwarzschild metric can be described within CFC
- \Rightarrow captures many non-linear effects.
 - The Kerr solution cannot be exactly described in CFC, but rotation can be included in BH solution.

EINSTEIN EQUATIONS IN CFC

SET OF 5 NON-LINEAR ELLIPTIC PDES (K = 0) $\Delta \psi = -2\pi \psi^{-1} \left(E^* + \frac{\psi^6 K_{ij} K^{ij}}{16\pi} \right),$ $\Delta (N\psi) = 2\pi N \psi^{-1} \left(E^* + 2S^* + \frac{7\psi^6 K_{ij} K^{ij}}{16\pi} \right),$ $\Delta \beta^i + \frac{1}{3} \nabla^i \nabla_j \beta^j = 16\pi N \psi^{-2} (S^*)^i + 2\psi^{10} K^{ij} \nabla_j \frac{N}{\psi^6}.$

$$E^* = \psi^6 E, \quad (S^*)^i = \psi^6 S^i, \dots$$

are conformally-rescaled projections of the stress-energy tensor.

bservatoire – LUTH

Spherical collapse of matter

We consider the case of the collapse of an unstable relativistic star, governed by the equations for the hydrodynamics

$$\frac{1}{\sqrt{-g}} \left[\frac{\partial \sqrt{\gamma} \boldsymbol{U}}{\partial t} + \frac{\partial \sqrt{-g} \boldsymbol{F}^i}{\partial x^i} \right] = \boldsymbol{Q},$$

with $\boldsymbol{U} = (\rho W, \rho h W^2 v_i, \rho h W^2 - P - D).$

At every time-step, we solve the equations of the CFC system (elliptic)

 \Rightarrow exact in spherical symmetry! (isotropic gauge)

- During the collapse, when the star becomes very compact, the elliptic system would no longer converge, or give a wrong solution (wrong ADM mass).
- Even for equilibrium configurations, if the iteration is done only on the metric system, it may converge to a wrong solution.

Spherical collapse of matter

We consider the case of the collapse of an unstable relativistic star, governed by the equations for the hydrodynamics

$$\frac{1}{\sqrt{-g}} \left[\frac{\partial \sqrt{\gamma} \boldsymbol{U}}{\partial t} + \frac{\partial \sqrt{-g} \boldsymbol{F}^i}{\partial x^i} \right] = \boldsymbol{Q},$$

with $\boldsymbol{U} = (\rho W, \rho h W^2 v_i, \rho h W^2 - P - D).$

At every time-step, we solve the equations of the CFC system (elliptic)

 \Rightarrow exact in spherical symmetry! (isotropic gauge)

- During the collapse, when the star becomes very compact, the elliptic system would no longer converge, or give a wrong solution (wrong ADM mass).
- Even for equilibrium configurations, if the iteration is done only on the metric system, it may converge to a wrong solution.

Collapse of gravitational waves

Using FCF (full 3D Einstein equations), the same phenomenon is observed for the collapse of a gravitational wave packet.

- Initial data: vacuum spacetime with Gaussian gravitational wave packet,
- if the initial amplitude is sufficiently large, the waves collapse to a black hole.
- As in the fluid-CFC case, the elliptic system of the FCF suddenly starts to converge to a wrong solution.

\Rightarrow effect on the ADM mass

Collapse of gravitational waves

Using FCF (full 3D Einstein equations), the same phenomenon is observed for the collapse of a gravitational wave packet.

- Initial data: vacuum spacetime with Gaussian gravitational wave packet,
- if the initial amplitude is sufficiently large, the waves collapse to a black hole.
- As in the fluid-CFC case, the elliptic system of the FCF suddenly starts to converge to a wrong solution.

 \Rightarrow effect on the ADM mass computed from ψ at $r = \infty$ For the second second

OTHER STUDIES

- In the extended conformal thin sandwich approach for initial data, the system of PDEs is the same as in CFC.
- PFEIFFER & YORK (2005) have numerically oberved a parabolic branching in the solutions of this system for perturbation of Minkowski spacetime.
- Some analytical studies have been performed by BAUMGARTE *et al.* (2007), which have shown the genericity of the non-uniqueness behavior.

from Pfeiffer & York (2005)

A cure in the CFC case

ORIGIN OF THE PROBLEM

In the simplified non-linear scalar-field case, of unknown function \boldsymbol{u}

 $\Delta u = \alpha u^p + s.$

Local uniqueness of solutions can be proven using a maximum principle:

if α and p have the same sign, the solution is locally unique.

In the CFC system (or elliptic part of FCF), the case appears for the Hamiltonian constraint:

$$\Delta \psi = -2\pi \psi^5 E - \frac{1}{8} \psi^5 K_{ij} K^{ij};$$

Both terms (matter and gravitational field) on the r.h.s. have wrong signs.

ORIGIN OF THE PROBLEM

In the simplified non-linear scalar-field case, of unknown function \boldsymbol{u}

 $\Delta u = \alpha u^p + s.$

Local uniqueness of solutions can be proven using a maximum principle:

if α and p have the same sign, the solution is locally unique.

In the CFC system (or elliptic part of FCF), the case appears for the Hamiltonian constraint:

$$\Delta \psi = -2\pi \psi^5 E - \frac{1}{8} \psi^5 K_{ij} K^{ij};$$

Both terms (matter and gravitational field) on the r.h.s. have wrong signs.

vatoire

Let
$$L, V^i \mapsto (LV)^{ij} = \nabla^i V^j + \nabla^j V^i - \frac{2}{3} f^{ij} \nabla_k V^k$$
.
In CFC, $K^{ij} = \psi^{-4} \tilde{A}^{ij}$, with $\tilde{A}^{ij} = \frac{1}{2N} (L\beta)^{ij}$,
here $K^{ij} = \psi^{-10} \hat{A}^{ij}$, with $\hat{A}^{ij} = (LX)^{ij} + \hat{A}^{ij}_{\text{TT}}$.

Neglecting \hat{A}_{TT}^{ij} , we can solve in a hierarchical way:

- Momentum constraints ⇒linear equation for Xⁱ from the actually computed hydrodynamic quantity S^{*}_i = ψ⁶S_j,
- **9** Hamiltonian constraint $\Rightarrow \Delta \psi = -2\pi \psi^{-1} E^* \psi^{-7} \hat{A}^{ij} \hat{A}_{ij}/8$
- Inear equation for $N\psi$,
- linear equation for β , from the definitions of A^{ij} .

vatoire

Let
$$L, V^i \mapsto (LV)^{ij} = \nabla^i V^j + \nabla^j V^i - \frac{2}{3} f^{ij} \nabla_k V^k$$
.
In CFC, $K^{ij} = \psi^{-4} \tilde{A}^{ij}$, with $\tilde{A}^{ij} = \frac{1}{2N} (L\beta)^{ij}$,
here $K^{ij} = \psi^{-10} \hat{A}^{ij}$, with $\hat{A}^{ij} = (LX)^{ij} + \hat{A}^{ij}_{TT}$.
Neglecting \hat{A}^{ij}_{TT} , we can solve in a hierarchical way:
Momentum constraints \Rightarrow linear equation for X^i from the

actually computed hydrodynamic quantity $S_j^* = \psi^6 S_j$,

Hamiltonian constraint ⇒ $\Delta \psi = -2\pi \psi^{-1} E^* - \psi^{-i} A^{ij} A_{ij}/8$ linear equation for N ψ ,

Inear equation for β , from the definitions of A^{ij} .

vatoire

Let
$$L, V^i \mapsto (LV)^{ij} = \nabla^i V^j + \nabla^j V^i - \frac{2}{3} f^{ij} \nabla_k V^k$$
.
In CFC, $K^{ij} = \psi^{-4} \tilde{A}^{ij}$, with $\tilde{A}^{ij} = \frac{1}{2N} (L\beta)^{ij}$,
here $K^{ij} = \psi^{-10} \hat{A}^{ij}$, with $\hat{A}^{ij} = (LX)^{ij} + \hat{A}^{ij}_{\text{TT}}$.

Neglecting \hat{A}_{TT}^{ij} , we can solve in a hierarchical way:

- Momentum constraints \Rightarrow linear equation for X^i from the actually computed hydrodynamic quantity $S_i^* = \psi^6 S_j$,
- **2** Hamiltonian constraint $\Rightarrow \Delta \psi = -2\pi \psi^{-1} E^* \psi^{-7} \hat{A}^{ij} \hat{A}_{ij}/8$,
- Inear equation for β , from the definitions of A^{ij} .

vatoin

Let
$$L, V^i \mapsto (LV)^{ij} = \nabla^i V^j + \nabla^j V^i - \frac{2}{3} f^{ij} \nabla_k V^k$$
.
In CFC, $K^{ij} = \psi^{-4} \tilde{A}^{ij}$, with $\tilde{A}^{ij} = \frac{1}{2N} (L\beta)^{ij}$,
here $K^{ij} = \psi^{-10} \hat{A}^{ij}$, with $\hat{A}^{ij} = (LX)^{ij} + \hat{A}^{ij}_{\text{TT}}$.

Neglecting \hat{A}_{TT}^{ij} , we can solve in a hierarchical way:

- Momentum constraints \Rightarrow linear equation for X^i from the actually computed hydrodynamic quantity $S_i^* = \psi^6 S_j$,
- 2 Hamiltonian constraint $\Rightarrow \Delta \psi = -2\pi \psi^{-1} E^* \psi^{-7} \hat{A}^{ij} \hat{A}_{ij}/8$
- 0 linear equation for $N\psi$,

) linear equation for β , from the definitions of A^{ij} .

vatoin

Let
$$L, V^i \mapsto (LV)^{ij} = \nabla^i V^j + \nabla^j V^i - \frac{2}{3} f^{ij} \nabla_k V^k$$
.
In CFC, $K^{ij} = \psi^{-4} \tilde{A}^{ij}$, with $\tilde{A}^{ij} = \frac{1}{2N} (L\beta)^{ij}$,
here $K^{ij} = \psi^{-10} \hat{A}^{ij}$, with $\hat{A}^{ij} = (LX)^{ij} + \hat{A}^{ij}_{\text{TT}}$.

Neglecting \hat{A}_{TT}^{ij} , we can solve in a hierarchical way:

- Momentum constraints \Rightarrow linear equation for X^i from the actually computed hydrodynamic quantity $S_i^* = \psi^6 S_j$,
- 2 Hamiltonian constraint $\Rightarrow \Delta \psi = -2\pi \psi^{-1} E^* \psi^{-7} \hat{A}^{ij} \hat{A}_{ij}/8$
- 0 linear equation for $N\psi$,
- **(**) linear equation for β , from the definitions of \tilde{A}^{ij} .

NEW EQUATIONS IN CFC

The conformally-rescaled projections of the stress-energy tensor $E^* = \psi^6 E$, $(S^*)^i = \psi^6 S^i$,... are supposed to be known from hydrodynamics evolution.

$$\begin{split} \Delta X &+ \frac{1}{3} \nabla^i \nabla_j X^j = 8\pi \left(S^* \right)^i, \\ \hat{A}^{ij} &\simeq \nabla^i X^j + \nabla^j X^i, \\ \Delta \psi &= -2\pi \psi^{-1} E^* - \frac{\psi^{-7}}{8} \hat{A}^{ij} \hat{A}_{ij}, \\ \Delta (N\psi) &= 2\pi N \psi^{-1} \left(E^* + 2S^* \right) + N \psi^{-7} \frac{7 \hat{A}_{ij} \hat{A}^{ij}}{8}, \\ \Delta \beta^i &+ \frac{1}{3} \nabla^i \nabla_j \beta^j = \nabla_j \left(2N \psi^{-6} \hat{A}^{ij} \right). \end{split}$$

APPLICATION

AXISYMMETRIC COLLAPSE TO A BLACK HOLE

Using the code CoCoNuT combining Godunov-type methods for the solution of hydrodynamic equations and spectral methods for the gravitational fields.

- Unstable rotating neutron star initial data, with polytropic equation of state,
- approximate CFC equations are solved every time-step.
- Collapse proceeds beyond the formation of an apparent horizon;
- Results compare well with those 10^{-3} 10^{-3}

New constrained formulation

NEW CONSTRAINED FORMULATION Evolution equations

In the general case, one cannot neglect the TT-part of \hat{A}^{ij} and one must therefore evolve it numerically.

sym. tensor	longitudinal part	transverse part
$\hat{A}^{ij} =$	$(LX)^{ij}$	$+\hat{A}^{ij}_{\mathrm{TT}}$
$h^{ij} =$	0 (gauge)	$+h^{ij}$

The evolution equations are written only for the transverse parts:

$$\frac{\partial \hat{A}_{\text{TT}}^{ij}}{\partial t} = \left[\mathcal{L}_{\beta} \hat{A}^{ij} + N \psi^2 \Delta h^{ij} + \mathcal{S}^{ij} \right]^{\text{TT}}, \\ \frac{\partial h^{ij}}{\partial t} = \left[\mathcal{L}_{\beta} h^{ij} + 2N \psi^{-6} \hat{A}^{ij} - (L\beta)^{ij} \right]^{\text{TT}}.$$

NEW CONSTRAINED FORMULATION

If all metric and matter quantities are supposed known at a given time-step.

- **1** Advance hydrodynamic quantities to new time-step,
- ② advance the TT-parts of \hat{A}^{ij} and h^{ij} ,
- **3** obtain the logitudinal part of \hat{A}^{ij} from the momentum constraint, solving a vector Poisson-like equation for X^i (the Δ^i_{jk} 's are obtained from h^{ij}):

$$\Delta X^i + \frac{1}{3} \nabla^i \nabla_j X^j = 8\pi (S^*)^i - \Delta^i_{jk} \hat{A}^{jk},$$

- (1) recover \hat{A}^{ij} and solve the Hamiltonian constraint to obtain ψ at new time-step,
- **(b)** solve for $N\psi$ and recover β^i .

SUMMARY - PERSPECTIVES

- A fully-constrained formalism of Einstein equations, aimed at obtaining stable solutions in astrophysical scenarios (with matter) has been presented, implemented and tested ;
- A way to cure the uniqueness problem in the elliptic part of Einstein equations has been devised ;
- \Rightarrow the accuracy has been checked: the additional approximation in CFC does not introduce any new errors.

The numerical codes are present in the LORENE library: http://lorene.obspm.fr, publicly available under GPL. Future directions:

- Implementation of the new FCF and tests in the case of gravitational wave collapse;
- Use of the CFC approach together with excision methods in the collapse code to simulate the formation of a black hole (work by N. Vasset);

SUMMARY - PERSPECTIVES

- A fully-constrained formalism of Einstein equations, aimed at obtaining stable solutions in astrophysical scenarios (with matter) has been presented, implemented and tested ;
- A way to cure the uniqueness problem in the elliptic part of Einstein equations has been devised ;
- \Rightarrow the accuracy has been checked: the additional approximation in CFC does not introduce any new errors.

The numerical codes are present in the LORENE library: http://lorene.obspm.fr, publicly available under GPL. Future directions:

- Implementation of the new FCF and tests in the case of gravitational wave collapse;
- Use of the CFC approach together with excision methods in the collapse code to simulate the formation of a black hole (work by N. Vasset);

