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3+1 formalism

Decomposition of spacetime and of Einstein equations

Evolution equations:

∂Kij

∂t
−LβKij =

−DiDjN +NRij − 2NKikK
k
j +

N [KKij + 4π((S − E)γij − 2Sij)]

Kij =
1

2N

(
∂γij

∂t
+Diβj +Djβi

)
.

Constraint equations:

R+K2 −KijK
ij = 16πE,

DjK
ij −DiK = 8πJ i.

gµν dx
µ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)
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Constraint violation
As in electromagnetism, if the constraints are satisfied initially,
they remain so for a solution of the evolution equations.

free evolution

start with initial data verifying the constraints,
solve only the 6 evolution equations,
recover a solution of all Einstein equations.

⇓
Appearance of constraint violating modes

Some cures have been investigated (and work):
constraint-preserving boundary conditions (Lindblom et al.
2004)
constraint projection (Holst et al. 2004)
Using of constraint damping terms and adapted gauges
⇒BSSN or Generalized Harmonic approaches.
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Some reasons not to solve
constraints

computational cost of usual elliptic solvers ...

few results of well-posedness for mixed systems versus solid
mathematical theory for pure-hyperbolic systems

definition of boundary conditions at finite distance and at black
hole excision boundary



Motivations for a
fully-constrained scheme

“Alternate” approach (although most straightforward)

partially constrained schemes: Bardeen & Piran (1983),
Stark & Piran (1985), Evans (1986)
fully constrained schemes: Evans (1989), Shapiro &
Teukolsky (1992), Abrahams et al. (1994), Choptuik et al.
(2003)

⇒Rather popular for 2D applications, but disregarded in 3D
Still, many advantages:

constraints are verified!
elliptic systems have good stability properties
easy to make link with initial data
evolution of only two scalar-like fields ...



Usual conformal decomposition

Standard definition of conformal 3-metric (e.g.
Baumgarte-Shapiro-Shibata-Nakamura formalism)

Dynamical degrees of freedom of the
gravitational field:

York (1972) : they are carried by the conformal “metric”

γ̂ij := γ−1/3 γij with γ := det γij

Problem

γ̂ij = tensor density of weight −2/3
not always easy to deal with tensor densities... not really
covariant!
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Introduction of a flat metric

We introduce fij (with
∂fij

∂t
= 0) as the asymptotic structure of

γij , and Di the associated covariant derivative.

Define:

γ̃ij := Ψ−4 γij or γij =: Ψ4 γ̃ij

with
Ψ :=

(
γ
f

)1/12

f := det fij

γ̃ij is invariant under any conformal transformation of γij and
verifies det γ̃ij = f
⇒no more tensor densities: only tensors.

Finally,
γ̃ij = f ij + hij

is the deviation of the 3-metric from conformal flatness.
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Generalized Dirac gauge

One can generalize the gauge introduced by Dirac (1959) to any
type of coordinates:

divergence-free condition on γ̃ij

Dj γ̃
ij = Djh

ij = 0

where Dj denotes the covariant derivative with respect to the
flat metric fij .

Compare
minimal distortion (Smarr & York 1978) : Dj

(
∂γ̃ij/∂t

)
= 0

pseudo-minimal distortion (Nakamura 1994) :
Dj (∂γ̃ij/∂t) = 0

Notice: Dirac gauge ⇐⇒ BSSN connection functions vanish:
Γ̃i = 0



Generalized Dirac gauge
properties

hij is transverse
from the requirement det γ̃ij = 1, hij is asymptotically
traceless
3Rij is a simple Laplacian in terms of hij

3R does not contain any second-order derivative of hij

with constant mean curvature (K = t) and spatial
harmonic coordinates (Dj

[
(γ/f)1/2 γij

]
= 0), Anderson &

Moncrief (2003) have shown that the Cauchy problem is
locally strongly well posed
the Conformal Flat Condition (CFC) verifies the Dirac
gauge ⇒possibility to easily use initial data for binaries
now available
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Einstein equations
Dirac gauge and maximal slicing (K = 0)

Hamiltonian constraint

∆(Ψ
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N) = Ψ
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„
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ÃklA

kl
«
− h

klDkDl(Ψ
2
N) + Ψ

2
"

N
“ 1

16
γ̃

klDkh
ijDlγ̃ij

−
1

8
γ̃

klDkh
ijDj γ̃il + 2D̃k ln Ψ D̃

k
ln Ψ

”
+ 2D̃k ln Ψ D̃

k
N

#

Momentum constraint

∆β
i
+

1

3
Di
“
Djβ

j
”

= 2A
ijDjN + 16πNΨ

4
J

i − 12NA
ijDj ln Ψ− 2∆

i
klNA

kl

−h
klDkDlβ

i −
1

3
h

ikDkDlβ
l

Trace of dynamical equations

∆N = Ψ
4
N
h
4π(E + S) + ÃklA
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Einstein equations
Dirac gauge and maximal slicing (K = 0)

Evolution equations

∂2hij

∂t2
− N2

Ψ4
∆hij − 2£β

∂hij

∂t
+ £β£βh

ij = Sij

6 components - 3 Dirac gauge conditions -
(
det γ̃ij = 1

)
2 degrees of freedom

−∂
2A

∂t2
+ ∆A = SA

−∂
2B̃

∂t2
+ ∆X = SB̃

with A and B̃ two scalar potentials representing the degrees of
freedom.
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Integration procedure

Everything is know on slice Σt

⇓

Evolution of A and B̃ to next time-slice Σt+dt (+ hydro)

⇓

Deduce hij(t+ dt) from Dirac and trace-free conditions

⇓

Deduce the trace from det γ̃ij = 1; thus hij(t+ dt)
and γ̃ij(t+ dt).

⇓

Iterate on the system of elliptic equations for N,Ψ2N and βi on Σt+dt
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Non-uniqueness problem



Conformal flatness condition

Within 3+1 formalism, one imposes that :

γij = ψ4fij

with fij the flat metric and ψ(t, x1, x2, x3) the conformal factor.
First devised by Isenberg in 1978 as a waveless approximation
to GR, it has been widely used for generating initial data,

discards all dynamical degrees of freedom of the
gravitational field (A and B̃ are zero by construction)
exact in spherical symmetry: e.g. the Schwarzschild metric
can be described within CFC

⇒ captures many non-linear effects.
The Kerr solution cannot be exactly described in CFC, but
rotation can be included in BH solution.



Einstein equations in CFC

set of 5 non-linear elliptic PDEs (K = 0)

∆ψ = − 2πψ−1

(
E∗ +

ψ6KijK
ij

16π

)
,

∆(Nψ) = 2πNψ−1

(
E∗ + 2S∗ +

7ψ6KijK
ij

16π

)
,

∆βi +
1
3
∇i∇jβ

j = 16πNψ−2(S∗)i + 2ψ10Kij∇j
N

ψ6
.

E∗ = ψ6E, (S∗)i = ψ6Si, . . .

are conformally-rescaled projections of the stress-energy tensor.



Spherical collapse of matter

We consider the case of the collapse of an unstable relativistic
star, governed by the equations for the hydrodynamics

1√−g
[
∂
√
γU

∂t
+
∂
√−gF i

∂xi

]
= Q,

with U = (ρW, ρhW 2vi, ρhW
2 − P −D).

At every time-step, we solve the equations of the CFC system
(elliptic)
⇒exact in spherical symmetry! (isotropic gauge)

During the collapse, when the star becomes very compact,
the elliptic system would no longer converge, or give a
wrong solution (wrong ADM mass).
Even for equilibrium configurations, if the iteration is done
only on the metric system, it may converge to a wrong
solution.
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Collapse of gravitational waves
Using FCF (full 3D Einstein equations), the same phenomenon
is observed for the collapse of a gravitational wave packet.
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Initial data: vacuum
spacetime with Gaussian
gravitational wave packet,
if the initial amplitude is
sufficiently large, the waves
collapse to a black hole.
As in the fluid-CFC case, the
elliptic system of the FCF
suddenly starts to converge to
a wrong solution.

⇒effect on the ADM mass
computed from ψ at r = ∞.
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Other studies

In the extended conformal thin
sandwich approach for initial
data, the system of PDEs is the
same as in CFC.
Pfeiffer & York (2005) have
numerically oberved a parabolic
branching in the solutions of this
system for perturbation of
Minkowski spacetime.
Some analytical studies have
been performed by Baumgarte
et al. (2007), which have shown
the genericity of the
non-uniqueness behavior.
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A cure in the CFC case



Origin of the problem
In the simplified non-linear scalar-field case, of unknown
function u

∆u = αup + s.

Local uniqueness of solutions can be proven using a maximum
principle:

if α and p have the same sign, the solution is locally unique.

In the CFC system (or elliptic part of FCF), the case appears
for the Hamiltonian constraint:

∆ψ = −2πψ5E − 1
8
ψ5KijK

ij ;

Both terms (matter and gravitational field) on the r.h.s.
have wrong signs.
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Approximate CFC

Let L, V i 7→ (LV )ij = ∇iV j +∇jV i − 2
3
f ij∇kV

k.

In CFC, Kij = ψ−4Ãij , with Ãij =
1

2N
(Lβ)ij ,

here Kij = ψ−10Âij , with Âij = (LX)ij + Âij
TT.

Neglecting Âij
TT, we can solve in a hierarchical way:

1 Momentum constraints ⇒linear equation for Xi from the
actually computed hydrodynamic quantity S∗j = ψ6Sj ,

2 Hamiltonian constraint ⇒∆ψ = −2πψ−1E∗−ψ−7ÂijÂij/8,
3 linear equation for Nψ,
4 linear equation for β, from the definitions of Ãij .

It can be shown that the error made neglecting Âij
TT falls

within the error of CFC approximation.
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TT, we can solve in a hierarchical way:

1 Momentum constraints ⇒linear equation for Xi from the
actually computed hydrodynamic quantity S∗j = ψ6Sj ,

2 Hamiltonian constraint ⇒∆ψ = −2πψ−1E∗−ψ−7ÂijÂij/8,
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Let L, V i 7→ (LV )ij = ∇iV j +∇jV i − 2
3
f ij∇kV

k.

In CFC, Kij = ψ−4Ãij , with Ãij =
1

2N
(Lβ)ij ,

here Kij = ψ−10Âij , with Âij = (LX)ij + Âij
TT.

Neglecting Âij
TT, we can solve in a hierarchical way:

1 Momentum constraints ⇒linear equation for Xi from the
actually computed hydrodynamic quantity S∗j = ψ6Sj ,

2 Hamiltonian constraint ⇒∆ψ = −2πψ−1E∗−ψ−7ÂijÂij/8,
3 linear equation for Nψ,
4 linear equation for β, from the definitions of Ãij .

It can be shown that the error made neglecting Âij
TT falls
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New equations in CFC
The conformally-rescaled projections of the stress-energy tensor
E∗ = ψ6E, (S∗)i = ψ6Si, . . . are supposed to be known from
hydrodynamics evolution.

∆X +
1
3
∇i∇jX

j = 8π (S∗)i ,

Âij ' ∇iXj +∇jXi,

∆ψ = − 2πψ−1E∗ − ψ−7

8
ÂijÂij ,

∆(Nψ) = 2πNψ−1 (E∗ + 2S∗) +Nψ−7 7ÂijÂ
ij

8
,

∆βi +
1
3
∇i∇jβ

j = ∇j

(
2Nψ−6Âij

)
.



Application
Axisymmetric collapse to a black hole

Using the code CoCoNuT combining Godunov-type methods
for the solution of hydrodynamic equations and spectral
methods for the gravitational fields.

Unstable rotating neutron star
initial data, with polytropic
equation of state,
approximate CFC equations are
solved every time-step.
Collapse proceeds beyond the
formation of an apparent horizon;
Results compare well with those
of Baoitti et al. (2005) in GR,
although in approximate CFC.
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Other test: migration of unstable neutron star toward the
stable branch.



New constrained formulation



New constrained formulation
Evolution equations

In the general case, one cannot neglect the TT-part of Âij and
one must therefore evolve it numerically.

sym. tensor longitudinal part transverse part
Âij = (LX)ij +Âij

TT

hij = 0 (gauge) +hij

The evolution equations are written only for the transverse
parts:

∂Âij
TT

∂t
=

[
LβÂ

ij +Nψ2∆hij + Sij
]TT

,

∂hij

∂t
=

[
Lβh

ij + 2Nψ−6Âij − (Lβ)ij
]TT

.



New constrained formulation

If all metric and matter quantities are supposed known at a
given time-step.

1 Advance hydrodynamic quantities to new time-step,
2 advance the TT-parts of Âij and hij ,
3 obtain the logitudinal part of Âij from the momentum

constraint, solving a vector Poisson-like equation for Xi

(the ∆i
jk’s are obtained from hij):

∆Xi +
1
3
∇i∇jX

j = 8π(S∗)i −∆i
jkÂ

jk,

4 recover Âij and solve the Hamiltonian constraint to obtain
ψ at new time-step,

5 solve for Nψ and recover βi.



Summary - Perspectives

A fully-constrained formalism of Einstein equations, aimed at
obtaining stable solutions in astrophysical scenarios (with
matter) has been presented, implemented and tested ;
A way to cure the uniqueness problem in the elliptic part of
Einstein equations has been devised ;

⇒ the accuracy has been checked: the additional approximation
in CFC does not introduce any new errors.

The numerical codes are present in the lorene library:
http://lorene.obspm.fr, publicly available under GPL.
Future directions:

Implementation of the new FCF and tests in the case of
gravitational wave collapse;
Use of the CFC approach together with excision methods in
the collapse code to simulate the formation of a black hole
(work by N. Vasset);

http://www.lorene.obspm.fr
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