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3+1 FORMALISM

Decomposition of spacetime and of Einstein equations

Gy Aot da¥ = —N? dt* + ;5 (da* + B'dt) (dz? + B dt)
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3+1 FORMALISM

Decomposition of spacetime and of Einstein equations

EVOLUTION EQUATIONS:

—D;D;N + NR;; —2NKg K" +

N[KKij 4+ 4n((S — E)vij — 25i5)]

Kij— - (87” + D+ Dﬂﬂi> .
2N \ ot

Gy Aot da¥ = —N? dt* + ;5 (da* + B'dt) (dz? + B dt)
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3+1 FORMALISM

Decomposition of spacetime and of Einstein equations

EVOLUTION EQUATIONS:

—D;D;N + NR;; — 2NK;, K% +
N[KKij 4+ 4n((S — E)vij — 25i5)]

. 1 43 . .
K = (67 +DW+DW>.

2N \ ot

v

R+ K?— K;;K" = 167E,
D;K"% — D'K = 8nJ".

Gy Aot da¥ = —N? dt* + ;5 (da* + B'dt) (dz? + B dt)
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CONSTRAINT VIOLATION

As in electromagnetism, if the constraints are satisfied initially,
they remain so for a solution of the evolution equations.
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CONSTRAINT VIOLATION

As in electromagnetism, if the constraints are satisfied initially,
they remain so for a solution of the evolution equations.

FREE EVOLUTION

o start with initial data verifying the constraints,

@ solve only the 6 evolution equations,

e recover a solution of all Einstein equations.
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CONSTRAINT VIOLATION

As in electromagnetism, if the constraints are satisfied initially,
they remain so for a solution of the evolution equations.

FREE EVOLUTION

o start with initial data verifying the constraints,

@ solve only the 6 evolution equations,

e recover a solution of all Einstein equations.

4

Appearance of constraint violating modes J

Some cures have been investigated (and work):
e constraint-preserving boundary conditions (Lindblom et al.
2004)
e constraint projection (Holst et al. 2004)
o Using of constraint damping terms and adapted gaugem@va.o.re Lo
=BSSN or Generalized Harmonic approaches.



SOME REASONS NOT TO SOLVE

CONSTRAINTS
computational cost of usual elliptic solvers ... J
few results of well-posedness for mixed systems versus solid
mathematical theory for pure-hyperbolic systems J

definition of boundary conditions at finite distance and at black
hole excision boundary J
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MOTIVATIONS FOR A
FULLY-CONSTRAINED SCHEME

“Alternate” approach (although most straightforward) J

e partially constrained schemes: Bardeen & Piran (1983),
Stark & Piran (1985), Evans (1986)

e fully constrained schemes: Evans (1989), Shapiro &
Teukolsky (1992), Abrahams et al. (1994), Choptuik et al.
(2003)

=-Rather popular for 2D applications, but disregarded in 3D
Still, many advantages:
@ constraints are verified!
o elliptic systems have good stability properties
@ easy to make link with initial data l/.@v‘?@re .

@ evolution of only two scalar-like fields ...



USUAL CONFORMAL DECOMPOSITION

Standard definition of conformal 3-metric (e.g.
Baumgarte-Shapiro-Shibata-Nakamura formalism)

DYNAMICAL DEGREES OF FREEDOM OF THE

GRAVITATIONAL FIELD:
York (1972) : they are carried by the conformal “metric”

Yij = 7_1/3 Yij with v := det ;5
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USUAL CONFORMAL DECOMPOSITION

Standard definition of conformal 3-metric (e.g.
Baumgarte-Shapiro-Shibata-Nakamura formalism)

DYNAMICAL DEGREES OF FREEDOM OF THE

GRAVITATIONAL FIELD:
York (1972) : they are carried by the conformal “metric”

Yij = 771/3 Yij with v := det ;5

<

4ij = tensor density of weight —2/3
not always easy to deal with tensor densities... not really
covariant!

<
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INTRODUCTION OF A FLAT METRIC
We introduce f;; (with 0fij

7ij, and D; the associated covariant derivative.

= 0) as the asymptotic structure of
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INTRODUCTION OF A FLAT METRIC
We introduce f;; (with 0fij

7ij, and D; the associated covariant derivative.

= 0) as the asymptotic structure of

Fij = Uy or vy = U

7i; is invariant under any conformal transformation of 7;; and
verifies det y;; = f
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INTRODUCTION OF A FLAT METRIC
We introduce f;; (with Jii

7ij, and D; the associated covariant derivative.

= 0) as the asymptotic structure of

Fij = Uy or vy = U

7i; is invariant under any conformal transformation of 7;; and
verifies det y;; = f
=no more tensor densities: only tensors.

Finally,
:yij _ flJ + hii

is the deviation of the 3-metric from conformal flatness.
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GENERALIZED DIRAC GAUGE

One can generalize the gauge introduced by Dirac (1959) to any
type of coordinates:

DIVERGENCE-FREE CONDITION ON ~%

D7 = D;jhY =0

where D; denotes the covariant derivative with respect to the
flat metric f;;.

Compare
o minimal distortion (Smarr & York 1978) : D; (957 /0t) =0
o pseudo-minimal distortion (Nakamura 1994) :
D7 (075/0t) =0
Notice: Dirac gauge <= BSSN connection functions vanish:
['=0 "'@!@%9&9 LT



GENERALIZED DIRAC GAUGE
PROPERTIES

o h" is transverse

e from the requirement det;; =1, h' is asymptotically
traceless
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GENERALIZED DIRAC GAUGE
PROPERTIES

h" is transverse

from the requirement det;; = 1, h' is asymptotically
traceless

3R,L-j is a simple Laplacian in terms of 1"

3R does not contain any second-order derivative of h*
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GENERALIZED DIRAC GAUGE
PROPERTIES

h is transverse

from the requirement det;; = 1, h' is asymptotically
traceless

3R,L-j is a simple Laplacian in terms of 1"

3R does not contain any second-order derivative of A/
with constant mean curvature (K = ¢) and spatial
harmonic coordinates (D; {(’y /f )1/ 2y ] = 0), Anderson &

Moncrief (2003) have shown that the Cauchy problem is

locally strongly well posed

the Conformal Flat Condition (CFC) verifies the Dirac

gauge =-possibility to easily use initial data for binaries

now available I"@we&q?re .



EINSTEIN EQUATIONS

DIRAC GAUGE AND MAXIMAL SLICING (K = 0)

HAMILTONIAN CONSTRAINT

3 . 1 g
AW?N) = SN (4775 4+ ZAMA’”> — hFlD Dy (B2 N) + w2 [N(E&“th‘fpmj

1 ‘s = = = =
,gfykl’th”’Dj’y” + 2Dy, In ¥ D¥ In \p) + 2Dy, In W DkN}
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EINSTEIN EQUATIONS

DIRAC GAUGE AND MAXIMAL SLICING (K = 0)

HAMILTONIAN CONSTRAINT

3 . 1 g
AW?N) = SN (47Ts 4+ ZAMA"’> — hFlD Dy (B2 N) + w2 [N(E‘v“th”Dz%j

1 - ~ = = =
7galekh”Dj:m + 2D InW D*1n \p) + 2D In W DkN}

MOMENTUM CONSTRAINT
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EINSTEIN EQUATIONS

DIRAC GAUGE AND MAXIMAL SLICING (K = 0)

HAMILTONIAN CONSTRAINT

s , i _p
AW?N) = SN (47Ts 4+ ZA""A“> — h*D Dy (B2 N) + w2 {N(E&lekh”DﬁM

1 - = = = =7
7g"ylek.h”’Djﬂ'm + 2D InW D*1n \p) + 2D In W DkN}

MOMENTUM CONSTRAINT

ap'+ D! (P;#7) = 24YD;N+167N¥*J  — 12NAYD;lnw — 28%; N A

a LI
7hkl'Dk'Dlﬁl o ghtkaDlﬁl

TRACE OF DYNAMICAL EQUATIONS

AN = T4N [4Tr(E +8)+ AMA“} — h¥'D, DN — 2D}, In ¥ D* N Lot




EINSTEIN EQUATIONS

DIRAC GAUGE AND MAXIMAL SLICING (K = 0)

EVOLUTION EQUATIONS

27,4j N2 B ij
o°h —ARY — 2£gagt

oz UA + £pLph'’ = S

6 components
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EINSTEIN EQUATIONS

DIRAC GAUGE AND MAXIMAL SLICING (K = 0)

EVOLUTION EQUATIONS

27,4j N2 B ij
o°h —ARY — 2£gagt

oz UA + £pLph'’ = S

6 components - 3 Dirac gauge conditions - (det 7 = 1)
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EINSTEIN EQUATIONS

DIRAC GAUGE AND MAXIMAL SLICING (K = 0)

EVOLUTION EQUATIONS

92 i N2 OhY

6 components - 3 Dirac gauge conditions - (det 7 = 1)

DEGREES OF FREEDOM

9?A

8t2 4+ AA = SA
82

——a TAX =55

with A and B two scalar potentials representing the degrees of
freedom.

v

LUTH



INTEGRATION PROCEDURE

Everything is know on slice >, J

¢

Evolution of 4 and B to next time-slice ¥4 (4 hydro) J
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Deduce h'(t + dt) from Dirac and trace-free conditions
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INTEGRATION PROCEDURE

Everything is know on slice >,

¢

Evolution of 4 and B to next time-slice ¥4 (4 hydro)

¢

Deduce h'(t + dt) from Dirac and trace-free conditions

¢

“Deduce the trace from det 7% = 1; thus h" (t + dt)
and 4% (t + dt).
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INTEGRATION PROCEDURE

Everything is know on slice >, J
I
Evolution of 4 and B to next time-slice ¥4 (4 hydro) J
I
Deduce h'(t + dt) from Dirac and trace-free conditions J
¢
“Deduce the trace from det 7% = 1; thus h" (t + dt) J
and 7 (t + dt).
I

LUTH

Iterate on the system of elliptic equations for N, ¥2N and ' on Zt}dt




Non-uniqueness problem



CONFORMAL FLATNESS CONDITION

Within 341 formalism, one imposes that :

Yij = P i ]

with f;; the flat metric and (¢, x!l, 2% 23) the conformal factor.
First devised by Isenberg in 1978 as a waveless approximation
to GR, it has been widely used for generating initial data,

o discards all dynamical degrees of freedom of the
gravitational field (A and B are zero by construction)

@ exact in spherical symmetry: e.g. the Schwarzschild metric
can be described within CFC

= captures many non-linear effects.

@ The Kerr solution cannot be exactly described in CFC, but
rotation can be included in BH solution. I"@vmre LT



EINSTEIN EQUATIONS IN CFC

SET OF 5 NON-LINEAR ELLIPTIC PDESs (K

6. Kt
Ay = — 27t E*+u ,
167
YOS KK )

_ —1 * *
A(NY) = 27N (E +28" + =4

o g j —27 ki i NV
A+ SVIV;F = 16TNG(S™) + 26 OK IV

E*=y%E, (") =¢59°,...

are conformally-rescaled projections of the stress-energy tensor.
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SPHERICAL COLLAPSE OF MATTER

We consider the case of the collapse of an unstable relativistic
star, governed by the equations for the hydrodynamics

1 [0,AU  0y—gF!
Vel B
with U = (pW, phW?uv;, phW? — P — D).
At every time-step, we solve the equations of the CFC system
(elliptic)
=-exact in spherical symmetry! (isotropic gauge)

=Q,
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SPHERICAL COLLAPSE OF MATTER

We consider the case of the collapse of an unstable relativistic
star, governed by the equations for the hydrodynamics

1 [oAU N dy/—gF'
N ot ox’

with U = (pW, phW?uv;, phW? — P — D).

At every time-step, we solve the equations of the CFC system
(elliptic)

=-exact in spherical symmetry! (isotropic gauge)

=Q,

o During the collapse, when the star becomes very compact,
the elliptic system would no longer converge, or give a
wrong solution (wrong ADM mass).

e Even for equilibrium configurations, if the iteration is done

only on the metric system, it may converge to a wrong @
. D v‘at‘q?ye LUTH
solution. v



M oy [artbitrary units]

COLLAPSE OF GRAVITATIONAL WAVES

Using FCF (full 3D Einstein equations), the same phenomenon

is observed for the collapse of a gravitational wave packet.
WO 7 71 1 T 3

09 o Initial data: vacuum

* spacetime with Gaussian
, gravitational wave packet,

0.82

g o if the initial amplitude is

‘ ] sufficiently large, the waves

% s 0 s 20 collapse to a black hole.

o7 ] o As in the fluid-CFC case, the
] elliptic system of the FCF

suddenly starts to converge to

a wrong solution.

06f

0.10
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M, o [artbitrary units]

COLLAPSE OF GRAVITATIONAL WAVES

Using FCF (full 3D Einstein equations), the same phenomenon

is observed for the collapse of a gravitational wave packet.
WO 7 71 1 T 3

09 o Initial data: vacuum

* spacetime with Gaussian
, gravitational wave packet,

0.82

g o if the initial amplitude is

‘ ] sufficiently large, the waves

% s 0 s 20 collapse to a black hole.

o7 o As in the fluid-CFC case, the
elliptic system of the FCF
suddenly starts to converge to
a wrong solution.

[ | =veflect on the ADM mass

A I T D computedﬁromwzabtr:oou.@vf‘—j}.‘g‘;re L

.0 05 10 15 20
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OTHER STUDIES

o In the extended conformal thin

sandwich approach for init‘ial 100k Evs A4 Evs A _ 1

data, the system of PDEs is the ~~ -

same as in CFC. 10+ T /// i
o PFEIFFER & YORK (2005) have i’:\;

numerically oberved a parabolic Il ‘ ]

branching in the solutions of this i e, |

. L1~ ~min(N) |

system for perturbation of . m "

Minkowski spacetime. .01k “T L
@ Some analytical studies have ‘ M A

been performed by BAUMGARTE 0.01 0'12{1 A !

et al. (2007), which have shown
the genericity of the
non-uniqueness behavior.

from PFEIFFER & YORK (2005)
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A cure in the CFC case



ORIGIN OF THE PROBLEM

In the simplified non-linear scalar-field case, of unknown
function u
Au = auf + s.

Local uniqueness of solutions can be proven using a maximum
principle:

if @ and p have the same sign, the solution is locally unique. l

e
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ORIGIN OF THE PROBLEM

In the simplified non-linear scalar-field case, of unknown
function u
Au = auf + s.

Local uniqueness of solutions can be proven using a maximum
principle:

if @ and p have the same sign, the solution is locally unique. I

In the CFC system (or elliptic part of FCF), the case appears
for the Hamiltonian constraint:

Both terms (matter and gravitational field) on the r.h.s. Qe
have wrong signs. ™



APPROXIMATE CFC

Let L, Vi — (LV)Y = VIV + VIV — 3 v, VE,
- o o 1 .
In CFC, K9 = ¢~*AY_ with AY = TN (LB,
here K% = ¢~ 10 AY  with AY = (LX) + A#T

Neglecting A%T, we can solve in a hierarchical way:

It can be shown that the error made neglecting /AlzTJT falls
within the error of CFC approximation.
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APPROXIMATE CFC

Let L, Vi — (LV)Y = VIV + VIV — 3 v, VE,
. o y 1 g
In CFC, K9 = ¢~*AY_ with AY = TN (LB,
here K% = ¢y 'A% with AY = (LX)ij + A#T
Neglecting fliTjT, we can solve in a hierarchical way:

@ Momentum constraints =linear equation for X* from the
. . _ 6
actually computed hydrodynamic quantity S = ¢°Sj,

It can be shown that the error made neglecting /AlzTJT falls
within the error of CFC approximation.
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APPROXIMATE CFC
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In CFC, K9 = ¢~*AY_ with AY = TN (LB,
here K% = ¢~ 10 AY  with AY = (LX) + A#T
Neglecting fliTjT, we can solve in a hierarchical way:
@ Momentum constraints =linear equation for X* from the
actually computed hydrodynamic quantity S7 = ¢65j,
® Hamiltonian constraint =Ay = —2mp L E* — ¢*7A”Aij/8,

It can be shown that the error made neglecting /AlzTJT falls
within the error of CFC approximation.
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APPROXIMATE CFC

Let L, Vi — (LV)Y = VIV + VIV — 3 v, VE,
. o y 1 .
In CFC, K9 = ¢~*AY_ with AY = TN (LB,
here K% = ¢~ 10 AY  with AY = (LX) + A#T
Neglecting fliTjT, we can solve in a hierarchical way:
@ Momentum constraints =linear equation for X* from the
actually computed hydrodynamic quantity S7 = @Z)GAS i
® Hamiltonian constraint =Ay = —2mp L E* — ¢*7A”Aij/8,
@ linear equation for N,

It can be shown that the error made neglecting /AlzTJT falls
within the error of CFC approximation.
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APPROXIMATE CFC

Let L, V! i (LV)Y = V'VI 4 V/V! = 2 FIvLVE
. o y 1 .
In CFC, K9 = ¢~*AY_ with AY = TN (LB,
here K% = ¢~ 10 AY  with AY = (LX) + A#T
Neglecting fliTjT, we can solve in a hierarchical way:
@ Momentum constraints =linear equation for X* from the
actually computed hydrodynamic quantity S7 = @Z)GAS i
® Hamiltonian constraint =Ay = —2mp L E* — ¢*7A”Aij/8,
@ linear equation for N, 3
@ linear equation for 3, from the definitions of A¥.

It can be shown that the error made neglecting /AlzTJT falls
within the error of CFC approximation.
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NEW EQUATIONS IN CFC

The conformally-rescaled projections of the stress-energy tensor
E* =ySE, (S*)" =5S% ... are supposed to be known from
hydrodynamics evolution.

| . .
AX + ZV'V; X7 =8 (5,
A~ iIXT 4 VIXE
1 ¢—7 SR
A’lz} = — 27'("(#_ E* — TA”A”‘,

A . Aid
A(Ny) = 2r Ny~ (E* 4 28%) + Nw_7%,

1 . o
AG + SVIV;H = V; (2Ny°AY).

v
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APPLICATION
AXISYMMETRIC COLLAPSE TO A BLACK HOLE
Using the code COCONUT combining Godunov-type methods
for the solution of hydrodynamic equations and spectral
methods for the gravitational fields.

Unstable rotating neutron star 10 T

initial data, with polytropic
equation of state,

approximate CFC equations are
solved every time-step.

Collapse proceeds beyond the
formation of an apparent horizon;

Results compare well with those
of BAOITTI et al. (2005) in GR,

although in approximate CFC.
Other test: migration of unstable neutron star toward the V,@mre .

stable branch.

CORDERO-CARRION et al. (2009)



New constrained formulation



NEW CONSTRAINED FORMULATION

EVOLUTION EQUATIONS

In the general case, one cannot neglect the TT-part of A¥ and
one must therefore evolve it numerically.

sym. tensor longitudinal part transverse part
AU = (LX) +AY

The evolution equations are written only for the transverse
parts:

A4 . _4TT

Odiy AT~ [£pAY + NyPART + 5]
ij - o 1 TT

agt - [ﬁﬁhw + 2Ny B AT — (Lﬂ)”]
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NEW CONSTRAINED FORMULATION

If all metric and matter quantities are supposed known at a
given time-step.

@® Advance hydrodynamic quantities to new time-step,

@ advance the TT-parts of Aii and hid,

® obtain the logitudinal part of A% from the momentum
constraint, solving a vector Poisson-like equation for X*
(the A%, ’s are obtained from h*):

i, Lo j *\4 i AJ
AX' 4 SV'VXT = 8m(S7)' — AL AT

@ recover A% and solve the Hamiltonian constraint to obtain
1) at new time-step,

@ solve for N and recover '
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SUMMARY - PERSPECTIVES

o A fully-constrained formalism of Einstein equations, aimed at
obtaining stable solutions in astrophysical scenarios (with
matter) has been presented, implemented and tested ;

o A way to cure the uniqueness problem in the elliptic part of
Einstein equations has been devised ;

= the accuracy has been checked: the additional approximation
in CFC does not introduce any new errors.

The numerical codes are present in the LORENE library:
http://lorene.obspm.fr, publicly available under GPL.
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SUMMARY - PERSPECTIVES

o A fully-constrained formalism of Einstein equations, aimed at
obtaining stable solutions in astrophysical scenarios (with
matter) has been presented, implemented and tested ;

o A way to cure the uniqueness problem in the elliptic part of
Einstein equations has been devised ;

= the accuracy has been checked: the additional approximation
in CFC does not introduce any new errors.

The numerical codes are present in the LORENE library:

http://lorene.obspm.fr, publicly available under GPL.
Future directions:

o Implementation of the new FCF and tests in the case of
gravitational wave collapse;
@ Use of the CFC approach together with excision methods in
the collapse code to simulate the formation of a black hole
work by N. Vasset);
( Y ) I’.@vgt‘gire LUTH
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